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We examine the stability of spin-polarized cluster states (ferrons) which appear by hole doping of the
antiferromagnetically ordered Cu02 planes in the high-T, cuprates. The inhuence of additional holes is

calculated within a self-consistent mean-field-type approximation. The variation procedure for the spin

polarization is extended over up to five Cu02 plaquettes. Different correlation terms (U&, U~ ) affecting

the cluster stability are discussed. For all cases the cluster binding energy and the polarization of the Cu

spins are calculated. In addition the interaction between different clusters is discussed.

I. INTRODUCTION

In the parent materials for the high-T, cuprates [e.g. ,

La2 „(Sr,Ba)„Cu04or YBaCu06+„]the doping (x,y &0)
evokes a transition from an antiferromagnetic insulator
to a conducting and below T, superconducting state.
Doping in this system means that the geometrical struc-
ture of the Cu02 layers remains unperturbed, while holes
are introduced into the planes.

Different theoretical works show that an excess hole
slightly perturbs the electronic structure in its vicinity by
forming a spin-polarized cluster. Such states, often also
denoted as magnetic polarons or ferrons, are discussed
not only in high-T, materials. For a review see, e.g., Ref.
1. In the context of cuprate superconductors there have
been several attempts to explain pairing mechanisms by
magnetic polarons. In contrast to that in our calcula-
tions the interaction between the clusters turns out to be
extremely small. Furthermore most authors that regard
magnetic polarons do not consider a turn of polarization
in an original antiferromapnetically ordered lattice, but
instead get a spin bag. * ' Ferrons with a turned spin
were already derived with the t-J model. '

At higher doping concentrations the clusters start to
build up a microscopic percolation network. In this way
a phase transition from an antiferromagnetic insulator to
a conducting state is established.

This scenario is confirmed by many experiments that
show either the existence of spin-polarized clusters' '" or
prove a phase transition of such a percolative type. ' In
our calculations we emphasize the effect of a single hole.
We start from the unperturbed configuration, whose anti-
ferromagnetic order is determined self-consistently after
doubling the elementary cell.

An additional hole leads to the variation of the spin po-
larization. The new spin expectation values are calculated
self-consistently both for one and five CuOz plaquettes.
For the usual parameters for the high-T, cuprates the re-

sulting state turns out to be a spin-polarized cluster. The
effect of higher doping is discussed by introducing several
holes into the cluster. A Coulomb repulsion on oxygen
sites (U ) and an intersite Coulomb repulsion between

copper and oxygen electrons ( U z ) is also taken into ac-
count. By calculating the binding energy we discuss the
stability of the clusters. Furthermore we regard the in-

teraction between different clusters which turns out to be
very weak.

II. SELF-CONSISTENT APPROACH

We start from the three-band Hubbard Hamiltonian in
the electron picture

H=eegn +e gns +T g (d p, +H. c. )

+ Ugn &n

where ed and 6p are on-site energies at copper and oxy-

gen sites, respectively. T is the transfer integral between
oxygen and copper sites and the Hubbard energy U de-
scribes the Coulomb repulsion between two electrons at
the same copper site. The parameters are usually as-
sumed to be of order of T=1 eV, U=8 eV, and
e=e —e&=3 eV. ' ' d(d ) and p(p ) denote electronic

p d
annihilation (creation) operators on the d 2 2 copper

and the p„oxygen orbitals. n =d d and n =p p ared t p-
occupation number operators. (mrn') represents the
summation over nearest neighbors only.
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The structural elementary cell consists of one Cu02
unit. In the undoped case the oxygen sites are mainly

doubly occupied, while there is one electron on each
copper site. The spins of the copper electrons are ar-
ranged antiferromagnetically.

