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Spin-phonon renormalization of the excitation energy in a dilute two-dimensional antiferromagnet
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The contribution of spin-lattice coupling to the phonon self-energy is calculated in a dilute two-
dimensional antiferromagnet. The calculations are based on a bond percolation model of the Cu02 plane
of high-T, copper oxides recently proposed by some of the authors. Numerical results are presented for
the dampings of phonon excitations relating to three different situations. They are two magnons (Case
A), one magnon and one fracton (Case B), and two fractons (Case C) involved in the phonon self-energy
process. At low temperatures, the damping rate is much smaller than the frequency of excitations, lead-

ing to well-defined phonons for all the cases. The overall features of the I ~
-q curves possess similar

characteristics: I
~

increases linearly with q in the small-q region, reaching a maximum at an intermedi-
ate q, and after that scales nearly as q

' until q approaches the edge of the Brillouin zone. The
temperature-dependent phonon linewidths arising from spin-lattice coupling are also presented. We
point out the sensitivity of the interaction involving fractons on bond concentration of the network.
Relevance of the calculated results to experimental data are discussed.

I. INTRODUCTION

Since the discovery of high-T, cuprate superconduc-
tors, the two-dimensional (2D) Heisenberg antiferromag-
net has received much attention. It has become well-
known that the parent materials of the cuprate supercon-
ductors are antiferromagnetic (AF) insulators which un-
dergo a phase transition to superconductors when dopant
holes are introduced. The interplay between AF order-
ing and hole doping is considered important to the rnech-
anism of high-T, superconductivity. While hole doping
strongly reduces the effective intralayer Cu-Cu superex-
change coupling constant, and destroys quickly the long-
range AF order, ' experiments suggest that there are
still short-range AF fluctuations in the metallic regime.
The effect of spin dynamics of the Cu02 plane on physi-
cal properties of the cuprate superconductors is an in-
teresting subject. Many theories have considered the
spin-wave renormalization of a hole in Heisenberg anti-
ferromagnets though this is not the purpose of this paper.
The investigations of Bucher et al. indicated that the
Cu02 plane transport in the normal state is governed by
the spin dynamics. Tyc and Halperin studied the damp-
ing of spin waves due to magnon-magnon scattering in a
2D Heisenberg antiferromagnet at low temperatures and
obtained rich understandings about the dynamical prop-
erties of the 2D antiferromagnet. Canali, Girvin, and
Wallin computed the spin-wave velocity renormalization
in the 2D Heisenberg antiferromagnet and show that the
O(l/S ) correction term makes the agreement between
the spin-wave theory result and the series-expansion esti-
mate almost perfect. Also the effects of cyclic four-spin
exchange in the Cu02 plane have been studied by Honda,

Kuramoto, and Watanabe' who discussed the effects of
J, upon magnetic Raman scattering and upon properties
of the ground state. However, the possible influence of
spin dynamics on lattice dynamics in the CuOz plane still
remains to be investigated. Recently, Tsai" calculated
the modified magnon spectrum of the Cu02 plane due to
phonon-magnon interaction and studied the possibility of
phonon-induced antiferromagnetic magnons in the cu-
prates at low temperatures. Generally speaking, one can
also expect an influence on the phonon excitations them-
selves by a coupling to magnetic degrees of freedom. Re-
cent experiments' have revealed a correlation between
the anomalies of phonons and spin excitations in the Y-
Ba-Cu-0 system but the significance of spin-lattice cou-
pling on phonon excitations has not been appreciated.

In this paper, we present a study of the spin renormal-
ization of phonon excitations in high-T, copper oxides.
Especially, we will discuss the change of phonon lifetime
due to the coupling to spin excitations. We do this by
calculating the contribution of spin-lattice coupling to
the phonon self-energy in the CuOz plane. The model we
use is described in Sec. II, where the interaction Hamil-
tonian is introduced and the effective-medium approxi-
rnation is used to deal with the randomly broken superex-
change coupling. In Sec. III, we present a study of the
effect of the interaction on phonon self-energy at low

temperatures. The I -q curves are plotted there and
they show that the spin-lattice coupling is strongly q
dependent. The calculations of temperature-dependent
phonon self-energy are contained in Sec. IV, which in-
cludes a discussion of the relevance of the calculated pho-
non linewidths to Raman experiments. We point out the
sensitivity of the interaction involving fractons on the
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bond concentration of the network. The conclusions of
this work are given in Sec. V.

