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Using the augmented-plane-wave method, we performed total-energy calculations for all the metals
crystallizing in the hcp structure and for all the Sd metals in the hcp structure. Also, using the predicted
equilibrium lattice constants from our present and previous total-energy calculations, we carried out
band-structure calculations that explore possibilities for superconductivity and magnetism in all the
transition metals in the fcc, bcc, and hcp structures.

I. BVTRODUCI ION

In the first part of this paper (Sec. II) we present calcu-
lated values of the equilibrium lattice constants and bulk
moduli of all elements whose equilibrium structure is hcp
and, in addition, of all the Sd metals in the hcp structure.
The present calculations are a continuation of our previ-
ous work' in which we studied the alkali metals and the
3d, 4d, and Sd metals in both fcc and bcc structures.
There are three basic motivations for this study. (1) Re-
cently, Cortella et al. found evidence of metastable
phases for fcc Re and an A15 form of Ta. Interestingly,
the experimental measurements of their melting tempera-
tures are in good agreement with theoretical results based
on total-energy calculations similar to those presented
here. In that sense, the total-energy differences between
the various structures may be used as a guide for further
experimental observations of metastable phases of other
metals. (2) Our previous total-energy results' already
have been used in order to find the parameters of tight-
binding models, so, the time consuming first-principles
calculations in low-symmetry structures can be avoided.
By including the present hcp results in the fitting pro-
cedure, we expect even better results from the tight-
binding model. Also, the constant electron density in the
intenstitial region of the muon-tin potentials can be used
for the calculations of the elastic properties of the metals
by using the newly proposed ideal metal model. (3) Fi-
nally, the present and previous' results can be used for
the study of certain trends along each d series and their
dependence on the structure.

In accordance with the third motivation, we study
(Sec. III) the trends of the McMillan-Hopfield parameter
g and the magnetic properties across each d series for all
the calculated structures. The parameter g controls the

electron-phonon interaction, which can be used to deter-
mine, at least semiquantitatively, the superconducting
transition temperature The magnetic properties of the
materials were calculated within the Vosko-Perdew
theory from which the susceptibility enhancement can
be found and possible ferromagnetic instabilities can be
predicted.

II. TOTAL-ENERGY CALCULATIONS
FOR hcp STRUCTURES

A. Method of calculation and approximations

The total energy was calculated from the expression of
Janak, which is valid within the muffin-tin (MT) approx-
imation and needs the crystal potential, the charge densi-
ty, and the eigenvalue sum as input. These were calculat-
ed self-consistently by the augmented-plane-wave (APW)
method9 in its general version using the MT approxima-
tion, which has been proven accurate for cubic materi-
als, ' we expect the same accuracy for hcp materials.

To determine the charge density and the potential self-
consistently, we treated the highest s and d orbitals as
band levels. All other states were treated as core levels
because they form essentially flat bands. The core levels
were calculated by a fully relativistic atomiclike calcula-
tion in each iteration. The band states were calculated
self-consistently in the semirelativistic approximation'
(the spin-orbit coupling is neglected) on a mesh of 45 k
points in the irreducible Brillouin zone.

In all calculations, the exchange potential was treated
in the exchange and correlation formalism of Hedin and
Lundqvist. "To find the equilibrium lattice constants, we
calculated the total energy at various lattice constants,
and determined the minimum by fitting the results with a
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parabolic fit to both the inverse of the volume and the in-
verse of the c/a ratio, with rms fitting errors less than 0.5
mRy.

B. Results

Our results for the c/a ratio, the equilibrium volume,
the bulk modulus, and the energy difference between hcp
and fcc structures are presented in Table I. The agree-
ment with experiment' is very good especially for the
elements in the seventh (Tc,Re} and eighth (Ru, Os)
columns; for those elements, the percentage differences
are within 1.5 and 20% for the equilibrium volumes ( V, )

and the bulk moduli (B,},respectively. Those difFerences
are higher for the elements in the second (Be,Mg), third
(Sc,Y,La), and fourth (Ti,Zr, Hf) columns; they are within
8 and 43% for V, and B„respectively. The present re-
sults for B, of Sc and Ti are in very good agreement (less
than 8% differences) with previous full-potential calcula-
tions, ' while our calculated V, for Sc and Ti are almost
identical with those of Ref. 13. So, it seems that the rela-
tively higher differences from experiment for those metals
are not due to the mu5n-tin approximation. Recent ca1-
culations' for transition metals show that the
generalized-gradient approximation' corrects these
differences for the alkali elements. But for transition
metals, the results show improvement in most but not in
all cases. ' The c/a ratio is in excellent agreement with
experiment for all the elements presented in Table I.
However, for elements with c/a far from the ideal value
of 1.633 (such as Zn and Cd), the muffin-tin approxima-
tion fails since it tends to find a minimum for the total en-

