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Supercnrrent determined from the Aharonov-Bohm effect in mesoscopic superconducting rings
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We have solved the Bogoliubov —de Gennes equation for a clean, one-dimensional mesoscopic supercon-

ducting ring threaded by a magnetic flux 4. We show that the superfluid velocity is driven directly by 4 while

the relative motion of the pair of electrons is independent of 4. Meanwhile, the fluxoid quantization is

obtained straightforwardly. More importantly, we have also calculated the supercurrent numerically and self-

consistently and find it is periodic in 4 with the period @,=hc/2e fox C,~@q=(mvqL/firn)4, and with the

period 40 —=hc/e for 4&&4, , which arises from mesoscopic effects.

In classical electromagnetism the electromagnetic field is
described by the electric field E and the magnetic field B.
The scalar potential Pr) and the vector potential A(r) are
introduced just for convenience. The equation of motion for
an electron is determined by the Lorentz force and does not
depend directly on the scalar and vector potentials. Actually,
there are an infinite number of ways in choosing these po-
tentials which give the same E and 8, and physically observ-
able quantities are independent of these different gauges. In
quantum theory, however, these potentials appear explicitly
in the Schrodinger equation and their effects appear explic-
itly in physical quantities. As early as 1959, it was shown by
Aharonov and Bohm' (AB) that the standard Schrodinger-
equation analysis of the scattering of an electron by a thin
impenetrable solenoid implies the remarkable result that such
a particle is deflected even when classical forces are absent.
One of the most well-known demonstrations of this AB ef-
fect is the persistent equilibrium current occurring in isolated

meso scopic normal-metal rings pierced by AB Aux
tl~= fA dl. In superconductors, electrons form Cooper
pairs due to the effectively attractive interaction. The resis-
tance of superconductors disappears completely below a
critical temperature Tc. As a result, electrical currents in
superconducting rings, once set up, can circulate persistently.
It is then anticipated that the AB effect could manifest itself
more clearly in supercurrents in mesoscopic superconducting
rings. In addition, some novel behaviors of the persistent
current via AB and pair-breaking effects could be expected.
In this paper we will address these points by solving the
Bogoliubov —de Gennes equation.

Throughout our work we only consider the case that the
magnetic flux 4? is confined in an impenetrable solenoid
which threads the ring axially and that electrons always
move in a magnetic-field-free space. The situation is strictly
of Aharonov-Bohm type and does not involve the Meissner
effect. For a one-dimensional (1D) ring with the circumfer-
ence L, the degree of freedom of an electron can be ex-
pressed in terms of the spatial variable x=L 8/2m instead of
the azimuthal angle 8, so that x varies between 0 and L. The
Bogoliubov —de Gennes (BdG) equation has the form of two
Schrodinger equations for electron and hole wave functions
u(x) and v(x), coupled by the pairing potential A(x),

( M(x) h(x) l ( u(x) ) ( u(x) l

(, b, *(x) —~™(x))(v(x) j ( v(x) j
'

where the 1D Hamiltonian in the presence of the vector po-
tential is

1 /h d eA(x))
.W(x) =

I + V(x) —E, ,2mti dx c /

(2)

with V(x) =0 for the clean limit. The excitation energy E is
measured relative to the Fermi energy EF .

For the ring geometry, the periodic boundary conditions
lead to the usual quantization of the excitation energy. In this

paper, however, we choose a gauge where the vector poten-
tial does not appear explicitly in the Hamiltonian and the
current operators but enters the calculation via the flux-
modified boundary conditions

u(x+L)=u(x)e+' "@/@',

u(x+L)=u(x)e ' (4)

/) (x+L) =/) (x)e'

where 4o—=bc/e is the usual flux quantum. The basic idea of
this transformation was originated by Byers and Yang and
Bloch, here we employ it to solve the BdG equation in the
presence of the vector potential. If the electron wave vector
is k and the wave vector for the collective drift motion (su-
perfluid motion) of the paired electrons is q, the initial k and
—k pairing is generalized to pair the states (k+q) and

(—k+ q). Following Ref. 6, we can write the pairing poten-
tial b(x) as

h(x) = he 't",

u(x) = uke'

) t(k —q)x (9)

where 5 is real and generally q dependent. The solution of
the BdG equation is then found,
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where

6 kE„+ E„, (10)

and for the electronlike branch the two coherence factors of
the BCS theory )ui, (

and )vz) are

(hq~
e P &f(Ei q) /uz/ + 41 f—(Ek q)][Us

km)

~ak
+2eX f(Ei,q) (18)

