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Symmetrized partial-wave method for density-functional cluster calculations

F. W. Averill' and Gayle S. Painter
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114

(Received 16 May 1994)

The computational advantage and accuracy of the Harris method is linked to the simplicity and ade-

quacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional
could be extended to systems outside the limits of weakly interacting atoms by making the charge densi-

ty of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densi-

ties. In the present study, a method is presented for augmenting the interacting atom charge densities

with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the

partial waves leads to a scheme capable of giving exact results within a given exchange-correlation ap-

proximation while maintaining many of the desirable convergence and stability properties of the original
Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further
reduces the level of computational effort. This partial-wave cluster method is illustrated by its applica-
tion to the dimer C2, the hypothetical atomic cluster Fe6A18, and the benzene molecule.

I. INTRODUCTION

The first-principles calculation of the electronic struc-
ture, geometries, and relative energetics of atomic clus-
ters and molecules of ever increasing size has been made
possible by rapid advances in computer technology and
the development of high performance codes. Much of
this success has been achieved with implementations of
the local-density approximation (LDA) to the density-
functional theory of Hohenberg, Kohn, and Sham. ' In
all of the self-consistent-field (SCF) versions of this
method, the computationally intensive step is solving the
Poisson equation for the electronic charge density calcu-
lated at each iteration. Although a number of accurate
approaches to this problem have been developed, the
search for simpler and more numerically eScient
methods has continued. The availability of massively
parallel-processing computers has heightened interest in
numerical methods which can use this computer archi-
tecture to advantage.

One popular strategy to solving the Poisson equation is
to approximate the true electronic charge density of the
system. by a superposition of atom-centered functions for
which Coulomb potentials are easily evaluated. The
Coulomb potential of the entire molecular density is then
simply a sum of the atom-centered potentials. Over the
years, many techniques have been found for choosing
sets of functions for carrying out this density-fitting pro-
cedure. Often the first step is to superimpose the spheri-
cally averaged densities of the constituent atoms of the
cluster. In some approximations, the occupation num-
bers of the atomic orbitals in the molecular environment
are allowed to vary in some sort of self-consistent way.
This is the basis of the self-consistent atom fragment
(SCAF) method. As expected, this approximation is

most appropriate in systems where the atoms interact
only weakly, but it is often satisfactory in ionic systems as
well. However, this representation in terms of superim-
posed spherically averaged atom densities does not usual-

ly provide the angular dependence necessary to describe
covalent bond densities. In such cases, the atom fit den-
sities must be supplemented by additional atom- or
bond-centered functions whose derivation, in the past,
has not always been obvious.

These early density-fitting methods displayed rather
slow convergence properties, and instabilities in the ener-

gies calculated from them. However, these problems
were largely overcome in the variational fitting procedure
of Dunlap, Connolly, and Sabin (DCS). In their pro-
cedure the electron self-interaction energy E„[p] is ex-

panded in terms of the difference density Ap=p —p, giv-

ing

E„[p]=E„[p]+fbp(r)p(r)dr+E„[bp],

E„[p]=E„[p]+f hp(r)qr(r)dr, (2)

where the fit density p is chosen to minimize E„[bp]
within the space of the fit basis set.

In more recent work, Averill and Painter have shown

that the attractive convergence properties of the DCS
method can be modestly improved by also expanding the
exchange-correlation energy E„,[p] in terms of the
di8'erence density, so that

E„,[p)=E„,[p]+f bp(r)P, „,(r)dr, (3)

where p,„,(r) is the single-electron exchange-correlation
potential due to p. When approximate forms for E„[p]
and E„,[p] are used as in Eqs. (2) and (3}, the resulting
total-energy expression

where p is the true molecular density, p is the approxi-
mate fit to that density, and q(r) is the Coulomb poten-
tial of p. The electron repulsion energy E„[pj is then ap-
proximated by omitting the difference density self-
interaction, i.e.,
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E» =xm E,
—Jp ( r )[—,

'
p (r ) +p„(r ) ]d r

+E„,[p]+ENN (4)

it is useful to choose the occupation numbers from a
SCAF calculation.