ergy close to the ideal value. The reason is probably the
fact that for these metals one uses c/a values much
higher than the ideal and the packing ratio becomes

smaller than in the closed-packed structure.
The energy differences AE, between hcp and fcc struc-

tures always predict the correct structure (EE & 0 for hcp
and b,E &0 for fcc). They are also in good agreement
with previous calculations. Fernando et al. ' calculated
the values of b.E for the 51 series (Hf-Au) using both the
full potential and the muffin-tin version of the linear-
augmented Slater-type orbital method. The present re-
sults for the 51 elements are in very good agreement with
their full-potential results except for Os where they are
closer to their muIn-tin results. In their mu5n-tin ver-
sion, they used a nontouching spheres approach —in con-
trast with our approach. In fact, Fernando et al. ' stated
in their paper that using touching spheres improves the
agreement with their full-potential results. The hE's for
Sc and Ti are also in good agreement with the full-
potential linear muffin-tin orbitals results of Paxton,
Methfessel, and Polatoglou. ' Finally, our b,E (= —4. 5

mRy) for Re is in excellent agreement with the
AE (= —4. 8 mRy) calculated by Cortella et al. i In-
terestingly, they used that value as well as the experimen-
tal value of the enthalpy of melting of the hcp Re, in or-
der to predict the melting temperature of the metastable
fcc Re; the predicted temperature is in very good agree-
ment with the measured temperature. The experimental
technique (high undercooling of refractory metals} used
in Ref. 3 seems to be an exciting way to get metastable
transformations and the present total-energy results for
hcp structures as well as our previous results' for fcc and
bcc structures can be used as a guide for searching candi-
date elements exhibiting these kinds of transformations.

The trends that we find for the relative stability of the
crystal structures along the 51 series (we expect the same
trends for 31 and 41 series) are consistent with experi-
ment as also was found by Fernando et al. ,

' Skriver, '

TABLE I. c/a ratios for hcp structures, volume per atom ( V, ), equilibrium bulk moduli (8, ), and

the total-energy differences (hE) between hcp and fcc structures.

Element

Be
Mg
Sc
T1
Y
Zr
TG

Ru

Theor.

1.590
1.637
1.560
1.616
1.594
1.620
1.616
1.612

c/a
Expt.

1 ~ 581
1.623
1.592
1.586
1.570
1.594
1.606
1.579

50.50
144.30
150.60
108.60
203.00
151.40
95.80
91.00

54.06
156.87
168.72
119.01
223.07
157.00
96.53
91.87

V, (a.u. )

Theor. Expt.

1.441
0.394
0.647
1.290
0.483
1.192
3.637
3.573

1.003
0.354
0.435
1.051
0.366
0.833
2.970
3.208

8, (MBar)
The or. Expt. AE (mRy)

—4 0
—0.4
—2.5
—2. 1
—0.3
—1.4
—4 4
—4.6

Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au

1.606
1.662
1.620
1.662
1.672
1.624
1.610
1.634
1.666
1.647

1.619
1.583

1.616
1.577

5d metals
382.40
257.20
152.00
123.20
110.20
100.76
95.26
97.30

103.90
115.10

249.48
150.17

99.28
94.77

0.146
0.495
1.188
2.206
3.208
3.879
4.307
3.591
?.412
2.068

0.243
1.090

3.720
4.180

0.3
—3.3
—4.6

4.2
9.4

—4.5
—3.6
11.2
10.3

1.9
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and Paxton, Methfessel, and Polatoglou. ' This trend is
an hcp~bcc~hcp~fcc sequence as the d bands become
progressively filled. This was explained semiquantitative-
ly by Pettifor' more than 20 years ago by using a model
characterized by only two d-resonance parameters from
which the densities of states were obtained in a hybrid
nearly free electron and tight-binding scheme.

Finally, our present and previous' results for the
alkaline-earth metals agree with the experimental obser-
vations for the equilibrium structures and the small ener-

gy differences between the different structures suggest
possible structural changes in accordance with experi-
ment and previous theoretical work (see Ref. 18).

