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Glassy transition in the three-dimensional random-field Ising model
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The high-temperature phase of the three-dimensional random-field Ising model is studied using the replica

symmetry-breaking framework. It is found that, above the ferromagnetic transition temperature Tf, a glassy

phase appears at intermediate temperatures Tf&T& Tb while the usual paramagnetic phase exists for T& Tb

only. The correlation length at Tb is computed and found to be compatible with previous numerical results.

Although a great deal of work has been devoted to the

understanding of the random-field Ising model (RFIM), '

some aspects still need to be clarified. It is now well known

that, in dimension D =3, long-range order is present at suf-

ficiently low temperature and weak random fields with non-

trivial critical exponents, the upper critical dimension of the

RFIM being D =6. Nevertheless, perturbation theory leads to
dimensional reduction (critical exponents are incorrectly pre-
dicted to be equal to those of the corresponding pure model
in dimension D 2) and t—herefore does not succeed in de-

scribing the critical behavior of the RFIM. The reason for
this failure presumably stems from the very complicated en-

ergy landscape due to the quenched disorder, and more pre-

cisely, from the existence of a huge number of local minima

of the free energy in the space of local magnetizations that

usual perturbative expansions do not take into account. Nu-

merical simulations and resolutions of the mean-field equa-
tions corroborate this picture. ' Above the ferromagnetic
transition temperature Tf, there seems to appear an interme-

diate "glassy" regime for Tf&T & Tb where many solu-
tions of the local magnetization mean-field equations coexist,
while only one of them subsists in the paramagnetic phase
T&Tb. From the theoretical point of view, it was suggested
that the techniques of replica symmetry breaking (RSB),
which proved to be successful in the mean-field theory of
spin glasses where such complicated free-energy landscapes
arise, could also be applied to the RFIM. Experiments made
on diluted antiferromagnets also found an irreversibility line
above the critical temperature where the antiferromagnetic
order appears. Recently, Mezard and Young, referred to in
the following as MY, proposed a variational approach of the
RFIM (Ref. 10) based on a self-consistent expansion in

1/N (where N is the number of spin components) due to
Bray."They found that replica symmetry, which gives back
dimensional reduction, must be broken at the ferromagnetic
transition T= Tf and that the RSB solution leads to sensible
results for the critical exponents in agreement with already
known results. '

In this paper, using the MY framework, we concentrate
upon the nonferromagnetic regime (i.e., T)Tf). We find that
there exist indeed two different phases: a paramagnetic phase
at high temperatures T)Tb and a glassy phase at intermedi-
ate temperatures Tf&T&Tb. The value of the correlation

length at T=Tb where the RSB transition occurs is com-

puted and compared to predictions obtained from numerical

resolution of mean-field equations.
The model we consider is an N-component version

of the RFIM on a three-dimensional lattice including

L spins 4;=(4, . . . ,4& ), where i=(i, , i2, i3) and

O~ly, l2)l3~L 1,

~(@,h) =—X (e'i —OJ)'+ —X (e'i)'+ X ((c'i)'j'
(iJ) 2 4N

I

—$ h; ei,

1—
2 X @'i.%+4NX [(@'i)']'

l, (a,b) l,a
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The replica correlation functions (@ai"@"k)= b&"G'b(k)
with the effective Hamiltonian (2) are related to the discon-

nected and connected correlation functions, (g)ia)&(@~ /&
=b~ Gd;,(k) and (@f4"g„—(4ik)„(@~g„=+~G„„(k),
where ( )/, denotes the average over the Gibbs measure in-
duced by (1). For the replica symmetric assumption
G' (k)=G(k)b" +G(k), the correspondence is simply

Gd;,(k) =G(k) and G„„(k)=G(k).
Using Bray's self-consistent screening approximation"

which is exact to order 1/N, one finds that the propagators
G' (k) are given by the saddle point of the free energy

where h& is a quenched random field, the distribution of
which is Gaussian, uncorrelated at different sites, with mean

h&~=0 and variance hPh"=Lb~" b(;. Following the standard

procedure, we introduce n rephcas of the spina
a=1, . . . ,n, and average over the quenched disorder h to
obtain the effective Hamiltonian
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1
II'~(k)= —3g G' (k—q)G' (q).

q

(4)

Within the replica symmetric hypothesis, the correlation
functions are therefore solutions of the following set of
2L implicit equations:

G(k) 2 G(k—q) II(q)=5+
[G(k)]2 NL

& [1+II(q)]2
(5)

/2~/„~
=6—2g cos +r+~g [G(q)+G(q)]L

where

2 G(k—q)+ G(k—q) G(k—q)II(q)
+

NL
~ 1+II(q) [1+II(q)]

(6)

1
II(k) =—3g [G(k—q)G(q)+G(k —q)G(q)L

+G(k—q)G(q)],

1
II(k) =~+ G(k —q)G(q).

6'~, 2 II(k—I)~(k, l) =
[G(k)]' NL [1+II(k—I)]'