The next step is to rewrite the difference density as a
sum of atom centered functions P,

is equivalent to that developed in different contexts by
Harris, Foulkes and Haydock, ' and Delley et al. " The
one-electron energies Is;] and the associated molecular-
orbital occupation numbers [n; ] are found by solving the
one-electron self-consistency equation

[ ——,
' V +(p(r)+ Vz(r)+P„,(r)]%',(r) =s;0';(r) .

In earlier work, we showed that in some systems the
frozen-atom-fragment (FAF) approximation of Harris
could be improved upon by fitting the molecular density
with spherically averaged atomic densities whose valence
shell "occupation numbers" are allowed to vary in a self-
consistent way, the self-consistent-atom-fragment (SCAF}
method. In the present work we present a method in

Sec. II for systematically improving the completeness of
this density fit basis by the addition of atom-centered
symmetrized partial waves. This latest adaptation of the
Harris formalism will be referred to as the self-consistent
partial-wave (SCPW) method. Our application of partial
waves in the SCPW method is very similar to that de-

scribed by Delley and Becke, ' but differs in details
which will be discussed in Sec. IV.

Section III illustrates application of the SCP% method
to a variety of clusters with differing bond characteristics.
The first case is the well-studied diatomic molecule C2,
which displayed the largest error in our earlier SCAF cal-
culations. We also present results for the hypothetical
atomic cluster Fe6Als, which demonstrates the accuracy
provided by the SCAF method alone. Finally, the
strongly covalent benzene molecule was studied to assess
the partial-wave convergence rate.

II. SELF-CONSISTENT PARTIAL-%'AUE METHOD

In this section we provide details of the charge-density
decomposition, symmetrization of the partial-wave basis,
and a numerical integration method for general as well as
symmetry-adapted calculations.

A. Partial-wave projections of the charge density

As a first step in the decomposition of the cluster
charge density into a sum of atom-centered functions, we
subtract from the molecular density (generated from the
eigenfunctions at some stage of iteration) the spherically
averaged density p of each of the constituent atoms.
This defines a difference density

hp(r) =p(r) —gp, (r),
J

where the sum is over the N atoms of the cluster. The
way in which the occupation numbers of the valence
atomic orbitals defining p. are chosen is not critical to the
method. One choice is simply to let them assume the
nominal values of the isolated atoms. For ionic systems,

bp(r)= gP (r) .

On examining several different forms of the weight
function coj, we have found the homonuclear fuzzy-cell
function of Becke' to be the most satisfactory. The de-
tails for generating this function are found in Ref. 14, but
the distinctive characteristics of Becke s co are (1) ~ ap-
proaches unity for points r well inside the Voronoi po-
lyhedron centered on site j; (2) ro smoothly approaches
zero as r moves into the proximity of and outside the cell
boundary; and (3) co~ is identically zero at the center of
sites other than j. This projection function when applied
to hp(r) [Eq. (8)] has the desirable efFect of producing a
function P which is large in magnitude near site j and
which approaches zero away from site j. Carrying out
partial-wave projections about each site j,

pI (r)= f Fj (r)Pz(r)dQ (10)

determines the approximate representation of P.,
1 „(j)

P, (r)= g g pI (r)Y/ (r),
1=0 m= —1

with accuracy controlled by the cutofF I value [l,„(j)].
It has been our experience that the Harris total-energy
functional [Eq. (4)] converges to the same tolerance as the
standard Kohn-Sham expression with roughly half as
many l values. Since the total number of partial waves in
Eq. (11) goes as [l,„(j)+1],use of the Harris function-
al provides an appreciable savings in computational
efFort. The number of partial-wave terms can usually be
further reduced by symmetry considerations, as will be
discussed in Sec. II B.

