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A theoretical calculation has been performed for the variable-range-hopping (VRH) conduction mech-
anism in the presence of temperature and electric field for quasi-two-dimensional (QTD) and quasi-one-
dimensional (QOD) systems. In the present calculation, it is assumed that the localized states are ran-

domly distributed both in energy and space coordinates. The states both below and above the Fermi lev-

el are included in the calculation of the hopping range and conductivity. The present approach diS'ers

significantly from the percolation method and others in the calculation of the mobility and the conduc-
tivity. The expressions for the hopping range, the mobility, and the conductivity are obtained for the
constant and the energy-dependent density of states. The expression of the conductivity for the constant
density of states can be reduced to that of Mott in certain approximations. The em'ect of electron-
electron interaction in the calculation of the conductivity and hopping range has been included through
the density of states. After some approximations, the present expression of the conductivity can be re-
duced to that of Efros and Shklovskii. The logarithm of the conductivity follows the (1—P~) ~' and
+I—P' electric-field dependence for QTD and QOD systems, respectively, in the presence of the
electron-electron interaction and a weak electric field. Here P is directly proportional to an electric field.
The present calculations are applied to explain the recent conductivity experiments on PrBa&Cu307 y

(PBCO) films. A possible crossover from Mott-type VRH to Efros-and-Shklovskii-type VRH has been
observed in PBCO.

I. INTRODUCTION

Recently, there has been a considerable interest in the
study of the proximity effect in S/N and S/N/S junc-
tions. ' ' Here S and N stand for a high-temperature su-
perconductor (HTS) and a normal metal or oxide super-
conductor, respectively. Tarutani er al. have fabricated
S/N/S junctions where S is a HoBazCu307 (HBCO)
compound and N is either La, sBao sCu04 ~ (LBCO) or
PrBa2Cu307 (PBCO). They have studied the conduc-
tivity of these junctions in the superconducting and nor-
mal states. They observed the proximity effect even when
the thickness of the N is larger than the coherence length.
This effect is called the long range proximity efFect.
Tarutani et al. " have also measured the temperature-
dependent resistivity of the PBCO junctions and films in
the normal state. They observed the variable-range-
hopping (VRH) type of conduction in the resistivity mea-
surements when the thickness of the normal metal layer
is greater or equal to 0.5 pm. However, for the sample of
thickness 0.2 pm, they observed that the resistivity is in-
dependent of the temperature for T & 8 K.

The study of the VRH mechanism in bulk materials
has been the subject of number of investigations, '

but not much theoretical work has been done in quasi-
two-dimensional (QTD) and quasi-one-dimensional
(QOD) systems such as thin films, S/N, and S/N/S junc-
tions. Recently, Singh et al. ' have performed a theoreti-
cal calculation for variable-range hopping in QTD sys-
tems in an electric field and various temperatures. An
analytical expression for the conductivity has been ob-
tained for a constant density of states (DOS). A theoreti-
cal calculation has been done to explain the temperature-

dependent resistivity experiments of Kabasawa et al. s on
PBCO films. A good agreement between the theory and
the experiments is found at high temperatures, but at low
temperatures there is a discrepancy between theory and
experiments. In the above calculations, the effect of
electron-electron interactions was not included. This
discrepancy may be due to omission of the electron-
electron interactions in the calculation of the VRH con-
ductivity.

In the present work, the hopping range, the mobility,
and the conductivity are calculated for QOD and QTD
systems by using the method developed in the previous
paper. ' It is assumed that the localized states are distri-
buted randomly in both space and energy coordinates.
The states occupied both above and below the Fermi level
have been included in the calculations. We assume that
states are occupied according to Fermi-Dirac statistics.
The mobility is calculated as a function of energy with
respect to the Fermi level. Then the conductivity is cal-
culated by integrating over energy with the help of the
mobility. The present calculation differs significantly
from theories of percolation where the conductivity is
calculated for a resistance network at a particular or crit-
ical energy. This is sometimes called the critical conduc-
tivity. Using a very general energy-dependent DOS [i.e.,
D(co)=D, co"] and a constant DOS, expressions for the
hopping range, the mobility, and the conductivity are ob-
tained. Here D, and n are constants. Analytical expres-
sions for the above quantities have also been obtained in
certain approximations. The effect of the electron-
electron interaction has been included through the DOS
(Refs. 16,17) in the present calculations.

