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Generalized quantum Mattis spin glasses with p-spin interactions
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A generalization of the p-spin-interaction quantum multicomponent Mattis model in a transverse field
is investigated by use of the Suzuki-Trotter approach with the thermodynamic perturbation theory. The
phase diagram is obtained in the limit p~ 00, and the effects of quantum fluctuations on the first-order
phase transitions separating the disordered phase from the ordered phases are discussed. %'e find that
paramagnetic phase is characterized by transverse ordering, whereas the ordered phases are not affected

by the quantum fluctuations.

The study of the effect of quantum 6uctuations on
phase transitions in the Ising and Heisenberg spin-glass
models has been a subject of much interest. ' 9 In par-
ticular, the quantum infinite-range transverse Ising spin-
glass model has been studied very extensively~

by means of various approaches. This model is a simple
and, as recently demonstrated, an experimentally accessi-
ble example ' ' ' of a classical disordered magnetic
system which can be converted into its quantum analog.
In quantum transverse spin-glass models with infinite-
range interactions much attention has been paid to the
description of the phase transition between the paramag-
netic and spin-glass phases. It has been found that the
transverse field has the effects of destroying the spin-glass
phase, and when strong enough, destroys the spin-glass
phase even at T =0. Lately, the p-spin-interaction spin-
glass model in a transverse field with p ~ 00 is solved by
using the static approximation. ' For the case of the
classical Ising spin glasses, such an exactly solvable mod-
el which is referred to as "the simplest spin glass, " is the
so-called Derrida random-energy model ' which con-
sists of a collection of independent random-energy levels.
In addition, we should also note that the study of this
model is very closely related to a straightforward general-
ization of the Hopfield neural-network models39'~
which considered higher-order interactions. Correspond-
ingly, the natural extension of the classical Hebbian
learning rule to order p is defined by

has been studied by various authors. The study of this
generalized Mattis model is very interesting not only in
understanding the behavior of those relatively realistic
spin-glass models but also in the context of models of
neural networks. For Jo =0 this reduces to the Hopfield
neural-network model with a finite number n of memor-
ized patterns. The purpose of this paper is to study a
generalization of the p-spin-interaction quantum mul-
ticomponent Mattis model with the interactions given by
a generalized Hebb rule

like in the infinite-range spin-glass model, the presence of
P!/Np in the interaction is necessary to ensure an ex-
tensive free energy. We will apply the Suzuki-Trotter
formula to reduce the model to an equivalent classical
one and then use the perturbation theory for this efFective
classical model. We are interested in particular in the
@~00 limit of quantum transverse Mattis model, where
the thermodynamics of the model can be solved exactly.
The effect of quantum fiuctuations on phase diagrams is
examined.

We consider the model with the Hamiltonian

Jj'] . (p~ji~~t2 ~jp ~ y ~l' 7

(g ] e ~ e gp) I

(4)

i.e., a set of n uncorrelated patterns I P I

fi =1,2, . . . , N, p=1,2, . . . , n j in which P is either +1
or —1 with equal probability, is encoded in the interac-
tion matrix.

On the other hand, a generalization ' of the classical
Mattis spin-glass model with the competing interactions

where the o are Pauli spin matrices and 1 is the trans-
verse field.

Applying the Suzuki-Trotter formula to the partition
function, the effective classical Hamiltonian with an extra
"Trotter" dimension is obtained in the Mth approxima-
tion as
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H eff

where we define

M
Z Z . ~ . ZJi I . . ipai l, k+i2k , aipk,

k =1 (il . ip)

M N

X g iri, kirik, +(
k=1 i =1

(5)

—PFo=ln Trexp( P—Ho) . (12)

M N

k=1 i =1
(13)

We introduce the average magnetization, which distin-
guishes the ferromagnetic from the paramagnetic phase,

a =—,'ln[coth(PI /M)],

c =——,'ln[ —,'sinh(2Pl /M ) ),
(6)

(7)

o, „=+1is the classical Ising spin on the lattice (i, k), i is
the position in the original system, and k is the index for
the Trotter dimension introduced due to the quantum dy-
namics. Ultimately the limit M~ ~ must be taken. In
Eq. (5), P is the inverse temperature and the exchange in-
teraction J, , . . . ; is as given in Eq. (3).

The partition function of the system can be written

M N

Nm —M 'g go;k +MNC,
k=1 i =1

(14)

and define an "optimum" reference system by using a
Lagrange multiplier A, to enforce the constraint that the
order parameter m takes on its self-consistently deter-
rnined values in the reference system itself. Then the
reference system Hamiltonian can be revised as

M N

pHo—=a g g (r;kir;k+l
k=1 i =1

Z =Tr exp( PH, &)
—. (8) and the reference system partition function becomes

We can approach the statistical mechanics of the
effective Hamiltonian, Eq. (5), by using thermodynamic
perturbation theory. The starting point is to consider the
spin-spin interaction terms,

Zo =Tr exp( 13Ho )—
N—g (e mkZ—(i(

)

where

(15)

Ji 1 ip +i 1,k +i 2, k ipa, k
k =1 (il ip)

as a perturbation of the single-site Hamiltonian

(9) M M

Zo g exp a g akcrk+i+ g a'k+Mc . (16)
I hark I k =1 k=1

M N

PHo a X—g rr; kn; k+l+MNC .
k=li=l

(10)