In order to handle the strong correlations described by
the Hubbard term the following mean-field approxima-
tion which is known to be reasonable for larger U/T is
used:

H =y(& +U&n &)n +& yn~,
m'

+ T g (d p, +H. c. ) .
(mm')

A. Unperturbed antiferromagnet

—U&n,".&&n,
' .& . (2)

As we want to describe the antiferromagnetic order, we
double the elementary cell. Due to the renormalization
the two copper on-site energies in the magnetic elementa-
ry cell are given by

There also exists a difFerent approach in which the corre-
lation terms are treated with a slave-boson technique. '

This additionally leads to a renormalization of the
transfer integral. The results do not differ strongly from
ours, except that all polarizations become slightly small-

er. However, in such a slave-boson approach further
correlations and an enlargement of the variation pro-
cedure are difBcult to introduce. Therefore we restrict
ourselves to a Hartree-Fock approximation. Then the
Hamiltonian reads

~,.=~, +U&n', .),
~,.=e, +U&nf .& .

(5)

From the symmetry of the antiferromagnetic state it fol-
lows immediately that

&n~ &=(n,' ) .

Therefore we can use the notation (n ) and regard these
quantities as being modulated with twice the lattice
period.

Let us consider the Hamiltonian H~F for a fixed spin
direction, say cr = 1'. In k space it reads

—2Ta„2Ta„2Ta„'—2Ta *

2Ta„' 2Ta„' —2Ta„2Tay

(kg~HMtF~ky &=
—2Ta„' 2Ta„

2TQy 2TQy

2Ta„—2TQ„'

0

0

2TQ 2Tay

with the abbreviation

ik„(a/2)
a =—'e "y

X,y

and

e, z=e&+U(n~ t) .

Symmetric linear combinations of the oxygen states lead
to the decoupling of two dispersionless bands of oxygen
type. Four bands remain: An upper and lower Hubbard
band of mainly copper character and two broader bands
of mainly oxygen type between them. In the undoped
case the lowest three bands are occupied with electrons
(see Fig. 1). Now we can calculate local Green's func-
tions according to

D (E)=(E—p,..)(E —6 ) 4T (i =1,2)—,

D(Z) =D, (E)D,(&),

D(E)
9 16T4

we obtain, e.g,
(i) for vP&1

p~ 1
00 m.ai

(12)

Gi'j =l« HMF) '1J— (10)
0&

Goo =2 K
ma2

which turn out to be linear combinations of complete el-
liptical integrals. Introducing (ii) for 0&q (1



7048 D. KLEMM, M. LETZ, E. SIGMUND, AND G. S. ZAVT 50

E J)

UHB

Ep

UBO

CT Gap

V,, =U((n '
&
—(n &)5; 5J

we get

G Oa.

0' 00

1 —6 U((n '
&
—(n" ))

The energies of the localized excitations are given by

1 —6 U((n '
) —(n ))=0.

(17)

(18)

LBO

LHB

FIG. 1. Bandstructure of the unperturbed antiferromagnet.
LHB = lower Hubbard band, UHB = upper Hubbard band,
LBO = lower band oxygen, UBO = upper band oxygen.

The equations for the occupation numbers ( n"' ) have to
be solved self-consistently:

E
(n ' ) =—f Im Goo(( n

' ),E}dE . (19)

One localized state splits o8' from the upper oxygen band
into the charge-transfer gap. From this state the electron
is removed. Therefore the Fermi energy (EF) lies be-
tween the upper band edge and the localized state (see

Fig. 2).
The energy change b,E due to the perturbation (16) of

the Hamiltonian (3) is given by

AE =AE"'+ AE'"' (20)

Goo( = QD2/D, [K(ri)+iK(+1—g )],2~T'
(13)

Gpo = QD, /D~[K(ri)+i K((/1 —ri )],

(iii) for rP(0

G ~=2 E—e 1
00 K

V'I —1/q'

where hE"' arises from the formation of localized levels
and reads [AN (E) is the change of the density of states]

bE"'=g f EhN (E)dE
a

=—g f E Im[lndet(1 GV )]dE—
dE

1 F Imdet(1 —6 V }arctan dE
Redet(1 —6 V )

G" =2 E —e
00 K

~D2 +I —I /ri2 '1/ I —
ri

(14) +yE,'. (21)

Here E; signify the energies of the occupied localized
states measured from the band edges. AE'"' is essentiallyHere the lower indices of the unperturbed Green's func-

tions 6 denote the lattice sites. (n," ) are determined
self-consistently and we get the lowest energy for the an-
tiferromagnetic state as compared with the metallic state.
This is in agreement with the results of Refs. 16 and 17.