If we assume that all states above and below the Fermi
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level are empty and occupied, respectively, then for con-
stant DOS our expressions for the conductivity give
o =exp(T/T& )

' and cr =exp(T/To )
' for QOD

and QTD systems, respectively. Here To is called the
Mott characteristic temperature. These results are con-
sistent with the results of Mott. ' ' Similarly, our ex-
pressions for the conductivity obtained in the presence of
electron-electron interactions can be reduced to
o =exp(T/To) ' for both QOD and QTD systems.
This expression agrees with that of Efros and Shklovskii
(ES).' ' In the presence of electron-electron interac-
tions, the logarithm of the conductivity follows the
(1 —P )

~ and (/1 —P electric-field dependence for QTD
and QOD systems, respectively, in a weak electric field.
Here P is directly proportional to an electric field. The
present theoretical calculations are applied to explain the
recent temperature dependence of resistivity experiments
of PBCO films. A good agreement between theory and
experiments is observed if one includes the effect of
electron-electron interactions in the calculation of the
resistivity at low temperatures. A possible crossover
from Mott-type VRH to Efros-and-Shklovskii-type VRH
is predicted in PBCO films. The crossover temperature
was found to be about 11 K which is in agreement with
the theoretical calculated value.

II. GENERAL METHOD

R =x(1+Pcos8)+~—e for xPcos8+~(e,
R =x for xPcos8+co) e . (2)

Here P=qE/2aks T and x is the distance between two
sites. c and co are the energy of the initial and the final

sites, respectively. q is the charge of a carrier, a is the in-
verse of the attenuation length, and 8 is the angle be-
tween x and the electric field. Note that the space and
energy variables are presented in reduced coordi-
nates. ' ' The reduced coordinate x should be multiplied
by 1/2a to express it in the distance units. Similarly, c
and co should be multiplied by kz T to write them in the
energy units. It can be seen from Eq. (1) that as the
effective distance between two states decreases the hop-
ping probability increases.

Let us consider a site with energy c in the hopping
space. The most probable hop for a carrier of energy c
on this site will be to its nearest-neighbor empty site.
Conduction is the result of many series of hops through
this hopping space. The average nearest-neighbor hop-

Let us briefly discuss the method used in the present
calculations. We assume that localized states are ran-
domly distributed in energy and space coordinates and
they form a discrete array of sites. This space is called
the hopping space. Then the probability of hopping of a
charge carrier from an initial state to a final state in this
space is given by' '

W(R ) =exp( —R ),
where R is the distance between two states in the hopping
space and is called the range. In the presence of an elec-
tric field E, the range is given as '

ping distance R NN in the hopping space is given as

RNN — RPNN R dR .
0

In the rest of the paper, RN~ will be called the hopping
range. Here PNN(R ) is the probability distribution of the
nearest neighbors in the hopping space. It is defined as

PNN =hN (R )exp[ N(—R )],
where N(R) is the total number of localized states within
range R for the nearest-neighbor sites and bN(R) is the
number of localized states between R and R +dR.

In the presence of an electric field, the spatial displace-
ment in the hopping space is more likely to be downfield
than upfield. Let X& be the average spatial distance trav-
eled in the direction of the electric field and W(R NN) be
the hopping probability. Then vXI W(RNN)/2a is the
average spatial distance traveled per unit time by a car-
rier in the direction of the electric field. Here X& is ex-
pressed in the reduced units. We have divided XI by 2a
in the above equation to express it in the units of dis-
tance. Here v is the hopping attachment frequency and it
may be taken as a phonon frequency. The mobility is ob-
tained by dividing this quantity by the electric field:

p= Xjexp( RNN) .
2aE

Finally, the conductivity of carriers can be obtained from
the mobility as

o(T,E)=ksTq f D(e)f(e)p(s, T,E)de .

Here D(s} and f(e) are the DOS and the Fermi distribu-
tion function, respectively. In the present approach, the
mobility is calculated as a function of energy with respect
to the Fermi energy. Therefore it is straightforward to
include extended states in the DOS distribution for the
calculation of the conductivity.