The free energy of the full system can be expressed in
terms of the reference system free energy Fo and the in-
teraction averaged in the reference system, ( V )o:

PFo/N= —m—A+ln2cosh[A, +(PI )2)(i2 . (17)

Equation (15) is nothing other than the partition function
of the Ising chain in a longitudinal field with the periodic
boundary condition and can be solved by the transfer-
matrix method. The resulting reference free energy Fo
can be obtained by taking M ~ 00 limit,

OF = 13Fo—n«)—o, —

with
The remaining term in the full free energy, Eq. (11), is

obtained by

( V)(l= Tr
J p!

p —l X 2 ~i 1,kai2 k +iP k
k =1 (il tp)

M n

g (Pii&il, k)(Viz~(2, k) '
(Pip&;p, k) exp( —&Ho) .

k =1 (il ip) JM=1

X [TrexP( 13Ho)] '= Jo—NmP Ng (q"—)—
p=l

where the overlap q" which describes a spin-glass phase, is defined by
M Nq= gyes( „).

k=1 i=1

Accordingly, the free energy per spin is given by
n

Pf= —mA, +ln2co—sh[A. +(PI ) ]' +PJomP+Pg (q")
p=l

Here the order parameter m may be determined by minimizing the free energy with respect to m:

n

A, =PJopmP '+Pp g (q") 'P .
)M= 1

(18)

(19)

(20)

(21)
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From Eq. (21) we see that the Lagrange multiplier )i, is a randoin variable, and the final expression of the free energy has
to be averaged over the random variables P.

Finally, the free energy averaged over disorder is

n tf

f=Jo(p —1)m~+(p —1) g (q") —ln2coshP I + Jopmi' '+p g (ql')P 'P
p=1 @=1

2 1/2

(22)

(23)

In the limit of large p, Eq. (23) has four possible solu-
tions: (1) A paramagnetic phase (P) with m =0 and q =0,

f = —T ln2cosh(I /T) .

(2) A spin-glass (SG) solution with m =0 and q = 1,

fso

(24)

(25)

(3) Ferromagnetic (FM) solutions with m =1 and q =0,

fFM Jo (26)

i.e., the free energy in the FM phase depends only on Jo
and not on T and I, and (4) A mixed phase (M) with
m =1andq=1,

fM= Jo+P —1 . — (27)

Unlike the case in the p =2 model, the mixed phase is
suppressed in the existence of the p-spin interaction with
P~ 00.

The phase transition between the P and SG phases is
determined by equating the free energies of two phases
which gives the equation

where ( ) denotes the average over the distribution
of P.

For convenience, we consider, as usual, only one of
patterns (the first, say) to have a macroscopic overlap
with the configuration Io; j and the remaining (n —1)
patterns to have an overlap at most of order 0(1/~N )

without loss of generality. This Mattis spin-glass solution
is described by the order parameter of the form q"=q5».
In this case,

f=Jo(p —1)m +(p —1)q

—T n2cosh —I + Opm '+pq~

Figure 1 shows the dependence of the freezing tempera-
ture Tf on the transverse field I. We see that the SG
freezing temperature Tf as a function of I decreases con-
tinuously from its maximum value Tf=1/ln2, as I
grows, and vanishes for the critical value of the trans-
verse field I'(Tf=0)=1. Similarly, the P-to-FM and
SG-to-FM phase boundaries are determined by the equa-
tions fp=fFM and fso=fFM, respectively. The result-
ing phase diagrain of the model is presented in Fig. 2,
where all transitions are first-order ones. For JO=O we

expect no FM ordering, hence in the high-temperature
phase T)Tf, the system is paramagnetic which is
characterized by transverse ordering, while for T&Tf
the system is in the frozen spin-glass phase and the free
energy is independent of T and I . When JODO, a fer-
romagnetic phase exists in addition to the paramagnetic
phase and SG phase. There is a transition from the
paramagnetic to the ferromagnetic phase when
Tln2cosh(I'/T)=JO. This transition line stops when it
meets the separation line between the paramagnetic and
the spin-glass phase, T ln2cosh(I /T)=1. This happens
for J0=1. In the present large-p case, quantum Quctua-
tions have the effect of destroying the ordered phases, but
the nature of the ordered phases is similar to the classical
model.

In conclusion, we have studied the generalized Mattis
spin-glass model with p-spin interaction in the presence
of transverse Selds. The general formulation for the free
energy of the models is derived, and the phase diagrams
are obtained in the limit of large p. Unlike the p =2 case,
there is no second-order phase transitions at all tempera-
tures. In the frozen phases, all quantum fiuctuations are
suppressed, and the problem reduces to the classical lim-
it. Quantum fiuctuations make the SG and FM phases
unstable, and even the frozen-ordered phases, which de-
pend strongly on I, can be destroyed.

Tln2cosh(I'/T)=1 . (28)

2

j =p. 40
t =0.80
J =095

].0-

0-5 1.0
Jp

FIG. 1. Dependence of the spin-glass freezing temperature
Tg on the transverse Seld I (in units of J).

FIG. 2. The phase diagram of the systems in the large p limit
for three values of I (in units of P.
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