B. Self-consistent variation at one copper site

Under doping there is the possibility that an electron is
taken away from the third band and the ideal antiferro-
magnetic order remains unchanged. However, due to the
nonlinear nature of the mean-field equations one can ex-
pect a spontaneous symmetry breaking leading to the
creation of localized excitations. We have found that the
second scenario leads to a lower ground-state energy in
our domain of parameters. It is assumed that the copper
spin at site I =0 can spontaneously fluctuate, changing
the spin densities from (n ) to (n '). These new
values are determined self-consistently. The perturbed
Green's function is obtained from the Dyson equation

GocrVa)~o' Goo

With the perturbation

upper
Hubbard
band

E/T

charge
transfer

Ep

FIG. 2. The situation in the charge-transfer gap for a=3:
Two localized states split up, one from the upper Hubbard band
and one from the next oxygen band.
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the change of the magnetic energy

SZ'"'= U(&n' & &n'
&
—&n' & &

n' &) . (22)

We report here some results of the calculation for one site
regarded self-consistently (see Table I). As one can see the
spin at the central copper site is nearly totally turned. Its
expectation value changed from 0.116 to 0.79 for spin up
and from 0.998 to 0.17 for spin down as a result of this
self-consistent calculation with e/T=3 and U/T=8.
Therefore a cluster of five mainly parallel copper spins is
described (see Fig. 3).

Although the perturbation is localized only at one site
the spin densities on other Cu sites are also changed. If
one added the contribution of the four next neighbors not
taken into account self-consistently to the binding energy,
it would have the same order of magnitude as the binding
energy itself. Thus one has to consider also the four sur-
rounding Cu02 plaquettes self-consistently.

T(l —G V)T 'TG=TG (25)

with

FIG. 3. The situation in the surrounding of an access hole is
drawn. The arrows indicate the main direction of the copper
spins only as it turns out self-consistently.

C. Self-consistent variation at five copper sites 1

2
1

2
I

2
1

2

Now we have to solve the Dyson equation for a five-
dimensional problem.

1 1

2 2 2

1 1

2 2

1

2

1 1

2 2

(26)

GOcrVe)Gcr GOcr (23) 1 1

2 2
1 1

2 2

with

Uhn'

Uhn"

Uhn"

Uhn"

T(1—G V)T

a1 a2

a3 a4

while T(1—G V)T ' has the form

(27)

Uhn"

Goo 61o 61o 61o 61o

G 6 6 G10 00 20 11

G10 G20 Goo 6
G 1o 611 G11 600

6—cr
11

G 11

6 cT

20

6 0'
00

(24)

where bn' =& nd' &'—
&
n" &' is the change in the oc-

cupation number of the central copper site, while hn" is
the one of the four next-nearest neighbors. The symme-
try of the problem allows us to transform this equation
into three independent and two coupled linear equations

TABLE I. Results from a calculation where one copper site
was regarded self-consistently and the copper spin on this site
was turned. The occupation numbers of the unperturbed AF

d d( n t ), (n t ), the values for the perturbed site ( n t' ), ( n t' ), aud
the binding energy —hE/T are given. This was done for a Hub-
bard repulsion U/T =8 and for two dilerent values of e/T =3
and 5.