II. MODEL

Hl =/[V J(r, r/). (u; —u/)]S, .S/— (2)

with

We start from a bond percolation model of the Cu02
plane recently proposed by some of the authors. ' Since
the superexchange interaction of adjacent localized spins
(which is presented on the Cu sites) is mediated via the
oxygen atoms, the hole doping which is believed to be on
the oxygen sites' will have a drastic effect on the destruc-
tion of the AF couplings. So far as we consider the mag-
netic properties, the effect of adding holes to the CuOz
plane may be accounted by randomly breaking some of
the superexchange couplings between two adjacent local-
ized spins. This picture can be modeled as a bond per-
colation network in a dilute 2D antiferromagnet. We fur-
ther assume that the effective exchange coupling constant
J,J obeys the probability density

I'(&;, ) =p&( Jq J)+(1—p)&(&;—, ),
where the bond concentration is p and the broken bonds
1 —p. J is the exchange coupling constant in the undoped
regime.

Percolation networks are known to be homogeneous at
long length scales (L longer than the percolation correla-
tion length g ), and exhibit fractal characteristics at
shorter length scales (L (g ). ' ' Excitations on a frac-
tal lattice are termed fractons. ' Existence of fractons in
dilute magnets has been confirmed by experiments' and
it has been shown that fractons play an important role in
many stages of physics for topologically disordered sys-
tems. ' Thus, there are two types of magnetic excita-
tions in this dilute 2D antiferromagnet, namely magnons
and magnonlike fractons. Based on the s-d exchange in-
teraction Hamiltonian, Li et al. ' calculated the
temperature-dependent resistivity arising from the
scattering of electrons off fractons and magnons in this
dilute 2D antiferromagnet. They found that the existence
of fractons lead to a linear temperature dependence of the
resistivity over a wide temperature range, which is con-
sistent with experimental results in high-T, cuprates. We
further study in this paper the spin renormalization of
phonon excitations in this dilute 2D antiferromagnet.

The dominant spin-phonon interaction arises from the
strain modulation of the exchange integral between
copper d electrons. To lowest order in power of the atom-
ic displacement, this interaction is described by the fol-
lowing Hamiltonian:

X (a;+a;+b+b a; I/ —a;+5+—),
where a; and b are bose operators. Then we go to collec-
tive coordinates, and make a unitary transformation to
the new operator set ak, pk ..

a, =&2lN +e 'ak, b/= &2/N ge 'bk,
k k

uk uk+k +vk~ —k bk uk~k +vk+ k-+ +

Following the usual way of choosing uk, uk,

uk =cosh8k, vk =sinh8k,

1tanh(28k)= —yk, yk= —ge' 's,
5

we find

1
(bqk+b 'qk»~k-

qk +2MNQ k

with

(6a)

(6b)

(7a)

(7b)

k (uk quk ~k+q~k —Vq

(uk+qbk uk+—qbk+ }(jk —jk, ) . — (9)

The prime in the sum of Eq. (8}means that the wave vec-
tors q are confined to the k set. In obtaining Eq. (9), we
have defined jk as

ik(r,.—r. )

Jk = +[ V J(r; r/ ) eqk]e—
J

(10)

which is expected to be independent of r; because of the
periodic boundary condition. As a preliminary step to
evaluate jk, we define another quantity Jg by

ig(r,.—r. )J =QJ(r, r/)e—
J

then one finds

set equal to 1. In fact, a Hamiltonian similar to that de-
scribed by Eq. (2) has been used recently by Tucker and
Dyre to study phonon excitations in Heisenberg mag-
nets, though their studies have different emphasis than
ours.