Finally, putting all the pieces together, we can write
the total approximate density p(r) as a sum of atom-
centered functions:

p(r) = gf, (r},
J

where

(J) +1
fj(r)=pj(r)+ g g p] (r)&/ (r) .

l=0 m= —l

(13)

The density p(r) is designated as an approximate one
to re6ect the truncation in the l expansion of Eq. (13}.

This is most easily accomplished by projection techniques
pioneered by Boys and Rajagopal' and further refined by
Becke' and Delley. In our case, PJ is defined by a set of
atom-centered weight functions co such that

P, (r) =a)J (r)hp(r ),
and

+co~(r)=1 .
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The Coulomb potential y(r) associated with p(r ) is then
calculated as

g(r) =gg, (r),
J

where

(14)

max j +1

g, (r)=v. ~(r)+ g g v& (r)Y/ (r) .
1=0 m= —1

(15)

The potential v (r) associated with p (r) and the poten-
tial vf (r) corresponding to pj (r) are the radial partial-
wave projections centered at site j. These functions are
evaluated numerically using efficient well-known algo-
rithrns. '

Among the advantages of the scheme represented by
Eqs. (12)—(15) is the high degree of fiexibility it provides.
Ignoring the partial-wave terms altogether, either the
FAF approximation or the SCAF approximation can be
recovered. As I,„(j) is increased in the full SCPW im-

plementation, the calculation becomes more complete.
Also, the different site expansions in I values of Eqs. (13)
and (15) allow the numerical effort to be focused on those
cluster atoms in a specific application where the chemical
interest is often localized. Notice also that the only ap-
proximation in Eqs. (12)—(15) involves a projection of
the difference density onto a set of partial waves. Conse-
quently, the method does not require the independent de-

velopment of a density fit basis as in other fitting
methods.

The purpose of subtracting out the atom density p (r)
from the total density p(r) in Eq. (6) is that this reduces
much of the rapid radial dependence of p(r}, particularly
that due to the core orbitals. This allows the use of a
coarser radial point grid in solving for pf (r) and vf (r )

near the nuclei than would otherwise be possible. Anoth-
er attribute of this subtraction process is that it allows us
to use the SCAF method as a starting point for a SCP%'
calculation. In those cases it can then be used as a good
starting point in the self-consistency cycling in which
partial wave densities are mixed.

B. Symmetrization of the partial waves and angular integration

Y~(r)=c,y, +czgz+ ' ' ' +ckgk+ ' ' c (16)

be one such contribution from site j, where yk represents
a Y& (9) of fixed I with only m varying (we abbreviate the

The computational efFort of evaluating the radial func-
tions pj& (r) and v| (r} can often be reduced considerably

by making use of the symmetry properties of the cluster.
Since the charge density p(r) must transform like the to-
tally symmetric A, representation under the rotation
group of the cluster, only those F& (r )'s on site j contrib-
uting to the linear combinations over sites transforming
as A, are symmetry aBowed in the partial-wave expan-
sion of P . In some special cases, partial waves of a
specific I value at site j wi11 be forbidden by symmetry
considerations. Most typically, for a given I value, there
will be one or more linearly independent combinations of
Y& (9 )'s which transform as A

&
. Let

I, m pair to L). The constants ck can be determined to
within a multiplicative constant by symmetry considera-
tions alone. If there is more than one Yz (r) for a given I

value, the c&'s can be chosen to make those YL(r)'s or-
thogonal as well as linearly independent. The contribu-
tion of this linear combination to the partial wave projec-
tionofP is

hL(r) =IL(r ) YL (r ), (17)

P. rYL~ 0
IL(r) =

C +C + '''+C
1 2 n

(19)

Since both P and YL (r) have the symmetry of site j, any
reflection symmetry of the site can be used to reduce the
limits of the integration in Eq. (19). Also, it is readily
apparent that for a given I value, the radial functions
IL(r) must be the same on all atom sites equivalent by
symmetry to the jth site. The case of no symmetry is in-
cluded in this scheme as simply another symmetry group.