The two identical diagonal elements u belong to localized
states of the same symmetry given as the zeros of
det(1 —G V). They are shown in Fig. 4. We end up with
a system of self-consistent equations

upper
Hubbard
band

E/T

charge
transfer
gap

Ep

U e N

0.217
0.116

0.996
0.998

(n", ) (n', ) n", )

0.84
0.79

(n", )

0.29
0.17

0.18
0.31

FIG. 4. The situation in the charge-transfer gap for @=3:
The localized energy level near the upper Hubbard band is now
split into three states, while the other two levels do not shift
much compared with Fig. 2.
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E
( di )cln Im(gii(E ( di )c

(n ' )",. . . ))dE . (28)

AE is calculated in the same way as in the previous
chapter [see Eqs. (20)—(22)] with the exception of b,E'"'
that now reads

~E'"'= U(5(n', ) (n') (—n"' &'(n' )'
4&—nd') "&nd' &") . (29)

Compared with Sec. II B this leads to an increase of the
binding energy of such spin-polarized states while the po-
larization increases slightly (see Table II). Therefore the
clusters are still stable. Further neighbors now taken into
account here give a neglectible contribution to the bind-
ing energy. It also turns out that for small U a spin Rip is
not favorable anymore. Instead merely the polarization
is changed slightly and we end up with a spin bag. '

D. Spin-polarized cluster of 13 mainly parallel copper spins

Now we want to investigate if the ground state of one
additional hole is really the state with one turned spin.
To this end we change the initial conditions of the self-
consistent approach in the way that we turn four spins.
The same formalism as in the previous section can be ap-
plied.

It turns out self-consistently that we get a cluster with
13 mainly parallel spins, which is shown in Fig. 5. For
the usual parameter region (see Table III) the binding en-

ergy of this state is remarkably smaller than for that cal-
culated in the previous section. Therefore the ground
state for one additional hole is built up by the smaller
cluster.

Increasing U makes larger clusters energetically favor-
able. This is in agreement with the Nagaoka theorem'
which states for infinite U an additional hole leads to a
ferromagnetic ground state.

In the case of four turned spins the energy-level split
off from the upper oxygen band into the charge-transfer

gap is separated into four sublevels. Thus we now have
the opportunity to remove more than one electron.

As one can see from Table III the binding energy for
the case of two or three holes certainly increases but does
not reach two or three times the value of the binding en-

ergies calculated in Sec. IIC. For that reasons two or
three additional holes would create two or three separat-
ed small clusters.

In Table III one can clearly observe the decrease of the

TABLE II. In this situation five copper sites were regarded

self-consistently and the copper spin on the central site was

turned. The occupation numbers of the central site

( n t' )', ( n i )', of the four next neighbors ( n t' )",( n i )" aud

the binding energy —hE/T are listed.

U e X (nt ) (n )(tnt )' (n )' i(nt )" (n )"t—hE

8 5 1 0.217 0.996 0.85 0.28 0.98 0.22 0.34

8 3 1 0.116 0.998 0.80 0.16 0.96 0.14 0.43

FIG. 5. In this calculation five copper sites were regarded

self-consistently but four copper spins were turned.

polarization with increasing the number of holes &.
With increasing X, ( n t' )"becomes smaller while ( n t' )"
increases. Even if an unpolarized state cannot be calcu-
lated in such a mean-field calculation, we can interpret
this as a first step towards metallization in a higher-
doped percolative network of such clusters.

III. INFLUENCE OF Up AND Upg

ON POLARIZATION AND BINDING ENERGY

In this section we want to examine how the Coulomb
repulsion U on oxygen sites and the intersite Coulomb
repulsion U & between electrons on neighboring copper
and oxygen atoms affect stability and polarization of
spin-polarized clusters. These two additional interactions
are taken into account by adding to (1) the Hamiltonians

H, nt =&pXnm tnm t (30)

and

|nt pd X m&rnm'o'
pd p

(mm')
(31)

(30) and (31) are again treated in the mean-field approxi-
mation, yielding

H~„,

=Uzi�

(n~~ )n~. —Uzg(nm~ t )(n~ t ), (32)
m '0. m'

Hi'd, =U„y[(&n~ &+&n~ &)n
(mm')

cr

+((n' )+(n„' .))n„' ]

—U,, y (n'. )(n'. & . (33)

8 3 1

8 3 2
8 3 3
8 5 1

8 5 2
8 5 3

0.217
0.217
0.217
0.116
0.116
0.116

0.996
0.996
0.996
0.998
0.998
0.998

0.22
0.21
0.21
0.13
0.13
0.12

0.94
0.95
0.95
0.92
0.92
0.92

0.20
0.29
0.30
0.12
0.13
0.14

0.97
0.93
0.88
0.96
0.91
0.86

—0.14
0.14
0.45
0.25
0.61
0.96

TABLE III. A cluster of 13 mainly parallel copper spins is

formed. The binding energy —AE/T is calculated for different

numbers of holes (X}inside the cluster.