III. ELECTRON-PHONON INTERACTION
AND STONER PARAMETER

A. Theory

The electron-phonon coupling constant is given by the
McMillan formula

where the force constants Mro can be found from

E N~N~+i
+2(/+1)sin (5&+,—5~

wN(EI, ) p N(~1)N(~1+)1
(2)

where 5& is the scattering phase shift at the Fermi energy
E~ and the angular momentum 8, N&' is the single-
scatterer density of states (DOS) defined in Ref. 6. N&
and N(Ez~ are the 8 partial and total DOS, respectively,
at EF. Equation (2) is exact to 8=1, but for higher
values of 8 it involves nonspherical corrections. Howev-
er, for the hcp materials such corrections are expected to
be very small.

The necessary input to Eq. (2) was generated as fol-
lows: (a) the phase shifts 5& were found from the loga-
rithmic derivatives of the radial wave functions that cor-
respond to the self-consistent crystal potentials of each
element, (b) the DOS N(EJ ) and N~ were computed by
the tetrahedron method, and (c) the free scatterers N~&"

were calculated using the radial wave functions of the
above crystal potentials.

neutron-scattering data or frozen phonon calculations,
and the McMillan-Hopfield parameter g is determined
using the "rigid mufiln-tin" approximation developed by
Gaspari and Gyorffy and is given by

q=N(E, )(l'&

TABLE II. Electron-phonon interaction and Stoner criterion parameters for 3d metals.

System

Ca bcc
Ca fcc

N (E~)
(Ry '/atom/spin)

4.620
4.389

Ip
(Ry)

0.0180
0.0186

IpN (EF)

0.1668
0.1634

(ev/A )

0.1885
0.1507

&I')
(Ry/a. u.)

0.000 840
0.000706

Sc bcc
Sc fcc
Sc hcp

16.515
12.280
14.733

0.0181
0.0202
0.0198

0.5980
0.4968
0.5834

3.4515
2.8481
2.6362

0.004 301
0.004773
0.003 682

Ti bcc
Ti fcc
Ti hcp

11.642
12.533
6.302

0.0197
0.0213
0.0210

0.4594
0.5331
0.2653

6.3085
6.1358
2.7509

0.011 152
0.010075
0.008 983

V bcc
V fcc

13.737
10.099

0.0218
0.0231

0.5989
0.4675

10.5133
6.2220

0.015 750
0.012 679

Cr bcc
Cr fcc

4.782
11.372

0.0244
0.0256

0.2338
0.5831

4.2893
6.8674

0.018459
0.012428

Mn bcc
Mn fcc

16.416
9.241

0.0312
0.0289

1.0233
0.5344

11.3628
7.1614

0.014244
0.015949

Fe bcc
Fe fcc

19.539
8.743

0.0333
0.0309

1.3017
0.5405

6.9299
5.2622

0.007 299
0.012 386

Co bcc
Co fcc

19.809
13.566

0.0342
0.0336

1.3534
0.9130

4.8809
4.6340

0.005 071
0.007030

Ni bcc
Ni fcc

12.900
31.209

0.0339
0.0344

0.8749
2.1449

2.7626
3.6851

0.004407
0.002430

Cu bcc
Cu fcc

2.182
1.853

0.0201
0.0211

0.0876
0.0784

0.6868
0.4574

0.006478
0.005 079
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According to the Vosko-Perdew theory the exchange-
enhanced susceptibility

X=N (EF ) /[1 N—(Ep)I~),

where the "exchange" integral is given by

(3)

IF= dry r E r

with

y= gNp(EF)Rp(EF),
1

F

(4)

where Rz(E~) is the radical wave function and K(r) is a
complicated function of the exchange-correlation poten-
tial, which in turn depend on the charge density of the
solid. " Negative values of X indicate ferromagnetic in-
stability, so any element for which N(EF }IF~ 1 (the so-
called Stoner criterion} should be ferromagnetic.

For each element, the calculations were performed for
lattice constants close to the computed equilibrium (the
differences from the computed equilibrium were within
1%). Using our present and previous' self-consistent po-
tentials, we performed a final APW calculation in order

to find the band structure E (k), which was used to com-
pute the DOS by the tetrahedron method. In the calcu-
lations of the DOS, we used 45 and 55 k points in the ir-
reducible Brillouin zone (IBZ) for the hcp and bcc struc-
tures, respectively. While for the fcc structure, we found
the E(k) in 33 k points in the IBZ, which were then in-
terpolated ' to a 505 k-point mesh before the tetrahedron
method was used; therefore, we expect more accurate re-
sults for the fcc structures.