C. Numerical integration

The angular integrations in Eq. (19) are performed nu-
merically using product Gaussian formulas. ' Those nu-
merical radial integrals necessary for energy evaluations
are also performed with Gaussian quadrature. The num-
ber of Gaussian points needed in the angular integrations
depends upon (1) the level of accuracy required for the
calculation, (2) the refiection symmetry of the site, (3) the
distance r from the site, (4) the I,„(j)value chosen for
the site, and (5) the atomic number of the atoms involved.

The volume integrals that comprise the calculation of
matrix elements and total energy could be evaluated us-

ing more efficient Voronoi polyhedral methods. ' ' For
simplicity we have chosen the same fuzzy-cell method'
and point grid as used in the partial-wave projection.
The SCP%' computer code systematically partitions the
volume around each inequivalent atom into spherical
shells (and segments of shells) in order to minimize the
number of Gaussian integration points. The program
performs a limited search for optimal placement of the
partitions and adjusts the number of Gaussian points
within each partition in order to obtain a specified level
of accuracy in the total charge integral. It has been our
experience that an integration point distribution which
accurately computes the total charge of the cluster will
also achieve the accuracy necessary for the other numeri-
cal integrals. Even so, since Gaussian functions are used

where IL (r) is a radial function centered at site j. The L
expansion of Eq. (11)can then be rewritten as

P, (r) =ghL(r),
J

where the summation is over all linearly independent
(and orthogonal) site j terms contributing to symmetrized
combinations transforming like A& for I values up to
I,„(j). Multiplying both sides of Eq. (18) by a particular
YL (r) and integrating over all angles about site j, it can
be shown that
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in our basis set, many of the one-electron matrix elements
are evaluated analytically without resorting to numerical
methods. Only those integrals involving the exchange-
correlation energy, the electron-electron Coulomb ener-

gy, and the partial-wave functions are evaluated numeri-
cally.

(a

0.1

0.05

III. APPLICATIGNS

In the following, we present results from SCPW calcu-
lations for three molecules chosen to illustrate the gen-
erality of the scheme as applied to difFerent bonding situ-
ations. In Table I we summarize results for the binding
energies of Cz, Fe6A18, and C6H6 obtained by applying
the SCPW method in seven difFerent approximations for
each system. In each calculation, a molecular-orbital
basis set of double-g quality was obtained by the use of a
full set of atomic orbitals, each written as a linear com-
bination of Gaussian functions, supplemented by diffuse

primitive Gaussian functions. The local-density approxi-
mation with the exchange-correlation functiona1 of
Vosko, Wilk, and Nusair ' ' was used in each case. In
all SCAF calculations, a least-squares criterion was used
in Stting the charge density. Binding energies were com-
puted as the difference between the sum of total energies
for atoms in their LDA ground-state configurations and
the total energy of the cluster.

-0.05

-0.1

0.05

4

A. Cg

The experimental molecular ground-state configuration
'Xs [ltr„(1tl&] was selected by choice of the one-
electron occupation numbers. In the FAF calculation,
the atom configuration was fixed at C(2s 2p1'2pl').
The interatomic separation was set at the computed equi-
librium bond distance of 2.36 bohr. Inspecting the varia-
tion of the SCPW binding energy with respect to i,„(j)
in Table I shows a quite striking rapid convergence. The
I (j)=2 results are accurate to almost 0.001 eV (about
0.01%). Even the I,„(j)=1 results are sufficiently accu-
rate for many purposes. Note that the error of the FAF
energy relative to the SCPW result is almost 1.5 eV
(20%%uo), and the SCAF error is even a bit larger, so the im-
provement offered by our scheme is significant.