Introducing the Dyson-Maleev transformation

S, =a,+, S,+ =(2S —a,+a, )a;, S,'=S —a,+a, , (4a)

SJ — bi, S — 6 (2S b b), S =b bi S

(4b)

into Eq. (2},one has

HI =Sg[VJ(r, —r/) ~ (u; —u/)]

qk 2MNQqk j,= (fk &qk)Jk
—. . (12)

Here M is the mass of the Cu atoms, N the total number
of the Cu sites, e & is the polarization vector, Q & is the

+ qA,

phonon frequency, b & and bqz are the phonon creation
and annihilation operators. Here and thereafter A will be

In obtaining Eq. (12), we defined J;; =0 to extend the sum
over i,j without restriction. The calculation of Jk is not
simple since we have assumed the randomly broken ex-
change coupling constant for adjacent Cu spins. Howev-
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er, one can rewrite Eq. (11)by using the nearest-neighbor
approximation

J =QJ(5}e's
6

(lla)

for the bond percolation network on a 2D lattice. Here
I

the sum here runs over the nearest-neighbor Cu sites.
Then J(5) is treated in the effective-medium approxima-
tion, in which J(5} is replaced by a uniform coupling
constant J. Following Ref. 24, we get

QGO(e) QGO(E)
J=2J(p —p, ) 1 — +

Q is the phonon frequency, and 60(e) is given by

Go(e}=I exp[ —(2+@)x][IO(x)]dx,

Jk =JZyk

which produces the result

J = /JZ—7'. (k ';).
On combining Eqs. (7), (8), (9), and (15), one gets

(14)

where e=Q/J and Io(x) is the modified Bessel function
of order 0. We are now able to obtain from Eq. (1 la)

Hi=+'(bqg+& +qg)[M-qg. k&k q&k™qg.kPk P/& q™q—g. k& k—qPQ ™qg/j~/jPQ q] ~-
qk, , k

(16)

The phonon-magnon (magnonlike fracton) coupling constants M ~ k, M z &, M ~ k, and M"~ k are given in Appendix A.

III. LOW TEMPERATURES

In order to gain a conceptual understanding of the effect of spin-lattice coupling on phonon excitations, we perform a
calculation of the phonon self-energy using the zero-temperature Green s function techniques. For simplicity as well as
clarity, we study one term of Eq. (16), which presents the interaction between phonons and the P mode spin-wave exci-
tations:

~lp= &™qz,k(bqx+b+ qx)A+&k —q—
qA, , k

It is easy to see that this term is similar to that of electron-phonon interaction. The proper self-energy of a phonon aris-
ing from this interaction is given by

P~(q, Q)= Jdco'Q~M~&k~ G (k q, co' Q—)G (k0—, co') .
k

(18)

Here 6 (k —
q, co' —Q) and 6 (k, co') are the Green's functions of bare magnetic excitations (magnon and magnonlike

fractons}. They have the Qrm'

6 (k, co')= 1

CO Nk+i
(19)

where 5 is a positive infinitesimal number. The polarization subscript A, in the phonon self-energy has been omitted in
the conventional way, since the Hamiltonian does not mix polarization and we are interested in just one kind of pho-
non. By making use of the identity

1 1=P — im5(x), — .
x+i5 x

where P stands for the principle part, one has

P~(q, Q) =ReP~(q, Q)+i ImP~(q, Q) . (20)

The real part of the phonon self-energy ReP (q, Q) leads to shift of excitation energy. We have calculated this quantity,
which results as a small increase in the long-wavelength sound velocity. This e8ect is, however, not signi5cant at low

temperatures. So the following study concentrates on the imaginary part of the phonon self-energy, which expresses the

damping or inverse lifetime of the phonon excitations arising from the spin-lattice coupling:

I ~=lmP'(q, Q) ~o (21)

Then one Snds it convenient to obtain from the above equations:

"q =XIMqg, kI'5(Q+~k q-
k

(22)

This allows us to carry out numerical calculations. In the Cu02 plane, Cu atoms form a square lattice with 0 atoms

bridged between each nearest-neighbor Cu pair. When 6'qp is in either x or y direction, the couplings will be maximum.
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(23)

Thus we choose e z to be in the x direction. We further restrict the study to those phonons with q parallel to E»g .Then
qA.

J2Z 2g 2

I(U, U, »
u—,u, »)qy»+(u„»U, +u, u, »)[ykkcos8 y—„»(kcos8 q—)])

2MNQ

coJ,
=2~2Jm

$
ka (coI, & co, ) (24)

and the sum over k in Eq. (22) can be transformed into an
integral according to

f kdkf d8. (25)

Here m, =S+0.078 974 and a the distance between two
adjacent Cu atoms.