B. Results

Our results are tabulated in Tables II, III, and IV for
3d, 4d, and Sd elements, respectively. The results are in
good agreement (especially for the 4d metals) with previ-
ous calculations of the electron-phonon interactions for
3d and 4d elements in the fcc or bcc structures. Some
small discrepancies can be attributed to differences in the
lattice constants.

Figure 1 shows the N (Ez ) as a function of valence
electrons Z for the Sd elements in bcc, fcc, and hcp struc-
tures. The trends for fcc and bcc structures also were
presented in our previous paper (see Figs. 1 and 2 in Ref.
1). N (E~ ) for fcc structures is fairly constant across each

TABLE III. Electron-phonon interaction and Stoner criterion parameters for 4d metals.

System

Sr bcc
Sr fcc

N (EF)
(Ry '/atom/spin)

4.852
0.001

IF
(Ry)

0.0171
0.0018

I,x (EF)

0.1658
0.0000

'l.
(eV/A')

0.2203
0.0001

&I')
(Ry/a. u.)'

0.000934
0.001 027

Y bcc
Y fcc
Y hcp

Zr bcc
Zr fcc
Zr hcp

15.360
10.076
14.733

10.150
10.567
4.455

0.0163
0.0183
0.0180

0.0159
0.0181
0.0176

0.5002
0.3695
0.5261

0.3227
0.3836
0.1568

3 3AAA

2.5046
3.1834

5.6925
5.7588
2.3229

0.004481
0.005 116
0.004485

0.011 542
0.011 216
0.010731

Nb bcc
Nb fcc

11.774
10.335

0.0166.
0.0188

0.3917
0.3897

9.5701
7.0135

0.016728
0.013966

Mo bcc
Mo fcc

3.490
8.245

0.0184
0.0181

0.1286
0.2986

5.4504
7.2099

0.032 140
0.017996

Tc bcc
Tc fcc
Tc hcp

Ru bcc
Ru fcc
Ru hcp

11.049
6.745
6.243

12.476
5.822
5.641

0.0214
0.0203
0.0192

0.0229
0.0206
0.0220

0.4731
0.2741
0.2396

0.5723
0.2400
0.2486

12.0774
7.8937
6.9220

8.2450
6.0977
7.1509

0.022 495
0.024087
0.022 816

0.013601
0.021 553
0.026089

Rh bcc
Rh fcc

12.311
9.069

0.0232
0.0227

0.5714
0.4122

5.0356
5.6991

0.008 418
0.012 933

Pd bcc
Pd fcc

8.725
18.494

0.0229
0.0230

0.4002
0.8492

2.7157
3.6649

0.006406
0.004078

Ag bcc
Ag fcc

2.029
1.800

0.0152
0.0165

0.0615
0.0594

0.3571
0.2913

0.003 622
0.003 331
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row but abruptly increase to a maximum for Z=10
(Ni, Pd, Pt) column; there are wider variations for N(E~}
of bcc structures with a pronounced minimum at Z=6
(Cr,Mo,W) and two well-defined maxima at Z =3
(Sc,Y,La) and Z=9 (Co,Rh, Ir). The present results for
N(EF) of hcp structures show an oscillatory behavior
with three maxima at Z =3 (Sc,Y,La), 6 (Cr,Mo, W), and
10 (Ni, Pd, Pt). We have hcp results for a complete row
only for the 5d elements, but, as for the bcc and fcc struc-
tures (see Tables II-IV and Figs. 1 and 2 in Ref. 1), we
expect the same behavior for all the rows.

The exchange integral Iz for the Sd elements is found
in Table IV. The Iz is almost identical; for fcc and hcp
structures it has a minimum at Z=3 La. It then in-
creases constantly until reaching maximum values at
Z =9, 10 (Ir,Pt), then drops sharply. For bcc structures,
Iz has a maximum at Z =9 (Ir) and is significantly small-

er than IF for fcc and hcp structures at Z =10 (Pt). Also,
the IF for bcc structures does not exhibit the sharp
minimum at Z=3 (La), which appears in fcc and hcp
structures. The product N(E~)XI~ (Fig. 2 and Table
IV} follows closely the variation of the N(EF); the maxi-
ma and minima of that product appear at exactly the
same Z as in N(Ez) for all the structures (compare Figs.
1 and 2). The Iz does not vary too much along each row;
in particular for the 5d and for all the structures it has a
44% variation from its average value. However, this
variation is crucial in determining whether N(Ez)XI~
satisfies the Stoner criterion. Recently, Bakonyi,
Ebert, and Liechtenstein calculated the exchange
integral Iz and the Stoner enhancement factor
S(=1/[1 N(EF)—Iz]) for the hcp, bcc, and fcc struc-
tures of the element in the fourth column of the Periodic
Table (Ti,Zr, Hf). The I~ for Ti is almost identical with