U e X (n', ) &n", ) &n",'&' &n", &' &n",'&" (n", '&" AZ—
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Ei 2=ed + U( n t t ) +2Upd (Ni )

e ~Z =e +2U~((nt )+(ni))+ (Nt ),
(34)

where

This leads to a renormalization of the on-site energies.
We add the operator-dependent first parts of (32}and (33)
to HMF (4} and proceed in the same way as in Sec. II A,
i.e., we again consider a Sxed spin direction and then
transform the Hamiltonian into k space. Then we obtain
the same Hamilton matrix as (7), but now with differently
renormalized parameters

and the chosen basis system is

~1&=d [0& [i &=pt ~0& (i =2, . . . , 5) . (38)

(The four surrounding oxygen sites are labeled by the
numbers 2, . . . , 5.)

As the perturbation matrix has the same form as in
Sec. II C, we can also apply the transformation T in order
to solve the Dyson equation for the Green's function G.
The disturbed spin densities at the site m =0 are then
determined by the equation

(n~')= —J IraG;, (E)dE. (39)

N~ = gn~
(m')

(35) As in Sec. IIC we have to deal with localized states
which are determined by the equation

The parentheses around m' mean that the summation ex-

tends over the four oxygen sites m' neighboring to
the copper site m. Due to translational symmetry
N~ does not depend on m. C4, symmetry implies
(n~ ~ ) =(N~ )/4. Further we supposed (N~& ) =(N~& ),
which is valid in the undoped case. The spin densities

have to be determined self-consistently via the imaginary

parts of the Green's functions, which have the same form

as in Sec. II A, but with differently renormalized parame-
ters.

det(1 —G V ) =0 (40}

The energy change due to the perturbation is again given

by

gE gEloc+ it Eint (41)

where b,E' is calculated in the same way as in (21) and
hE'"' now reads

aE'"t=U((n', ) &n', & &n", &&n—", &)

A. Self-consistent variation at one copper site +U„g((nd & (n.'&)&—N'. & . (42)

where

a 0 0

0 6 0
0 0 b

0 0 0
0 0 0

0 0

0 0
0 0
b 0
0 b

(36)

a =U((nd' ) —&n )),
=bUQ(( n') —(n ) }, (37)

As in Sec. II 8, we introduce a local perturbation to the
system in the doped case, i.e., we allow the copper spin at
site m =0 to change its original direction. The expecta-
tion values at this site therefore change from (n ) to
(n ' ). Due to the intersite Coulomb interaction U d this

leads also to new on-site energies at the four surrounding
oxygen sites. Therefore we obtain the following pertur-
bation matrix:

In Tables IV and V the dependence of the disturbed spin
densities in these spin-polarized clusters on U and U d is
shown for two sets of parameters U and E=Ep

Tables VI and VII display the binding energy b,E. —
We observe that the disturbed spin densities ( n t

' ) and

( n i ) decrease with U& and increase with U . This
behavior can easily be understood. The Coulomb repul-
sion U& between electrons on neighboring copper and

oxygen sites tends to localize the electrons onto the oxy-
gen in order to minimize the corresponding Coulomb en-

ergy. This means that the electrons have a higher proba-
bility to be on oxygen.

The binding energy of the cluster shows a remarkable
behavior. For fixed U it first rises with increasing Uzd to
reach a maximum and then again decreases. For small
fixed U~d the magnetic polarons are destabilized by U~,
whereas for larger values of U d the binding energy —hE
increases with U up to a certain value in order to fall
down thereafter. In Sec. III B we show that this behavior

TABLE IV. Spindensities (n t ), (nt }for U/T=6, E/T=2.