III. VRH IN QOD DEVICES

Here we calculate the VRH hopping conduction in

QOD devices. Let us consider a system of length l. and
width W and assume that the width of the sample is
smaller than the hopping distance. If this criterion is
satisfied, then the sample behaves as a quasi-one-
dimensional system. First, let us calculate the number of
unoccupied states within a range R in the hopping space
as a function of temperature and electric field for a par-
ticular site of energy c.. For a given T,E, c, the number of
vacant sites within range R, is given in the form

k& TW f dx f D(co)[1 f(co)]de, (7)—
2(x 0 0

where x,„and ~,„are the maximum value of integra-
tion for x and ~, respectively. For a given contour R,
x,„ is obtained from Eq. (2) by putting co=0. This gives

,„=(R—s)/(1+P}. Note that 8 has two possible
values, 8=0 and 8=m, in the QOD. Similarly, for a
given x and R, co varies from 0 to co,„=R—e —x(+P).
Here D(co) is the DOS for two-dimensional systems. Us-
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ing the above equation, one can calculate numerically the
hopping range, the mobility, and the conductivity by us-

ing Eqs. (3), (5), and (6), respectively. But we will obtain
the analytical expressions of the above quantities by con-
sidering the constant and the energy-dependent DOS in
the following sections since it is one of the aims of this
paper.

A. Constant DOS

Mott used the constant DOS, i.e., D(co) =Do to calcu-
late the VRH conductivity of bulk amorphous solids.
Here we will use the constant DOS to calculate the mo-
bility and the conductivity. Putting D(co)=DO and re-

I

placing the energy derivative of the Fermi distribution by
the 5 function in Eq. (7), we get the approximate expres-
sion of X for c (0:

N= {(R+e)[1+f(R+e)
1+@

—2(R+e)ln(1 f(R—+E)]

+2elnf(s)+s [1—f(s)]—
m /3] . (8)

Here a is defined as a =(Do IYTks )/2a. From the above
equation and Eq. (4), we can calculate the probability dis-
tributions for c (0 as

PNN(R)= {2(R+s)+f(R+e)[3(R+e)+(R+s)]+(R+s) [f(R+s)] —21n[1 f(R+—s)][exp[ N(R)—] .
1+P

(9)

Putting Eq. (9) into Eq. (3},the hopping range R NN can be calculated as

Re( "'Ii"dR .NN (10)

While it is possible in principle to calculate the value of RNN numerically from Eq. (10},a good estimate of R NN (or the
critical value of RNN) can be obtained when the total number of the accessible states is equal to 1. ' ' For s &0, this

gives the following approximate value of R NN:

B2
RNN=BORO Bi Bo= 1+f (s+Ro)

0

R =a ' '"v/1 —p )/2=(TO /T)' '(1 —p')' ' To =(2a)/(ks ~DO),

B, =a[1+f(R +s)]—21n[1 f(s+Ro)],—

B2 =sz[2+f(s+Ro) —f(s)]—2s{ln[1 f(s+Ro)]——ln[f(s)]]—
3

Now let us calculate the average spatial forward hopping distance XI appearing in Eq. (5). A particle of energy s at a
given site hops a distance RNN in the hopping space, but these hops in the spatial space will be in random directions
and the net displacement of a carrier in the spatial space will be zero. However, in the presence of an electric field, a
greater spatial distance will be hopped in the downfield direction than in the upfield direction. If one sums over all final
sites for an initial energy s, there will be an average spatial forward distance hopped, XJ. This quantity is obtained by
averaging xcos8=const. as follows. X/ has been evaluated for QTD systems in Ref. 21. For the QOD system it is
given as

s+RNN
X~f D(co)[1 f(co)]xdco-

Xf g+
X+ D co 1 — co co

Here x =(R +a—co)/(1+P) for cokxP & E and x =R for co+xP & s. For a constant DOS and s &0, the above equation
reduces to

X/= i (R+s)rI(R~~, s),
(1—P')

slnf(E)/(R+e) (R+s)[1—f(RNN+s)]
g(RNN, c)= 1— +

Inf (RNN+ e) 21nf(RNN+E)

e [1—f(e)]/(RNN+s) ~2/(R+~)+
lnf(RNN+E) 61n[f(RNN+r)]

Note that, in the absence of an electric field, the above
expression becomes zero. Similarly, one can also calcu-
late the expressions for N, P», R», and Xf for c, &0.
For c=0, N, PNN, R NN, and Xf are calculated by putting

E =0 in Eqs. (8}, (9},(11),and (13},respectively. The hop-
ping range at the Fermi level is denoted by RNN. A
simpler expression for N, RNN, and Xf is obtained if it is
assumed that for c &0 the Fermi distribution function is
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close to 1:

(r(R+e)
(1—P )