Case B. cok» & co„while cok & co„ that is, one magnon
and one fracton are involved in the phonon self-energy
process. For a magnon of frequency cok, its dispersion
relation is expressed by Eq. (24). For a fracton, however,
we have

Here 8 is the angle between k and eq~, uk, uk, and yk are
defined in Eqs. (6) and (7). The sum over k in Eq. (22) can
be transformed into an integral. In doing this, we shall
discuss several different situations in the interaction pro-
cess.

As noted above, we have assumed that there are two
kinds of magnetic excitations (magnons and magnonlike
fractons). It has been predicted' and confirmed by ex-
periment' ' that in a percolating network, propagating
phonons or magnons at long wavelengths and low ener-
gies should crossover (at the crossover frequency co, ) to
localized fractons at higher energies and shorter length
scales where the network has a fractal geometry. The
fractons exhibit some interesting characteristics which
are quite difFerent from that of phonons and magnons (for
details, please see Refs. 15 and 18). Whether magnons or
fractons are involved in the phonon self-energy process
depends on the frequency of the magnetic excitations
(greater or less than co, ). Considering this, we now come
to the three cases:

Case A. cok» &co„and cok &co„which means that
two magnons are participating in the phonon self-energy
process. In this regime, the excitation energy of a mag-
non is

2&D f k 'dk f (sin8) zd 8
(2n. ) 0

(28)

1.Q
hg

C4

2 0.8

with X =»r /I (D/2).
Case C. cok & co„and cok & co„ then two fractons are

taking part in the phonon self-energy process. In this re-
gime, one expects that Eq. (26) holds for both cok and
cok, the transformation from the sum in Eq. (22) to an in-
tegral should be done according to Eq. (28).

In the numerical calculations, we make use of parame-
ters of the Y-Ba-Cu-0 system, they are J=0.12 eV,
a =3.8 A, '

U, =5X10 ms '. A Debye spectrum is as-
sumed for the phonon excitations. In each case, the
damping is calculated for three difFerent bond concentra-
tions, i.e., p —p, =0.01, 0.02, and 0.03. The calculated
results are shown in Figs. 1, 2, and 3.

The primary result is that the ratio of the phonon
damping rate I to the phonon frequency 0 satisfies
I'» /0» «1, leading to well-defined phonon excitations in
all the situations. From the curves, one finds that there
exists a universal characteristic for the overall features:
I

q
increases linearly with p in the small-p region, reach-

ing a maximum at an intermediate q, and after that scales
nearly as q until q approaches the edge of the Brillouin
zone. Therefore, the spin-lattice coupling is strongly q
dependent. Another observation is that the peak position
has a shift for diFerent situations. The most interesting,
however, occurs at the p (bond concentration) depen-
dence of the damping rate I ». For Case A, I

» does not
change much with the change of p. On the contrary, I
decreases drastically with the variation of p from p, for
both Case B and C. In other words, the damping of pho-

cok=co, (kg )D~"=cof(ka)D~" (a)k &co, ), (26)

where D is the fractal dimensionality and equals 1.9 for
d =2, ' d is the fracton dimension and is expected to be
1.33 for a 2D percolation network, cof is the fracton
cutoff frequency de6ned in terms of the crossover fre-
quency co, by cof =co, (g /a) . g is the percolation
correlation length which depends on the concentration p
for the bond occupancy

C, =ah —S, l

'".

c} 0.6
O

0.4

~ 0.2

O. O
O.O 1.O 2.0

%ave vector qa
For a quantum percolation problem, p, has been found to
be 0.76 for the bond percolation on a square lattice.
The sum of Eq. (22) in this regime will be transformed to
an integral according to"

FIG. 1. Relative phonon damping I ~~/I ~'" as a function of
wave vector qa for Case A. Curves a, b, and c correspond to
p —p, =0.01, 0.02, and 0.03, respectively. I™xis 1.44X10
meV.
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1.0

C4

2 o.a

o 0.6
O

0.4

~ 0.2

0.0o.o 'I .0 2.0
%ave vector qa

I I /

3.0

changes very slightly with the deviation of p from p, .
This indicates a strong sensitivity of the interaction in-
volving fractons on bond concentration. One can further
conclude that when p —p, is small, Cases B and C will

dominate the phonon self-energy process, while for large

p —p„Case A will contribute most to the phonon self-

energy.