Up /T 0.2 0.4 0.6 0.8

0
0.5
1

1.5
2

0.71 0.24
0.73 0.28
0.74 0.32
0.75 0.36
0.75 0.42

0.66 0.18 0.61 0.14 0.57 0.10 0.54 0.08
0.69 0.21 0.64 0.15 0.59 0.12 0.55 0.09
0.71 0.23 0.66 0.17 0.61 0.13 0.57 0.10
0.73 0.26 0.69 0.19 0.64 0.14 0.59 0.11
0.74 0.30 0.71 0.22 0.66 0.16 0.61 0.12

0.52 0.06
0.53 0.06
0.54 0.07
0.56 0.08
0.57 0.09
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TABLE V. Spin densities (n, &, (n, }for U/T=8, e/T=3.

Upq /T
0.2 0.4 0.6 0.8

0
0.5
1

1.5
2

0.79 0.17 0.74 0.14 0.67
0.81 0.19 0.77 0.15 0.71
0.82 0.22 0.79 0.16 0.74
0.83 0.25 0.81 0.18 0.76
0.84 0.28 0.82 0.21 0.79

0.11 0.60 0.09 0.55 0.07
0.12 0.64 0.10 0.57 0.08
0.13 0.67 0.11 0.60 0.09
0.14 0.70 0.11 0.63 0.09
0.16 0.73 0.12 0.66 0.10

0.51 0.06
0.53 0.06
0.55 0.07
0.57 0.08
0.60 0.08

can be understood by considering a simple model of the
spin-polarized cluster.

B. Interpretation of the results for the binding energy

I. Calculation of the delocalization energy
in a Mott-Hubbard picture

In the Mott-Hubbard insulator model double occupan-
cy of copper sites is excluded. This approximation be-
comes exact for U~00. In this picture the stability of
clusters rests on the fact that the kinetic energy of the ad-
ditional hole strongly depends on the spin orientation of
the nearest Cu ions. %'hen the surrounding of the hole is

ferromagnetic the hole can delocalize, which leads to a
remarkable lowering of the kinetic energy of the system.
This gain in kinetic energy is larger than the expense of
magnetic energy which is needed for turning the copper
spin.

First we want to calculate this delocalization energy.
For that purpose we consider the spin-polarized cluster
shown in Fig. 6. (The arrows indicate the spins of the
holes. } As we are in the large-U limit we exclude the
states with copper sites which are doubly occupied with
electrons. The state where the additional hole with spin
up is located at site number i is denoted by
Ii &(i =1,2, . . . , 21). The on-site energies are given by

6p+5ed=.'3; i =2, . . . , 5 Ql' =)0, . . . , 2J

~6Up +56Upd +32&p +4Ed =.'8; l = 1 Q l =6, . . . 9 (43)

fe, &= f1&,

I+ &=-,'(I2&+I3&+I4&+I5&),

I+3& =—'( I6&+ I7&+18 &+19&),
fe, & =-,'(Ill &+ I14&+ I17&+ I2o& },

(44}

—( I
10&+ I13&+ I 16 &+ I

» &+
I
» &

+f15&+118&+f21&).

The symmetry group of our system is C4, . The eigen-
function to the lowest-energy eigenvalue is invariant un-
der all symmetry transformations of the group C4„,i.e., it
belongs to the irreducible representation A

&
of this

group. As we are interested only in the ground-state en-
ergy it is suScient to project the Hamiltonian on the
basis functions belonging to 2 „which can be found by
using the %igner formula

In this basis the Hamiltonian (1}+(30)+(31)reads

8 2T 0
2T A T

H= 0 T 8
0 0 T
O O v/2T

0 0
0 0
T &2T

0
0

(45)

The lowest eigenvalue of this matrix is given by

E erro = QI ( A B)/2) +6T—0 (46)

In comparison to that we calculate the kinetic energy of a
hole in an antiferromagnetic surrounding, which is shown
in Fig. 7.