RNN —Ro —c,
2

Xf — (R NN+E),2

(14)

where Ro is given in Eq. (11).
The mobility and the conductivity can be numerically

calculated by putting the expressions for Xf and RNN
into Eqs. (5) and (6), respectively, but an analytical ex-
pression for the conductivity can be found if we make the
following approximations. For bulk materials, Apsley
and Hughes pointed out that the mobility is relatively
independent of Xf so they assumed that Xf at e =0 is val-
id for all c. of interest. They also pointed out that, for
e &0, the hopping range is a relatively weak function of
e. ' ' Therefore it is a reasonable approximation to as-
sume that Eq. (11}is valid for all e) 0. Using these ap-
proximations, the expression for the mobility takes the
following form:

)M 2
R NN exp(

aE(1 —P )
(15)

If we assume further that the most important contribu-
tion to the conductivity comes from electrons located
near the Fermi level, then we can expand RNN near the
Fermi energy in powers of s by using the Taylor series:

RNN =R NN+k(e,

A. , = —1+(2—R())f(R())+R()f (R())

ln I 2[1 f(R0) ]]-
Ro

(k T)"+' WDi

a(n+ 1)(n +2)(1—P )

f(RO+e)
RNN —Ro —c+

n +2
R

—(n+1)
0

n+2 1+e/R ()

t1 +2

[1—f(e)], (20)

ES (n+1)/( n+2)
7 oEs

[ 1 P2]1/(n + 1 )

T

electron interaction through the DOS in the calculation
of the conductivity. Efros and Shklovski' ' calculated
the DOS in the presence of electron-electron interaction
for amorphous solids and found that D(co)=D, co( "at
low temperatures. Here d is the dimensionality of the
material and co is measured with respect to the Fermi lev-
el. Note that this equation gives a zero DOS at the Fermi
level. This contradicts the approximation made by Mott
and others at low temperatures. Efros and Shklovskii
have also predicted that the electron excitation spectrum
has an energy gap at the Fermi level. This gap is called
the Coulomb gap and denoted by hco. Recently, some
authors considered a more general energy-dependent
DOS, i.e., D(co}=D, ro", in the calculation of the conduc-
tivity for bulk materials, where n can be any number.
This equation reduces to that of Efros and Shklovskii for
n =d —1. We use this DOS in the calculation of the con-
ductivity.

Using the energy-dependent DOS and following the
method for the previous section, we obtain the expres-
sions for Pand RNN for c(0 as

N(e, R )= Ao[(R+e)"+ [1 f(R+E—)]

(19)

We retained the dominating terms of order c in the above
equation. Using Eqs. (15},(16), and (6) the analytical ex-
pression for the conductivity has the form

qDoka T&rIR NN p (1+A, , }0— R» exp( —R» ) . (17)
aE(1—P )

If the values of R NN and Xf at the Fermi level are used in
the calculation of the conductivity then the above expres-
sion can be further simplified to

2qDoks TvP
Roexp( —Ro) .

aE(1—P )

Es
k~+' WD1

TES
2a(n +1)(n +2)

2P (R+e)
1 —p~ n+2

1 —R -(n+1)
NN

—1/(n +1)

e"+ (1—f(e)
(1+a/R»)"+ [1—f(RNN+E)]

(21)

The above expression for the conductivity predicts that
ln(T has (To /T)'/ temperature dependence, which
agrees with the result of Mott. Note also that the above
equation predicts that Ina has the (1—p )' electric-field
dependence.

B. Energy-dependent DOS

Mott' ' and others' ' assumed that the DOS is
constant even at the Fermi level. Using this DOS, we
have calculated the conductivity in the previous section.
In this section, we include the effect of the electron-

RNN=RNN =0

To get the above analytical expressions for RNN, X, and

Xf, we have replaced the energy derivative of the Fermi-
distribution function by a 5 function. This approxima-
tion is valid at low temperatures. Without this approxi-
mation, it is dif5cult to get the analytical expressions of
the above quantities. If we further assume that a11 states
above and below the Fermi level are empty and flied, re-
spectively, then Eq. (20) reduces to

ES ( n+1)/(n +2)TES
[1 2P]1/(n+2)

T
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Note that for n =0 (i.e., constant DOS} the above expres-
sion gives the same temperature dependence as that of
Eq. (14) of the last section. Finally, we can calculate the
conductivity as follows:

N ='r f d()f "xdx f "'D(ru)[) —f(ru)]dru,
2a 0

(25)

pR0 (k T}))+1( )n+1
0— exp( —RNN) .