In order to determine where the transition to RSB occurs,
we have studied the local stability of the free energy
.W(G' ) around the symmetric saddle point (G, G). Repeat-
ing the de Almeida —Thouless (AT) calculations' and taking
into account the k dependence of the order parameters 6 and

6, we have found that the replica symmetric solution is lo-
cally stable if and only if the lowest eigenvalue A of the
matrix

When N~oo, Bray's partial resummation reduces to the

Hartree-Fock approximation. G(k) is thus equal to the bare

propagator with a renormalized squared mass m solution of
the gap equations (5) and (6). From the expression of the AT
matrix (9), one obtains A = m )0. The replica symmetric
solution is therefore always stable. As soon as N becomes
finite, the corrections appearing in (9) may lead to instabili-
ties. In our three-dimensional system, however, the self-
consistent screening approximation induces no ferromagnetic
transition for large N (m never vanishes for finite bare tem-

peratures r). ' "Hereafter, we choose N=1 (Ising case),
which allows for the existence of long-range order at finite

r &0.
For every size L of the lattice, we fix a value of r and

solve for the propagators G, G by an iteration of Eqs. (5) and

(6). Using rotational and translational symmetries, only

G(k)and G(k) with O~ki~kz~k3~lnt(L/2) are to be
found. Once a fixed point is reached, we estimate the mass m

and the correlation length (=I/m from the low-momentum
behavior of 6

a a
G(0,0,0)= 2, G(0,0,1)=

m
2 —2 cos +m

L, L)
(10)

Expression (10) is exact for N = ~.' Moreover, from pertur-
bation theory which is thought to be correct above the AT

transition, we expect G(k) to have a single pole. A similar
calculation gives m and (= I/m, assuming that G(k) has a
double pole. ' The lowest eigenvalue A is then computed by
diagonalizing the AT matrix. This highly time-consuming
task may be simplified by observing that Xn5 is invariant

under the three symmetry operators, 5 d. k„~L—k„. In the

base of their eigenvectors, P~' reduces to eight diagonal
blocs of size roughly equal to (L/2) X(L/2) . One can
check that the eigenvector corresponding to A belongs to the
"physical" subspace, i.e., the one spanned by eigenvectors
of .5 'd of eigenvalues +1. The process is repeated until the
value rL of the bare temperature r where A vanishes and the

corresponding correlation lengths $L and $L are bracketed
with a sufficient precision. The final uncertainties on $L and

$L are lower than ~5X10 for lattice sizes running from
L=2 up to L=20. To compare our results with previous
works (Ref. 6), we have chosen b =1.5 .

The numerical values of the correlations lengths at the AT
transition are displayed in Fig. 1.Although it seems difficult
to extrapolate to L~~, reliable information on the thermo-
dynamical limit may be obtained since the correlations
lengths are relatively small as compared to the lattice size

($L(gl &L/3 for L=20). From finite-size-effect theory, '
we expect indeed that, if the mass mJ converges to a finite
value m„&0 at the thermodynamical limit, then its asymp-
totic behavior obeys

m, m„=Ce "—«+O(e '"«),

is strictly positive.

4 G(k —q)G(l —q)
NL [1+II(q)]

.X where C is a constant (the same identity holds for m and

$1 with a different constant C). Figure 2 shows the depen-

dence of mI and mz upon e ~~ and e ~~, respectively.
The linear law (11) is very well verified with proportionality
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factors of order one (C=1.83, C=1.37).' Linear extrapo-
lations to L~~ provide the values of the correlation lengths
at the thermodynamical limit

(„=g„=7.7~ 0.2. (12)

The equality between the correlation lengths defined from
the disconnected and the connected correlation functions is a
self-consistent check of our analytical and numerical results.
It is indeed predicted by perturbation theory ' and therefore
holds for high temperatures down to the RSB transition.

In this paper, we have argued that the nonferromagnetic
phase of the three-dimensional random-field Ising model is
composed of a paramagnetic phase at high temperatures and
a spin-glass phase at lower temperatures. The onset of this
glassy phase therefore occurs at a finite correlation length for
both correlation and susceptibility functions which was
found to be in the range 7.5&(&8.Although such a result

FIG. 1. The correlation lengths gr (empty dots) and (i, (full

dots) at the onset on the spin-glass phase for different lattice sizes
L = 2 up to L = 20 (the total number of spins is L ).

FIG. 2. The masses mi =I/gr (empty dots) and mL= I/gr (full

dots) plotted vs the "finite-size" factors exp( —L/g )rand
exp( L/$L), r—espectively. The dashed lines are the best linear fits

from the last 12 points (sizes L = 9 to L = 20).

might be an artifact due to the I/N approach used here, it is
in qualitative agreement with previous numerical studies
which found that the mean-field equations of the RFIM begin
to have more than one solution, and thus that the perturbative
approach ceases to be correct, for $&4.5. Such a behavior is
to be expected in the low-temperature phase too. Since at
very low T only the two states where all spins are aligned
along the same direction remain, replica symmetry has to be
restored at a temperature T, with 0&T,&Tf. It would be
interesting to extend the calculation we have presented here
to verify explicitly this conjecture.
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