Due to the Pauli principle the hole with spin down
cannot move to the Cu sites 6, 7, 8, and 9, i.e., it is
confined to a unit consisting of the five central atoms.
Our basis thus consists only of Ave functions. The linear

TABLE VI. Binding energy —hE for U/T =6, e/T=2 (in
units of Q.

TABLE VII. Binding energy —hE for U/T =8, e/T =3 (in
units of Tj.

UE /T 0.2
Upd /T

0.4 0.6 0.8 Up /T 0.2
U~d /T

0.4 0.6 0.8

0
0.5
1

1.5
2

0.32
0.28
0.25
0.21
0.18

0.35
0.33
0.30
0.27
0.24

0.35
0.34
0.33
0.31
0.29

0.32
0.33
0.33
0.32
0.31

0.29
0.30
0.30
0.31
0.31

0.25
0.26
0.27
0.28
0.29

0
0.5
1

1.5
2

0.33
0.30
0.27
0.24
0.21

0.36
0.34
0.32
0.29
0.26

0.38
0.36
0.35
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gE kin EAF EFerro
0 0

2 1/2
U —6U d+e

+6T

2 1/2
U —6Upd +a

+4T (50)

CII

CI

FIG. 6. Additional hole in a ferromagnetic cluster.

B 2T
2T A

(47)

and its lowest eigenvalue is given by

EAF = —/[( g —g)/2]2+4T (48)

combinations belonging to the irreducible representation
A, are ~%, ) and ~%'z) which were already given in (44}.
In this basis the Hamiltonian reads

2. Calculation of the magnetic energy

In this section we want to calculate the influence of U
and U& on the expense of magnetic energy necessary for
turning one copper spin. To this end we follow a deriva-
tion of the superexchange coupling by Nolting2o within a
semiclassical model. For simplicity we consider a linear
antiferromagnetic chain of copper and oxygen ions. A
part of this chain is shown in Fig. 8.

The magnetic Cu + ions are assumed to carry classical
spins S&,S2 of constant length, but variable orientation.
S, and S2 shall enclose the angle e.

The following configurations are allowed:
(1) Both p electrons are located at the oxygen site. This

state has the energy E, :=2@~+2ed + U + 8 U d

(2} The p electron with spin down is found at Cu in l.
The energy is E2 =e +3.ed+ U+9U d.

(3) The p electron with spin up is found at Cu ion 2
(also Ez}.

(4) Both p electrons are located at the Cu ions. The en-

ergy of that state is E4 4E'd+2U+8Upd.
In analogy with Ref. 20 we thus obtain the Hamilton

matrix

With

B —A =Up —6Ud+e,

p d

(49)

we finally obtain for the gain of kinetic energy by forma-
tion of a spin-polarized cluster

Ei

T E2

T 0 E

0 T sin —T sin—
2 2

T sln—
2

T sin—
2

(51)

This Hamiltonian has the ground-state energy (up to fifth
order in T}

Cil

Eo=Eo ' —JS] S2,

where Ez ' is an insigniflcant constant and

2T4J=-
S (U e U~+U—zd)

—(2U —2e —Uz)

S=(S;~ (i =1,2) .

(52)

(53)

CQ 0 2
CQ

sk

Cll

FICx. 7. Additional hole in an antiferromagnetic surrounding.

FIG. 8. Linear antiferromagnetic chain of copper and oxygen
ions.
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The amount of magnetic energy necessary for turning one
copper spin is thus

dE ' "=—2$2J

4T4

(U —e —U +Ud) (2U —2e —U )

3. Binding energy of the cluster

(54)

l

—o.os
I

t

t s

The binding energy of the spin-polarized cluster is
given by

2

Up
—

6Upd +e
+4T

1/2

gE tot gE magn gE kin

4r4
(U —e—U +Ud) (2U —2e —U )

2 1/2
Up

—6U d+e
2

+6T

(55)

—0.08
0 2 3 4

distance between twn turned spina lu 2n ]
J

FIG. 9. Two copper spins along a line in the {1,1) direction
were turned. For different distances given in units of the lattice
constant a, the energy difference for two clusters with infinite
distance {zero-line) is plotted. The situation around the two ad-
ditional holes is shown in the small pictures inside. This was
done for a Hubbard repulsion U/T =8 and e/T =3. {The
dashed line is a guide to the eye. )

Since we are only interested in a qualitative interpretation
of our mean-field results, it is justified to take the hE ' "
calculated for a linear chain, especially as there is no
qualitative di8erence to the two-dimensional case.