(1—P }(n+1)(n+2)Ea
where x,„and co „are the maximum values of x and co,

respectively, and they are obtained from Eq. (2) as

x,„=(R + E ) /( 1+pcosO) and co,„=R +E. Putting the
constant DOS into the above equation, we get

(23)

N=
2 3/2 [N~+NP],

(1—P )

N~=I(R+e) [1+2f(R+e)]
—3(R+e) in[1 f(R—+e)]], (26)

N&= Ie(6R+3}ln[f(e)]

+e2(3R+4)[1—f(e)—(R+&)~ ]],
for e (0. Here a. =(Dks Tn)/(12a. ). The expression for
PNN is obtained from Eq. (4) and the above equation as

PNN =
2 3/2 [hN +EN&]exp[ —N(R)],

(1—P')' '
bN~=([3(R+s) +3f(R+e)][(R+e) +15(R+e) ]

(2/3)
qvp(k21 T~F) To

( 1 p2)[ —2/3]

6Ea

' (2/3)
0

( 1 p2)[1/3] (24} (R+e) —[f(R+e)—61n[1 f(R+e}]]—},Xexp (27)

Efros and Shklovskii' ' obtained D(eo)=D[ (i.e., n =0)
for one-dimensional (1D) systems and D(co)=D, co (i.e.,
n =1) for 2D systems in the presence of electron-electron
interactions. Since our system is quasi-one-dimensional,
we can choose either n =0 or n =1 depending on the
thickness of the sample. If we choose n =0, the above
equation gives [To!T]'/ and [1—p ]'/ temperature
and electric-field dependence, respectively. The tempera-
ture dependence of the conductivity agrees with the
analytical calculation of Efros and Shklovskii. ' ' If we
choose n =1,we get

It is interesting to note from the above expression that
lno follows [To/T]' / ' temperature dependence instead
of [To/T]" '. Similarly, lmr follows (1—p2)" /3'

electric-field dependence rather than (1 —P )"/ '.

IV. VRH IN QTD DEVICES

In this section, we calculate the hopping range, the mo-
bility, and the conductivity for QTD systems in the pres-
ence of the constant and the energy-dependent DOS. We
have already presented preliminary results in a short pa-
per ' by using the constant density of states but have
neglected the efFect of electron-electron interactions.
Here we present more detailed calculations for the above
quantities and will include the effect of electron-electron
interaction through the energy-dependent DOS. To get
analytical expressions for the above quantities, we will
use the same approximations as those of the previous sec-
tion.

AN&=[61nf(e)+3e [1—f(s)]—n. ] .

Following the method of the last section, we get the ex-
pressions for the hopping range:

R~~ = AORO
A) A2

3 3R()

A3

3R

R[1=(l—p )' ~ ', Ao=l+2f(RO+e),

A 1
=3e+6ef(R0+ e }—31n[.1 f(R0+e)], —

A2=3e [2+2f(RO+e) —f(e)]
—6e[lnf(e) —in[1 —f(RO+e)] —

m ],
A3=5e +3s [f(RO+s) —2f(s)]

—3e [lnf(e) —in[1 f(RO+e)]] —nr—

(28)

X~
X~=

D

For a QTD system the XI is given as
(Rwe+')

f uuu()d8 f drD( i[)—uf(ruru)]x'

(8~~+@)
f d8 f dcoD(a))[1 f(co)]x—

A. Constant density of states

For a given c, R, T, and E the number of unoccupied
sites N in the hopping space is given as

(29}

Here x=(R+e —co)/(1+pcose) for xcos8+co&e and
x =R for xcos8+co&a. For the constant DOS, we get

1 —f(RNN+e)
f(e)X]v= 2 3/2 (R+e) [1+2f(R N+N)] e—3(RNN+e}2ln

(1 p2)3/2

3R NNln[f (e)]+(3—RNNe —2e )[1—f(e)—n2/2],

XD=, (RNN+a) [1+f(RNN+E) —2(R+e)]in[1 f(RNN+e)] —2Elnf [E+—s (e)+m /3] .1

( 1 p2)1/2 NN (30)



7012 M. SINGH, Y. TARUTANI, U. KABASAWA, AND K. TAKAGI 50

In a similar way one can find the expressions for the
above quantities for c &0 and c=O. Simpler expressions
for N, RNN, and Xf are obtained if the energy derivative
of the Fermi-distribution function is replaced by a 6 func-
tion:

Finally, the above expression for the conductivity can be
further simplified if we assume that all the states below
and above the Fermi level are filled and empty, respec-
tively. In this approximation, the conductivity takes the
form