Charge-density differences around one carbon atom in
C2 are plotted in Fig. 1 for model densities showing three
levels of accuracy. For present purposes, the difFerence
density of a given model is the difFerence between the full
self-consistent density generated from the one-electron

-0.05

(c)

0.05

-0.05

TABLE I. The binding energies (in eV) for three systems and
seven model densities. The SCPW binding energies are given
for cutoff 1 values [l.=i,„{j)] of 0, l, 2, 3, aud 4. The molecu-
lar orbital occupation numbers were constrained to be the same
in all models for a given system.

System FAF SCAF L =0 L =1 L =2 L =3 L =4

C2 8.677 8.757 7.976 7.207 7.194 7.193 7.193
Fe6A18 68-87 52-45 51 77 51.63 51 36 51-37 51 40
C6H6 76.78 75.04 68.90 68.37 68.12 68.03 68.04

6 '

FIG. 1. Difference density expansions about one carbon atom
in C2 for SCP%' model densities: (a) SCAF, (b) E,„(j)=1, and
(c) E,„(j)=2. The symbol X marks the center of the carbon
atom, and the vertical plane bisects the C-C bond (bond length
=2.36 bohr). For the contour plot in each panel, there are
seven uniformly spaced contours with ranges of (a) —0.076 to
0.0679, (b) —0.0549 to 0.0161, and (c) —0.0202 to 0.00306, in
electrons/bohr .
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states in that model, p(r), and the self-consistent model
density p(r). Since both p(r) and P(r) are normalized to
the number of electrons, the difference density integrates
to zero. In Fig. 1(a), the difFerence density is plotted for
the SCAF model. As expected, restriction of the model
density to a sum of spherically averaged atom densities
leads to a significant error in the representation of the
transfer of charge from the carbon atom to the region of
the bond. The result of adding partial waves up toI,„(j)= 1 is apparent by comparing Figs. 1(a) and l(b).
The p-like component of the density, appearing as an "er-
ror density" in the SCAF model in Fig. 1(a), is replaced
with a much smaller d-like error density distribution in
Fig. 1(b) [note the change of scale between Figs. 1(a) and
1(b)]. Adding an additional partial wave [1,„(j)=-2]
significantly reduces the error, leaving only the small
difFerence density variations appearing in Fig. 1(c). As
Table I shows, convergence in binding energies is rapid
and essentially converged (within 0.1%) even with the
density errors shown in Fig. 1(b).

~. Fe6A&s

Binding energies for different models and number of
partial waves are also given for Fe6A18 in Table I. This
hypothetical cluster has 0& coordination with an Al
atom at each corner of a cube and a Fe atom at the center
of each face (a lattice fragment of the Cu3Au structure).
The calculations were carried out with a cube edge length
(6.5336 a.u. ) which is near the computed equilibrium
bond length for this system. For calculations in the FAF
model, the atomic valence configurations were chosen to
be those of the experimental atomic ground states
[i.e., Fe(31$'3d&'4s ) and Al(3s 3pl')]. The SCAF
calculation gives a self-consistent atomic
population of Fe(3d 1

' 3d 1 ' 4s1' 4si" ) and
Al(3sf 3s& '

3p 1 3pg ). The large error of the
FAF calculation is explained on carrying out a SCAF
calculation which shows a charge transfer of +0.24
electron/atom from the electropositive aluminum sites to
the iron atoms. In order to verify that the improved
binding energy of SCAF is due to this charge transfer, as
opposed to a valence charge rearrangement within each
atom (in particular, 3d spin fiip on the Fe sites), a FAF
calculation was performed using relaxed (but charge neu-
tral) atom occupation numbers of Fe(3d 1 3d 1 4s" and
Al{3s 3pt 53plo~). The computed binding energy of
87.4 eV is clearly in greater error than even the FAF re-
sults (see Table I) and thus indicates the importance of
charge transfer in this system. Applying the SCPW
method, including partial waves, only changes the bind-
ing energy from the SCAF result by 1.05 eV (2%). This
suggests that the SCAF model alone is capable of describ-
ing the bonding in this system. As expected, the binding
energy converges rapidly as partial waves are included in
the calculation. An /, „(j) value of 2 on each site
reduces the error in energy to 0.04 eV or 0.1%. Adding l
values beyond 2 has only a marginal effect on the binding
ener gy.