$1+(5/E„)'+ 1

2 $1+(6/Eg)

v'1+ (b,/E„) —1

2 $1+(5/Eg)
(12)

with ~uz~ + (vq~
= 1.The boundary condition Eqs. (3) and

(4) on the solution of the BdG equation leads to

7r
k= —nkL

(13)

ei
llq+ @sJ

(14)

where nk, nq=0, ~1,~2, ... and nk+nq=eUen, and

4,=CO/2—=hc/2e is the superconducting flux quantum.
The magnetic flux enters into the wave vector q for the col-
lective drift motion but not into the wave vector k for the
relative motion of the paired electrons. In fact, if we regard a
pair of electrons as a composite particle with the effective
charge e*=2e and the effective mass m* = 2m, h(x) can be
viewed as an effective macroscopic wave function describing
the motion of this composite particle and the AB phase is
gained via the process that the particle moves one turn
around the ring. Imposing the boundary condition Eq. (5) on
Eq. (6), one is able to find Eq. (14) again. It is interesting to
note that the so-called fluxoid quantization

c "(
4'=—&) m*v—

S
~ dl

c

=nq S~ (15)

2fie
Ig= g Im(f(E~ )u*(x)Vu(x)

k

—[1—f(Ea )]U*(x)Vv(x)), (16)

where the prefactor of 2 accounts for both spin directions,
and f(E& q) is the Fermi distribution function, i.e.,

1
k q 1 + Ep&/k&T

f(E ) =

Substituting Eqs. (8) and (9) into Eq. (16), one yields

which is required by the general Bohr-Sommerfeld quantum
condition, is naturally recovered, where U, = h(2q)/m* is
the superfluid velocity.

Once the eigenvalue problem is solved, one can calculate
the equilibrium electrical current, which is given by

So far, we have developed the formalism of the supercurrent
in terms of the excitation spectrum of a 1D mesosco ic su-

perconducting ring in the presence of the AB flux. ' From
Eqs. (3) and (4), the physical quantities such as the supercur-
rent are obviously periodic in iIi with the period 40. Notice
that the periodicity of the supercurrent given by Eq. (18) can
be understood in the way that one changes nq whenever 4
exceeds integer multiples of 4O, once 4 exceeds 40 but less
than (3/2)4O, nq should change to nq 2, . . .—. Therefore, it
is sufficient to consider only the range 4 c [0,@o]because
the flux can always be reduced by subtracting an integer
times 4O so that it lies in the above range. It should be
emphasized that the constraint nk+ nq= eUen must be satis-
fied when one calculates I& for different nq, which also
implies that although 4, is the minimum period for the pe-
riodic condition of A(x) the period of the total supercurrent
is generally 4O. This result seems to be quite different from
the intuitive understanding based only on the Ginzburg-
Landau theory. ' ' Moreover, due to quantum-size effects in
1D mesoscopic rings, both k and q are significantly quan-
tized. Consequently, the superfluid velocity in the absence of
the magnetic flux 4 can only take a discrete value and only
a few of the superfluid velocities are below the Landau de-
pairing velocity, Ud = 5/pF, where pF = AkF is the Fermi14

momentum. Of course, the magnetic flux plays the role of
modulating continuously the magnitude of the superfluid ve-
locity and each discrete value of the superfluid velocity
evolves into a branch.

Strictly, the flux 4 which drives the electrical current
should be the sum of the external flux 4«, and the flux 4&
produced by the current itself. For simplicity, as usual, the
self-inductance of the ring is assumed to be so small that the
corrections to the flux due to the self-inductance can be
neglected. In Fig. 1, we plot the supercurrent as a function
of the magnetic flux for different values of 5/EF with 5
as a fixed value. (The values of the Fermi level
nF = kFL/qr= 400 are taken, which gives rise to a reasonable
Fermi energy EF=60 meV for the ring with the circum-
ference L=1000 nm. ' ") Figures 1(a) and 1(b) show
that if the characteristic parameter @d/4, = mudL/Aqr
=(nF/2)(h/EF) & 1, the supercurrent curve at zero tem-
perature exhibits a linear 4 dependence followed by a dras-
tic and discontinuous drop when the magnetic flux reaches
4d. This feature results from the fact that above 4d, zero-
energy excitations occur at k = —kF, which leads to a nega-
tive contribution to the supercurrent. Because of the discrete-
ness of the wave vector k, the variation of the supereurrent at
4d is significantly different from that for an infinite 1D
superconductor" where the supercurrent changes continu-
ously at Ud. This implies indirectly that the gapless super-
conductivity does not occur in 1D mesoscopic superconduct-
ing rings even without calculating the pairing potential 5
self-consistently. It is interesting to note that if 4d/4, ~ 1,
the supercurrent is periodic in 4 with the period 4, , which
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FIG. 1. Supercurrent versus the magnetic flux 4/4, at zero

temperature T = 0 for different values of kp IEF '. (a)
3.0x 10 3; (b) 4.0X 10 3; () 6.0X 10

is attributed to the fact that contributions to I& from the

even-nI, summation and odd-nI, summation are almost the
same.