R() =«NN 1/3= T ~ 12m
—1/3 2

TM

%=K(R +c) RNN=R() c

2&R NN

3(1—P') R NN
(31)

2qD ok') T3/p (
—g )

0 = , R,e (35)
3aE(1—P )

Note that ln(r has (To /T)' temperature and (1—P )'/
electric-field dependence. The temperature dependence
of the conductivity agrees with the results of Mott. ' '

p=
2 R»exp( —R»),f3')v o o

(1—P )2aE
(32)

qDpksT~r/(RNNP) (1+k2)
()0 R NN exp( —R NN ), (33)

aE(1—p') )(2

The above expression for the hopping range at the Fermi
level reduces to RzN =R

NN =RQ. Following the method
of Sec. III A, we get the following expressions for the mo-
bility and conductivity:

B. Energy-dependent DOS

As we pointed out in the previous section, Efros and
Shklovskii obtained D(p3) =D) co for QTD systems in the
presence of electron-electron interactions. Here we use a
more general form of the DOS, i.e., D(p3)=D) p3". Put-
ting this into Eq. (25), we get the analytical expression for
S.

N(c, R )=Bo[(R+c)"+[1—f(R+c)]

where A.2 is given as

1+(3—2R() )f(R() )+2R()[f(R() )]

—[R(n+3)c"+ —c"+ ](1—f(c)],
(ks T)".+'D,

80=
2a (n+1)(n+2)(n+3)(1 —P )

(36)

in[2(1 f(R p ) ]+—n.
+ 7T2

3R ()

(34) Following the method of Sec. III B, RNN and Xf for e. &0
are calculated as

1+f(R +c)—f(c) (n+3)R
NN 0 1+c/R() 1+c/R()

+R, '"+"
1+c/Rp

n +3

(37)

1 f(c)—
1 —f(RNN+c) (RNN+c)

n+3 n+2
2n (2n +3) c
(RNN+c) RNN+c

1 —f(c) E,

1 —f(RNN+c) (RNN+c)

n+2 (38)

ES ( + )/( +3)
TQ p2]3/(2n +6)

TES
0

- —i/(n+ i)kn+1
VT

2a2(n + 1)(n +2)(n +3)
(R+c)"+ [1—f(RNN+c)]

(n +1)(n +2)(n +3)
(R+c)"+ [1 f(RNN+c)]-

(n+1)(n +2)

2(6l

( 1 f}2)3/2

1

( 1 P2)1/2

where RQ, TQ, X, and CD are given as

(39)

0
ES ( + @+TES

[1 p2]3/(2n+6)
T

(40)

2R NNp
Xf =

(n+3)(1—P )
(41)

Note that for n =0 (i.e., constant DOS), Eq. (40) gives a
similar temperature and electric-field dependence as Eq.
(31). For D(co) =D, p3, Eq. (40) is reduced to the form

TQ
Es 1/2

p2 ]3/8 (42}
TRNN =R NN—

Finally, following the method of the previous sections,
the expression for the conductivity is calculated as

Again, if we assume that all states above and below the
Fermi level are empty and filled, respectively, then Eqs.
(37}and (38}reduce to

q &JR NN(k2) T)"+'
exp( RNN) .

(1—P )(n +3)2a
(43)
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Xexp
Tp

( 1/2)

( 1 p2)(3/8)
T

(44)

It is interesting to note from the above expression that
lno follows a (To /T)'/ temperature and (1 —p ) /

electric-field dependence. The temperature dependence
of the conductivity agrees with the analytical results of
Efros and Shklovskii. ' '

V. RESULTS AND DISCUSSIONS

In this section, we compare our theoretical calculations
with the resistivity experiments on PBCO thin films. Ka-
basawa et (21. measured the resistivity of the PBCO sin-

gle crystal film as a function of temperature. The thick-
ness of the film was 3000 A and the film orientation was
in the [110]direction. This means that the [110] direc-
tion and CuO plane were perpendicular to the film sur-
face. The current path at the junction area was parallel
to the CuO plane and perpendicular to the c axis. Be-
cause of this reason the PBCO films act like QTD sys-
tems. The resistivity-temperature characteristics are
shown in Fig. 1. These experimental data are obtained
under a very weak electric field of about 65 V/m. Since
the electric field in the experiments is very weak, we will

put zero electric field in our numerical calculations. Re-
cently Singh et al. 2' tried to explain these experiments by
using the VRH theory based on constant DOS. They
found a fairly good agreement between theory and experi-
ments at high temperatures but there was disagreement
between theory and experiments at low temperatures, i.e.,
T & 10 K. In their calculations, they did not include the
effect of electron-electron interaction.