IV. TEMPERATURE-DEPENDENT
PHONON SELF-ENERGY

In the following, we shall compute the phonon self-
energy resulting from the spin-lattice coupling as a func-
tion of temperature. To proceed, we consider the total
Hamiltonian of the coupled spin-lattice system in the
bond percolation network

FIG. 2. Results as in Fig. 1 but for Case B. I q'" is

7. 13X 10 meV.
H =&Q, /, (bq/. b, /. +2)-

q/II,

+grok I(+k +k+ g )+(pk pk+ )I ++I
k

(29)

nons involving fractons has a more significant p depen-
dence than that involving only magnons. This can be un-
derstood in relation to the sharp p dependence of the per-
colation correlation length g~. The percolation network
appears to be self-similar or exhibits a fractal nature on
length scales smaller than g . As is indicated by Eq. (27),
when p approaches p„g increases as Ip

—p, I

~ . If
p —p, is small, the percolation network can be regarded
as a fractal on a large length scale and one would expect
that the phonon damping involving fractons be large in
this situation. While when p deviates from p„ the correla-
tion length becomes shorter and shorter, and on a larger
length scale, the system is regarded as being homogene-
ous. Therefore, the phonon damping involving fractons
will decrease sharply with the deviation of p from p, . In
Case A, where only magnons are taking part in the pho-
non self-energy process, the less significant p dependence
is easily understood because the magnons' contribution

t

QD(q, Q)=Q iG(q, Q) .

Equation (31) contains the new Green's function

«B,„I& „»=G(q,Q),

where B /,
=b /„b+ z. The—EOM of G(q, Q) yields

(31)

and Hl is given by Eq. (16). De6ning the one-particle re-
tarded Green's function for phonons

D(q, Q)=« a«lw, &»=
20 ~

Q —
Qqi

—2Q i II(q, Q)

(30)

where A /,
=b /„+b+ z and II(q, Q) is the phonon self-

energy, we are able to get from the equation of motion
(EOM) of D(q, Q):

QG(q, Q)=2+Q /D(q, Q)+2+ IM', „„Gk(q,Q)+M « „Gg(q, Q)+M, /, kGk(q, Q)+M" ,/. , kGi)(q Q-
k

(32)

I, Q

C4

Q 0.8

~ 0.6

0, 4

Q5~ Q. 2

D. Oo.o 1.0 2.0
%ave vector qa

FIG. 3. Results as in Fig. 1 but for Case C. I q'" is
1.26X10 2meV.

I

where we have defined

Gk(q, Q)=«~k+, ~kl& qi, &&;

Gg(q, Q) = «P+P

Gj(q, Q) = « ~g+qpk I
& q/„»;

G."(q»)= « ~k pk+, I
& —,~ &&

After making some decoupling approximations

« ~q/. ~k+qc//, +q l~ qi &&=&~k+q~/, +q &&& ~qual& qi &&

=n„,«~, ,l~ „&&s„,,

«~q/c/k+q q~kl~ q/, &&=n/, &&~q/, I& q/„&&bqq,

«~, , „p„, , l~ „&&=0,

«~, ,~„+, ,p„+I~ „&&=0,
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we get from the EOM of Gk(q, Q):

Gk(q, &)= (nk+q —
nk )Mqk k+qa (q, &)0 cok +cok+q

(33)

Here nk is the Bose-Einstein distribution function of magnons (or magnonlike fractons) with frequency cok. The other
three can be obtained in the same way and the results are given in Appendix B. Combining these equations, one finds
the phonon self-energy:

1 1
II(q, Q)=g k+q k )M —qA, , kMql, , k+q k+q k M —qk. , kMql, , k+q0 @Ok +Q)k+q ' ' 0+6)k Nk+&

1

0+cok +cok+&
(nk +q +nk )M —qk, kMqk, k +q +

k k+q
(2+nk+q+nk )Mv qk kMqk k+q . (34)