TABLE IV. Electron-phonon interaction and Stoner criterion parameters for Sd metals.

System

Ba bcc
Ba fcc
Ba hcp

La bcc
La fcc
La hcp

N (EF)
(Ry '/atom/spin)

7.470
10.625
13.536

36.638
14.479
18.467

IF
(Ry)

0.0149
0.0169
0.0173

0.0143
0.0135
0.0142

IFN (EF)

0.2219
0.3590
0.2346

1.0455
0.3918
0.5233

'9.
(eV/A')

0.5269
0.6199
0.4402

5.6662
3.0098
2.9027

&I')
(Ry/a. u. )

0.001 451
0.001 201
0.001 339

0.003 183
0.004278
0.003 235

Hf bcc
Hf fcc
Hf hcp

Ta bcc
Ta fcc
Ta hcp

W bcc
W fcc
W hcp

Re bcc
Re fcc
Re hcp

11.180
10.966
5.280

10.366
7.508

10.341

2.805
8.586

14.151

8.541
5.460
4.107

0.0155
0.0177
0.0174

0.0162
0.0177
0.0173

0.0181
0.0185
0.0176

0.0195
0.0191
0.0180

0.3466
0.3885
0.1832

0.3351
0.2653
0.3577

0.1018
0.3172
0.4972

0.3334
0.2083
0.1475

5.4119
6.8864
2.8029

9.8476
6.4856
7.8481

4.5406
7.2500

14.7475

14.1792
7.7874
5.8268

0.009 962
0.012 924
0.010925

0.019552
0.017777
0.015 619

0.033 309
0.017 377
0.021 448

0.034 166
0.029 351
0.029 198

Os bcc
Os fcc
Os hcp

9.037
4.500
4.168

0.0207
0.0192
0.0199

0.3740
0.1727
0.1657

8.5526
6.6792
6.1402

0.019476
0.030 548
0.030 319

Ir bcc
Ir fcc
Ir hcp

23.474
6.884
8.682

0.0215
0.0211
0.0217

1.0078
0.2902
0.3766

8.1585
6.7453
8.5160

0.007 153
0.020 165
0.020 185

Pt bcc
Pt fcc
Pt hcp

6.876
13.587
14.725

0.0192
0.0217
0.0220

0.2646
0.5896
0.6486

4.5660
4.8350
6.5233

0.013 667
0.007 324
0.009 117

Au bcc
Au fcc
Au hcp

1.968
1.716
2.082

0.0138
0.0145
0.0145

0.0543
0.0497
0.0602

0.7057
0.4900
0.8129

0.007 380
0.005 876
0.008 033
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FIG. 1. The density of states N(EF ) at the Fermi energy EF
vs the number of valence electrons for 5d metals in bcc (circles),
fcc (crosses), and hcp (squares) structures.

FIG. 3. g vs the number of valence electrons for Sd metals in
bcc (circles), fcc (crosses), and hcp (squares) structures.

I I I

j
I I I

j
I I I

j
I I I

j
I I I

j
I I I

0 I

0 4 6 8
Number of Valence Electrons

10

FIG. 2. IF XN(E+) vs the number of valence electrons for 5d
metals in bce (circles), fcc (crosses), and hcp (squares) structures.

the present results while for the other elements the agree-
ment is very good. The S for hcp structures are almost
the same as present results, but there are some difFerences
in the values of S for fcc and bcc structures, which come
from the difFerences of N(Ez). Bakonyi, Ebert, and
Liechtenstein found that N(EF ) for the bcc structure are
slightly higher than N (E~ ) for fcc, while our results
show exactly the opposite feature.