Here we have examined the role of electron-electron
interactions to explain the low-temperature data of the
resistivity. We have used Eqs. (35) and (44) to explain the
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FIG. 1. Plot of ln of resistivity versus temperature for PBCO
film.

For D(co)=D)co, the conductivity takes the following
form:

2 (1/2)

2 ( —3/8)(1—P )
4a

high- and low-temperature experimental data of Ka-
basawa et al. , respectively. We used To and To as
fitting parameters since the physical parameters such as
a, Dp, and c.„are not known for PBCO. The best fit be-
tween theory and experiments is obtained when

Tp =2.7X10 K and Tp =1.3X10 K. Our calcula-
tions show that electron-electron interaction plays an im-
portant role in explaining the low-temperature data of
the resistivity. This finding is not surprising, since in ox-
ide compounds the electron-electron interactions play a
very important role in explaining the electronic proper-
ties of both normal and superconducing states. The
ratio of these two parameters is about 21. The entire
temperature-dependent resistivity data cannot be fitted by
considering either Eq. (35) or Eq. (44).

The constant DOS Dp can be obtained from the fitted
value of Tp. We found that its value is about 4.5X10
J 'm . This value is of the same order of magnitude as
that of Refs. 5 and 10. Singh et al. ' obtained a value of
about 3.5X10 J ' m by fitting the entire range of the
temperature dependence experiments. This value of the
DOS was not able to explain the experimental data at low
temperatures. 1/a=8. 5 nm is taken from Refs. 5 and 21
to calculate the constant DOS.

Let us find the temperature or energy range where Eq.
(35) and Eq. (44) play an important role. Efros and
Shklovskii showed that, when b,h, & 6, , D (c3)=Do,
where hh, is the mean hopping energy. According to
Mott Lakhop for 2D systems is given by
b)„~=(mRNNDO) ', where RNN is the hopping
range given by Eq. (31) for a simple case. Putting
this value into the above equation, we get

~h=(k+T/3)(T 0/T)' . This equation and the condi-
tion hh, ~

& b, cG give the criterion T & T8r, where
T~=[3bcG/ki)(TO )' ] . According to this criterion,
Eq. (35) plays an important role for T & T8r.

Efros and Shklovskii also showed that, when
b, h, & hcG, D(co) =D, co, where b,)„ is the hopping ener-

gy in the presence of electron-electron interactions.
They obtained hh, ~=(4q sos„RNN)

' where s„ is
the dielectric constant of the material. Putting RNN
from Eq. (42) into the above equation, we get
b, ~h=(k+T)(T /06T)'/. From this equation and the
condition b, h, & hcG, we get the temperature criterion
T&TEs where T E=s[ b6cGk/(2T)0) ] . According to
this criterion, Eq. (44) plays a very iinportant role in the
temperature range T & TEs. In other words, to observe
the effect of electron-electron interaction, the measure-
ment temperature T should satisfy the criterion T & TEs.
The numerical values of T~ and TEs are calculated and
found to be about 8.5 and 8 K, respectively. In the calcu-
lation of these values, Aco=3. 5 meV is taken from the
work of Kabasawa et al. They obtained this value by
measuring the voltage dependence of the conductance of
PBCO-based S/N/S junctions. ' Let us compare the
above theoretical values of TM and TEs with those ob-
tained from Fig. 1. One can see from Fig. 1 that a good
agreement between Eq. (44) and experiments is found for
T & TEs (=7 K) whereas Eq. (35) is able to explain exper-
iinents after T& T~ (=15 K). Hence these values ob-
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tained from Fig. 1 agree with the above theoretical values
T~ d TEs.

Let us call Eq. (35) and Eq. (44) Mott-type VRH con-
duction (MVRH) and Efros-and-Shklovskii-type VRH
conduction (ESVRH), respectively. This is because in the
derivation of Eq. (35) a constant DOS is used and Mott
was the first person who used the constant DOS in the
calculation of the conductivity in amorphous materials.
Similarity, in the derivation of Eq. (44) the energy-
dependent DOS of Efros and Shklovskii is used. We note
that the crossover from MVRH to ESVRH occurs when
Lakhop (ask&()p This condition gives the crossover tempera-
ture T„„,=&1.5(T& ) /(Te ) . The nice feature of this
equation is that it is expressed in terms of To and To,
which are obtained by comparing theory and experi-
ments. Using the value of these two parameters, we get
T„„,=10 K. We can also obtain the crossover tempera-
ture from Fig. 1. It is found to be 10.5 K, which agrees
with the above theoretical value.