The gain of kinetic energy becomes maximal for

U —6U —@=0
p pd (56)

which becomes larger with increasing U d. Summing up,
it can be said that the simple model of a spin-polarized
clUster presented in this section is able to give a physical
insight into the behavior of the binding energy resulting
from our mean-field calculations.

IV. INTERACTION BETWEEN NEIGHBORING
CLUSTERS

To answer the question if a second hole will go into the
same cluster in which a first hole is already situated by
simply increasing the size of the magnetic polaron, or if a
second ho1e wi11 create an own cluster we focus on a
chain of four and five copper places in the (1,1) direction.

i.e., the maxima of —AE"'" lie on a straight line in a
( U~z, U~ ) diagram. From U ~ 0 it follows that
U „~e/6,that means that for Ud (e/6 the delocaliza-
tion energy always decreases with increasing U, whereas
for U d

& e/6 there is a maximum at a certain value of
Up namely at Up

=6 Upd
E' This is indeed exactly what

we observe at the results of our mean-field calculations
(see Sec. III A). Further we notice in Tables VI and VII
that the maximum of the binding energy of the magnetic
polarons in this straight line becomes smaller with in-
creasing U or U d. This is due to the behavior of the
magnetic energy. Setting U =6U d

—e in hE ' " we get

4
magn 4T

lp =6U
( U 5Upd ) (2 U —e 6Upd )——2

(57)

Along this chain we variate the occupation numbers of
the copper places self-consistently.

The energies of two turned spins at diferent places on
this chain are calculated (see Fig. 9). hE is the difFerence
between the binding energy of two turned spins in the
chain and the energy of two turned spins with infinite dis-
tance.

Although we have only calculated three difkrent dis-
tances we can clearly see an influence of the interaction
between two clusters. This interaction leads to an attrac-
tion of clusters relatively far away from each other. The
energy of the interaction has a minimum of approximate-
ly 5 —9 lattice constants. It gives a slightly repulsive con-
tribution for two turned spins directly beside each other
forming a single cluster of eight parallel copper spins. In
any case the attraction between two clusters in two di-
mensions is extremely small compared with the binding
energy.

&. CONCLUSION

We have shown that the ground state of a Cu02 layer
with a single defect electron (hole) described by the three
band Hubbard model is formed by a spin-polarized clus-
ter (magnetic polaron) with 5 —8 parallel copper spins.
The binding energy of such a magnetic polaron is of the
order of 0.4-0.5 eV. This gives a possible interpretation
of 0.3—0.5 eV features in the excitation spectra, which
are measured in nearly all cuprate superconductors with
infrared spectroscopy. '

To describe the inhuence of higher doping we calculat-
ed larger clusters (13 parallel copper spins) containing up
to three additional holes. The decrease of the cluster po-
larization with increasing the number of holes indicates
the way in which an antiferromagnetic insulator-metal
transition is performed at higher doping.

Further on the inhuence of the Coulomb repulsions U



50 ELECTRONIC PHASE SEPARATION: EXTENDED MEAN-. . . 7055

between electrons on oxygen sites and U d between elec-

trons on neighboring copper and oxygen sites on the for-
mation of magnetic polarons was investigated. We found
that on a straight line in a (U&, U ) diagram, which is

approximately given by U =6U d
—e, the binding energy

of spin-polarized clusters is maximal. For small U d and
U these maxima can even be larger than the binding en-

ergy in the case U&=U =0. However the essential

point is that also at higher values of U~ and U~d the clus-
ters are still stable, because the binding energies only
change slightly.

It turned out that two clusters slightly attract each
other but only up to a certain distance. Therefore in the
low-doping region a second hole will not simply increase
the size of an already existing cluster but will form a
second independent cluster.
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