C. C,H,

Benzene was chosen as an application since the strong
covalency in the bonding of this molecule presents a
severe test of the various approximations discussed in the
text. The binding energies of the benzene molecule ap-
pear in the third row of Table I. The C-C and C-H dis-
tances were 2.627 and 2.071 a.u. , respectively, which are
the calculated equilibrium separations for this molecule.
In the FAF calculation, the atomic valence
configurations were chosen to be C(2s 2@i'2p&') and

)0.5
H( ls t ls $ ). Indeed, the SCAF binding energy
shows only a very modest improvement over the FAF ap-
proximation, which is itself in error by 8.7 eV (13%) rela-
tive to the SCPW results. Convergence of the SCPW
binding energy with respect to l,„(j) is initially rapid.
With 1,„(j)=1, the error in total binding energy is only
0.3 eV (0.4%), but for l,„(j) values beyond l,„(j)=1,
the convergence is noticeably slower. The l,„(j)value is
a rate-determining factor for the computational time of a
calculation, mainly since as l,„(j) increases, more angu-
lar grid points are required to carry out the partial-wave
projections [Eq. (10)]. It could be argued, however, that
convergence to better than 0.3 eV (0.4%) in total binding
energy is probably not meaningful in light of the inaccu-
racies inherent in the local-density approximation.

D. Point convergence

Integration point convergence properties are a matter
of practical concern in full-potential LDA calculations,
and results for these three systems are summarized here.
For the C2 dimer with axial symmetry, the binding ener-

gy was converged to within 0.01 eV (0.1%) with
I q„(J)= 1 and 325 points per atom. The Fe6Alg cluster
in 0& symmetry gave a binding energy converged to 0.03
eV (0.1%) with l,„(j)=2 (on each site) and 1800 points
per atom. Similarly, benzene (C6H6) with D6„symmetry
was converged to within 0.3 eV (0.5%) with l,„(j)=1
(on each site), and 700 points per atom.

IV. DISCUSSION

The SCPW method is a logical and eScient develop-
ment from the augmented Gaussian basis (AGB) and
SCAF methods. ' ' Although developed independently,
it shares several features with the recent DMol cluster
method of Delley. First, both methods use a projection
technique for generating a partial-wave charge-density
expansion about each site. This is also an important
component in the work of Becke. ' Second, both
methods use a Harris formalism for calculating total en-
ergies. In fact, it should be pointed out that Delley and
his collaborators introduced a Harris-like approximation
in rather early LDA cluster calculations. " No doubt
there are other points of commonality between the DMol
and SCPW methods since they share some conceptual
origins in the discrete-variational method of Ellis and
Painter and the self-consistent-charge method of Rosen
et al. '
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There are also a number of differences between DMol
and SCPW: (1) DMol uses numerical basis functions in-

stead of the Gaussian functions of the SCPW method.
The competing merits and disadvantages of Gaussian and
numerical basis sets are well known. (2} The SCPW
method uses symmetry to reduce the number of partial-
wave components. (3) The sum of atom densities [Eq. (6)]
is subtracted before the partial-wave projection in the
SCPW method. The relative advantages of points (2}and
(3) were discussed in the text.

In conclusion, we have shown how the SCAF method
can be systematically improved by the addition of multi-
center partial-wave components of the charge density,
giving rise to the SCP% method. The method provides
excellent flexibility for choosing the level of approxima-

tion used in a particular application (i.e., FAF, SCAF, or
full SCPW). The computationally intensive step in each
of these is the calculation of the numerical integrals, a
task which is easily adapted to parallel processing. Al-
though not covered here, the gradient interatomic
forces ' can also be calculated, facilitating deter-
mination of equilibrium geometries.
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