In order to make a link with experimental results, we
then perform numerical calculations. Experimentally the
Raman- and infrared-active phonons have been widely
studied because they can provide much information
about the magnitude of the superconducting energy gap.
For example, measurements of the temperature depen-
dence of the linewidth and frequency of the 340-cm
Raman-active YBa2Cu30& phonons show significant
anomalies with the opening of superconducting gap.
These transverse optical (TO) vibrational modes have the
energies of the same order of the exchange coupling I,
i.e., the same order as the magnetic excitations. There-
fore, one can expect the coupling between them be
strong. Experimentally observed phonon softening s
occurring at T, in high-T, superconductors have been ex-
plained within the framework of strong-coupling Elias-
berg theory by Zeyher and Zwicknagl. Besides, some
authors reported observation of phonon softenings taking
place well above T, in YBa2Cu30~. ' ' These phonon
softenings correspond to negative increase in the phonon
shifts with decreasing temperature. The changes occur in
a rather sudden way' ' and one should not expect that
the present spin-lattice coupling mechanism be responsi-
ble for them because our assumption of the spin dynam-
ics does not account for any sudden change, such as a gap
formation in the spectrum of spin excitations. We have
calculated the phonon shifts due to spin-lattice coupling.
They result as a smooth negative increase with increasing
temperatures, which must be considered as a background
in the experimental curves.

The theoretical temperature dependence of the 340-
cm TO phonon linewidth 2I /0 arising from the
spin-lattice coupling is given in Figs. 4, 5, and 6 for Cases
A, B, and C, respectively. The parameters used are given
in Sec. III and we study those phonons with qa =0.1,
since the phonons measured in the Raman experiments
often have small but nonzero vectors. The wave-vector
dependence of the optieaj phonon freqaencies is ignored
in the calculations. One can see from Figs. 4—6 that the
relative phonon widths increase drastically with the in-
crease of temperature for all three cases, indicating a
more significant inhuence of spin dynamics on phonon
excitations at elevated temperatures. The same tendency
of temperature dependence had been obtained by Psal-
takis and Cottam in the study of magnon damping due

0.03

I=t 0.02
O

C4

QO

.~ 0.0'l

CO

O. OO 100 200
Temperature(K)

FIG. 4. Temperature dependence of relative linemidth
2I q/Qq of the 340-cm ' TO phonons for Case A. Curves a, b,
and c correspond to p —p, =0.01, 0.02, and 0.03, respectively.

to the spin-wave interaction in S =1 two-sublattice uni-
axial magnets. This general feature agrees with experi-
mental measurements in YBa2Cu307. ' ' However, if
one compares the theoretical results with the Raman data
(Fig. 2 of Ref. 34, for example) quantitatively, some
discrepancies will be found: (1) when the temperature ap-
proaches zero, the theoretical linewidth tends to zero
quickly, while the experimental result has a finite width;
(2) the theoretical value for linewidth at 300 K is smaller
than 10 cm ', a quantity smaller by a factor of 2 or more
than the experimental measurements: (3) the calculated
contribution of spin-lattice coupling to phonon linewidth
behaves smoothly with the change of temperature, while
Raman data show drastic broadening below T, . Howev-
er, we argue that these discrepancies show nothing but
the soundness of our theoretical results. As we know, be-
sides the spin-lattice coupling, some other mechanisms
such as electron-phonon coupling, phonon anharmonic
interaction, and defect-phonon scattering can also con-
tribute to the change of phonon self-energy. In fact, the
electron-phonon coupling has been shown to be responsi-
ble for the anomalous change of phonon linewidths
occurring below the critical temperature. 36 The anhar-
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4 0.02
O

C4

.~ 0.01

G~

Ib

volved, the width does not change much with the devia-
tion of p from p„' while for Cases B and C, this change is
significant. Which process dominates the phonon self-
energy depends strongly on the bond concentration. As
has been discussed in Sec. III, this can be understood in
relation to the p dependence of the percolation correla-
tion length g~.

V. CONCLUSIONS

100 200
Temperature(K)

300

FIG. 5. Results as in Fig. 4 but for Case B.

0.03

4 0.02

O

-~ 0.0 1

O. OO 100 200
Temperature(K)

300

FIG. 6. Results as in Fig. 4 but for Case C.

monic decay of the zero wave-vector phonons into two
phonons with opposite q vectors has been used to explain
some of the experimental results. And the defect-
phonon interaction in high-T, materials containing iso-
tope defects was studied by Tao and Singh, who demon-
strated that the phonon relaxation effect resulting from
this interaction may be an alternative explanation of the
anomalous T behavior of thermal conductivity of high-
T, cuprates. It seems likely that the electron-phonon
coupling, phonon anharmonic decay and defect-phonon
interaction, which we have not considered, account for
the discrepancies between our theoretical results and ex-
perimental data. When they work together with the
spin-lattice coupling, one could expect that the result
gives the right magnitude compared with experimental
measurements. We therefore think that our theoretical
calculations are in fact supported by experiment.