The dielectric constant e„and b,co are not known for
PBCO compounds. We can calculate these quantities as
follows. Efros and Shklovskii found that D, =s„/q .
With the help of this equation and the equation for To,
we get s„=(+24q a)/(4nseksTes). Putting the fitted
value of To and a, we get c.„=7.5. Using this value of
c.„we get he&=3.0 meV, which is very close to the value
3.5 meV reported by Kabasawa et al. All parameters
obtained from theory and experiments are summarized in
Table I.

Note that the conductivity of the QOD device with
constant DOS [Eq. (18)] and the conductivity of the QTD
device with electron-electron interactions [Eq. (44)] have
the same temperature dependence. Therefore, to explain
the present experiment, one can use either of the two
equations. If one uses Eq. (18) to explain the low-
temperature experiments, then one gets the transition
from QTD to QOD. If one uses Eq. (44), one gets the
transition from MVRH to ESVRH. But we used Eq. (44)
instead of Eq. (18) to compare the experiments and the
theory. As we know, if the hopping range is greater than
or equal to the thickness of the sample, then there is a
crossover from 2D to 1D. The PBCO sample of Ka-
basawa et a/. is 3000 A thick and the film orientation is
in the [110] direction. This means that the [110] direc-
tion and the CuO plane are perpendicular to the film sur-
face. The current Bows parallel to the CuO plane and
perpendicular to the c axis. Therefore, if the hopping
range is greater than or equal to 3000 A, the PBCO thin
film can act as a QTD system. We have calculated the

TABLE I. Parameters obtained from experiments and
theory.

hopping range and found that the ratio of the hopping
range to the sample thickness varies from about 0.12 to
0.26 depending on the temperature. These results are
presented in Fig. 2. Hence these results eliminate the
possibility of the crossover from 2D to 1D since the hop-
ping range is smaller than the thickness of the sample. It
is interesting to note that Eq. (18) and Eq. (44) have
different electric-field dependence of the conductivity.
Therefore, by measuring the electric field dependence of
conductivity, one can remove the above ambiguity. Fi-
nally, from the above analysis, we conclude that there is a
crossover from MVRH to ESVRH in PBCO samples.

There are some other cases where the crossover from
MVRH to ESVRH in the temperature dependence of the
conductivity is observed in bulk amorphous solids. For
example, Glukhov et al. ' have observed this crossover
from the hopping exponent 1/4 to 1/2 in granulated Sn-
Ge and Ag-Ge. Recently, Rosenbaum has also report-
ed the crossover from MVRH to ESVRH in amorphous
In„O . He has found that he can explain his experiments
at low temperature by taking the hopping exponent 0.56
rather than 0.5. He has calculated the crossover temper-
ature and found that the crossover temperature is sample
dependent and varies from 9.6 to 52 K. Similarly, he also
found that the ratio To /Te is sample dependent and
varies from 30 to 80. In Sn-Ge and Ag-Ge samples, the
ratio To /Te is also sample dependent and varies from 3
to 5. In PBCO thin films, we found that this ratio is
about 21.

In conclusion, a theoretical calculation has been per-
formed for the hopping conduction mechanism in low-
dimensional devices in the presence of temperature and
electric field. The hopping range, the mobility, and the
conductivity are calculated for constant and frequency-
dependent DOS. In the present calculation, the states
both below and above the Fermi level are included. The
analytical expressions for the hopping range and the con-
ductivity are presented for both types of DOS. The effect
of the electron-electron interaction is included in the
present calculations through the density of states. In the
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FIG. 2. Plot of the percentage of the ratio of the hopping dis-
tance to the thickness of the PBCO film as a function of temper-
ature. Here L&d is the hopping distance.
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presence of electron-electron interaction and in a weak
electric field, ln cr follows the (1—P )

~ and (1—P )'~

electric-field dependence for the QTD and QOD systems,
respectively. The present theoretical calculations have
been applied to explain the recent temperature-dependent
resistivity experiments on PBCO films. Our theoretical
calculation predicts a possible crossover from MVRH to
ESVRH in PBCO ~&ms. The crossover temperature is
about 11 K. More experiments are needed to confirm the
above findings.
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