The square of the electron ion matrix element averaged
over the Fermi surface (I ) (see Table IV) has the same
trend for both fcc and hcp structures; it increases as the
Z increases until it reaches its maximum value at Z =7, 8

(Re,Os); then it decreases as the Z increases. For
Z ~ 5, (I ) of bcc structures is almost the same with
(I ) of both fcc and hcp structures, but for higher Z
there are considerable differences. The maximum of
(I ) for bcc structures appears at Z=6, 7 (W,Re), while
its bcc values for Z=8, 9 (Os, Ir) are much smaller than
the (I ) for fcc and hcp structures. The McMillan-
Hopfield parameter g (see Fig. 3 and Table IV) for fcc

structures has an almost parabolic form across the d
series with its maximum value at Z=7 (Re). For bcc
structures, g has one maximum at Z =5 (Ta) and another
even higher maximum at Z =7 (Re). On the other hand,
for hcp structures, rl has a sharp maximum at Z =6 (W)
and a smaller one at Z =9 (Ir). Notice also that the max-
imum values of rl ( —14.5 eV/A ) for W hcp and Re bcc
are more than twice higher than the corresponding values
of those elements at their equilibrium structures (W bcc
and Re hcp). This suggests possible higher superconduct-
ing temperatures for the metastable structures.

Comparing the values of the various parameters among
the three difFerent series (see Tables II-IV), we find that
for the same structure g is almost the same for all the ele-
ments at the same column of the Periodic Table. The
same behavior exists for the Stoner criterion, IF XN(EF),
between the 4d and Sd elements. In contrast, the value of
I+N(EF) for the 3d element is considerably higher al-

though the general trends are the same for all the series.
This is basically a consequence of the high values of IF in
the 3d series; the Iz for 3d elements is about 50% higher
than the corresponding elements at 4d and Sd series
(Tables II—IV). This is consistent with the occurrence of
magnetism in the 3d elements. From Tables II-EV, we
note that the following materials bcc Mn, bcc Fe, bcc Co,
fcc Ni, bcc La, and bcc Ir satisfy the Stoner criterion,
while fcc Co, bcc Ni, fcc Pd, and hcp Pt have Iz XN(Ez)
very close to the critical value of 1.0. Note that I~N(Ez )

is actually a lower bound to the exact result.
Finally, to study the volume dependence of the above

parameters that control superconductivity and magne-
tism, we present in Table V the values of these parame-
ters for fcc Pt at five difFerent lattice constants, a. IF is
almost constant over a wide region of a. N(EF) and
IFN(EF) increases as the lattice constant increases. In
constant, (I ) decreases rapidly as a increases; the (I )
for a = 7.2 a.u. is almost two times greater than the (I )
for a =7.6 a.u. Finally, g exhibits the same behavior as
(I ) but the changes of g with a are smaller than those
of (I ), since rl is also dependent on N(EF ) [Eq. (1)].
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TABLE V. Lattice constant variation of the density of states electron-phonon interaction and Stoner

parameters for Pt.

Lat. const.

7.2
7.3
7.4
7.5
7.6

E
(Ry)

0.7544
0.6951
0.6438
0.5938
0.5470

N(EF )

(States/Ry)

11.690
12.914
13.587
14.689
15.961

I~
(Ry)

0.021 84
0.021 75
0.021 70
0.021 60
0.021 50

IFN(EF )

0.5105
0.5617
0.5896
0.6347
0.6862

5.9884
5.4323
4.8350
4.4379
4.0854

(Ry/a. u. )

0.010543
0.008 657
0.007 324
0.006 218
0.005 268

IV. CONCLUSIONS

We calculated the total energies of all the metals crys-
tallizing in hcp structures and all the 5d metals in the hcp
structure. Equilibrium lattice constants and bulk moduli
in the local-density approximation have the usual small
discrepancies from experiment. We also studied the
electron-phonon interaction and the magnetic properties
of transition metals. The metals with valence electrons
Z =5 (V,Nb, Ta) at their equilibrium bcc structures, Z =6
(Cr,Mo,W) at their metastable hcp structures, and Z=7
(Mn, Tc,Re) at their metastable bcc structures have high
electron-phonon parameter, r). The Stoner criterion

[IJ;XN(Ez) 1] is fulfilled for all the elements at the end
of the 3d series in accordance with the occurrence of fer-
romagnetism for those metals. For elements in the 4d
and 5d series, bcc La and bcc Ir fulfill the Stoner cri-
terion, while fcc Pd and hcp Pt are very close to fulfilling
it. Note that from those metals only fcc Pd is in its equi-
librium structure.
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