At this stage, we wish to emphasize that the BdG equation

(1) should in fact be solved self-consistently by computing
the pairing potential A(x) from the set of u's and v's,

b(x) lglg v*(x)u(x)[1 2f(Ekq)] (19)

where lgl is the attractive matrix element. We have per-
formed the numerical calculations for b and I&. In Fig. 2,

0
1.2

FIG. 2. Self-consistently numerical calculation of the normal-
ized pairing potential 5/lko versus the magnetic Aux 4/4,
at T = 0. The values of d, p/EF correspond to (a), (b), and (c)
in Fig. 1.

FIG. 3. Supercurrent versus the magnetic flux Cl/4, at T = 0,
calculated using the self-consistent pairing potential h.

we depict the entire dependence of h(x) on the magnetic
flux for different values of du lE„(equivalent to 4d) with

hp as the pairing potential in the absence of the superfluid
velocity. ' Obviously, the typical behaviors of b, depend on
the magnitude of 4d. (i) For 0&Cd&4, [Fig. 2(a)] with

4, as another characteristic system parameter (=0.69 for
the given nF, L, and Debye frequency ruD), if 4&Cd all

excitation energies, Ek q, are greater than zero, and f(EI, «)
vanishes at zero temperature, which makes the pairing poten-
tial 5 unaffected. As 4 reaches 4d, the states near
k = —kF oppose the contribution to the sum in Eq. (19)
from other states. Moreover, the large density of quasiparti-
cle states of 1D mesoscopic systems near k= —kF makes
their contribution outweigh that from other states, so that at
T=O K Eq. (19) has no nonzero solution for all 4&@d.
This result differs from that for 3D bulk superconductors
where there is a small region of v, above vd for which the
pairing potential 5 remains nonzero. ' ' (ii) For
C,-Cd&4, [Fig. 2(b)], 5 exhibits similar behavior to that
in Fig. 2(a) as 4&@„but it becomes another
4-independent constant smaller than hp for any
C E [4, ,4p]. (iii) For @dan@, [Fig. 2(c)], Eq. (19) al-

ways has a nonzero solution for any 4e [0,@p]. Due to
quantum-size effects and the difference between the k sum-
mations in [0,4,] and [4, ,4p], there exists the discrepancy
of the magnitude of 5 between the two ranges. Correspond-
ing to the above three cases, the supercurrent in (i) and (ii) is
in marked contrast with the previous non-self-consistent cal-
culation. In detail, (i) as shown in Fig. 3(a), the supercurrent
increases linearly with 4 up to 4d and then drops abruptly
to zero due to the depairing effect, which seems to be novel
and is significantly different from that for 1D normal-metal
rings where the persistent current increases linearly with N
in the whole period 4p —= hc/e; (ii) the supercurrent in-
creases initially with 4 and then drops abruptly to zero at
4d,. ho~ever, the supercurrent increases again with 4 from
4, to 40 because the pairing potential is basically unaf-
fected in this region [Fig. 3(b)]; (iii) the supercurrent is
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periodic in 4 with the period 4, and is similar to that in
normal-metal rings [Fig. 3(c)].Moreover, we also find that a
maximum supercurrent Ist occurs at 4z for the case
4&~4, and Its/(e/J. pL/fi) is a universal constant (=2/n),
which can be easily understood in consideration of the fact
that all Cooper pairs drift with the depairing velocity v&.
However, we must note that, for 4,&@san@„ there is no
above property for I~ in the region [4„4p], because the
possible depairing velocity of the present case is larger than

6p /pF, l.e., (b,p+ M )/pF with bh being also dependent on

EF. Similarly, for the case 4s&4, , the above maximum
supercurrent I~ is unable to be reached because the maxi-
mum superfluid velocity within the period 4, is less than

vq. We expect some of these interesting features, particu-
larly the periodicity of the supercurrent, could be examined

by some well-designed experiments, and may have some po-
tential applications in device designing.

Finally, we wish to point out that, although the system
considered here is different from the superconducting-
normal-metal-superconducting (SNS) sandwich considered

by Bardeen and Johnson, ' the behaviors of the supercurrent
are quite similar. In particular, at T=OK, both the supercur-
rent for 4„~4, in the present AB case and that in the SNS
sandwich are piecewise periodic functions of the phase (or

AB flux). In each periodic region, they vary linearly with the

phase (or AB flux) and there are discontinuous jumps when

one period is over. It is believed that the underlying essential

physics of such similarities is the quantum effect through the

generation of relative phases which accumulate on the wave
function (or "macroscopic" wave function) of a particle (or
Cooper pair) moving through a multiply-connected force-
free region (or Josephson junction).

In conclusion, we have solved the Bogoliubov —de Gennes
equation for a clean, one-dimensional rnesoscopic supercon-
ducting ring threaded by a magnetic flux 4. We show that

the superfluid velocity is driven directly by 4 while the rela-
tive motion of the pair of electrons is independent of 4.
Meanwhile, the fluxoid quantization is obtained straightfor-
wardly. More importantly, we have also calculated the super-
current numerically and self-consistently, and find that it is
periodic in 4 with the period 4, for 4,~4„while with the

period 4p for 4„&4, .
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