If one seeks to find the p (bond concentration) depen-
dence of linewidths for different cases, one can see from
Figs. 4-6 a similar sensitivity of the interaction involving
fractons on bond concentration with that observed in the
previous section: for Case A where only magnons are in-

In this paper we have studied the effect of spin-lattice
coupling on phonon self-energy in a dilute 2D antifer-
romagnet. The efFective-medium approximation has been
used to treat the randomly broken superexchange cou-
plings. Numerical results of phonon damping using the
parameters of the Y-Ba-Cu-0 system are presented for
three different situations. The results indicate that the
spin-phonon coupling is strongly q dependent. Interac-
tions involving fractons are very sensitive to the bond
concentration of the network. Raman-active phonons
have the same energy scale with the magnetic excitations
in the Y-Ba-Cu-0 system, and they can inhuence each
other strongly. The calculated results show that the
spin-lattice coupling can have more significant influence
on phonon self-energy in elevated temperatures. We
compare the theoretical phonon linewidths with experi-
mental Raman data and argue that our results are, in
fact, supported by experiments though there exists some
discrepancies between them.

It should be mentioned that we have ignored the oxy-
gen phonon modes in our calculations. Thus our model
seems to be describing an ideal dilute 2D antiferromagnet
rather than the CuOz plane. Nevertheless, the adjacent
Cu d electrons interact with each other via the 0 atoms,
so the modulation of superexchange energy due to the
displacement of 0 atoms is a high-order term, which has
not been taken into consideration in the present study.
Another point to be noted is the spin dynamics that we
have assumed. Our calculations are based on the as-
sumption that there exists a crossover from magnons to
fractons in the dilute 2D antiferromagnet. In high-T, cu-
prates, there is no direct experimental confirmation on
this point. However, other considerations of the spin dy-
namics would not change the results qualitatively but
amount to little more than small modifications, unless
one supposes a gap formation in the excitation spectrum
at a certain temperature. Recently Nagaosa and Lee
proposed a mean-field phase diagram for the CuOz plane
where there is a spin-gap state, and some authors also in-
terpreted their experimental results as the effect of a
spin-gap formation. ' But the study concerning the ori-
gin of a spin gap in the Cu02 plane is still debated.
Research in this direction wi11 be worthwhile though, we
believe that the results obtained from our model system
are essentially adequate: the coupling of phonons to
magnetic excitations strongly varies with the wave vector
and has its maximum weight at intermediate q values; the
coupling has a more significant inAuence on phonon self-
energy at elevated temperatures; and the spin-phonon
coupling involving fractons has a strong sensitivity on the
bond concentration of the network.
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APPENDIX B

By making use of some decoupling ap roximations, we
obtain from the ROM's of Gk(q, Q), G (q, Q), Gk(q, Q),
and Gk(q, Q):

Gk(q, Q) = 1
(nk+q nk )Mqk, k+qD (q Q»a

0 Nk +COk+q

APPENDIX A

Phonon-magnon (magnonlike fracton) coupling con-
stants:

S
Mq~, k

= [(uknk —
q
+uk —qUk )(Jk Jk —

q )
+2MNQqk

+(nkuk-q Ukok
—, )Jq]-

S
Mq~~ k

= l(ukUk —
q +uk —

q k )(Jk Jk —
q )

+2MNQ k

(ttkttk q Vk Vk q )Jq ]
S

Mq~g k
=

k k —q +Uk Vk —
q )(Jk Jk —

q )
+2MNQqk

("kUk q "k q—Uk)Jq] —~

S
Mq l(&kttk —q+ k k —q)(Jk Jk —q)

QZMNQ„
+(ukVk q Qk qVk )Jq ]

1
Gg(q, Q) = — (nk+q nk

—
)0+Nk COk+q

XMqk k+q D (q, Q),

1
G$(q, Q)= — (nk+ +nk)0+Nk +Q)k+ )

XMq"k k+qD(q, Q),

Gkq(q, Q) = 1
(2+nk+ +nk)0—N —

COk k+q
q

XM kk+ D(q Q) .
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