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We employ a quantitative microscopic theory of nonuniform quantum liquids to explore the exci-
tations in thin films of *He adsorbed onto a substrate. These liquid films studied undergo a series
of structural phase transitions coinciding with the completion of individual atomic layers. A gen-
eralized Feynman ansatz is used for the wave function of the excited states; multiphonon effects
are included by generalizing the Feynman theory to allow for time-dependent pair correlations. We
study the dispersion relation, excitation mechanisms, transition densities, and particle currents, as
a function of the surface coverage, including coverages near the phase transitions. Because of the
film’s layered growth, the sound velocity exhibits a series of minima and maxima. A pronounced
long-wavelength softening of the lowest-energy mode is observed near the transitions. In the mono-
layer, the nature of the excitations undergoes a noticeable change at the coverage where the velocity
of sound starts to decrease. This is a crossover from “essentially two-dimensional” to “essentially
three-dimensional” behavior. At long wavelengths, below and above the crossover coverage, the
lowest-energy excitation is a longitudinal phonon (propagating within the monolayer) and a sur-
face excitation, respectively. At shorter wavelengths, a layer-phonon propagating within the liquid
layers, level crosses with a surface excitation to become the lowest-energy mode. For double- and
higher-layer films the excitations are complicated by multiple (layer phonon with layer phonon and
layer phonon with surface excitation) level crossings. At higher coverages, a mode is identifiable that
will evolve into the bulk phonon-maxon roton. Our results agree qualitatively with the available
spectra obtained by neutron-scattering experiments.

1 SEPTEMBER 1994-11

I. INTRODUCTION

This is the second in a series of papers which is devoted
to a microscopic study of the structure, dynamics, and
thermodynamics of mono- and multilayer helium films.
In a previous paper (Ref. 1, hereafter cited as paper I), we
have examined the growth mechanisms, energetics, and
the structure of mono-, double-, and triple-layer films.
We have shown that the transition between the different
structures is not a continuous process, but rather occurs
in a number of well-defined discrete steps reflecting the
formation of individual atomic layers.}:? For low-coverage
monolayer films, we found that the film is reasonably well
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described by a two-dimensional model but the agreement
between the structure and energetics of the monolayer
and the two-dimensional model disappears abruptly at a
well-defined crossover coverage; the monolayer starts to
display it’s three-dimensional nature.

Our specific model under consideration is a layered sys-
tem of liquid-helium atoms adsorbed to a solid *He bi-
layer that is physisorbed to a graphite substrate. The
ground-state structure in such systems has been dis-
cussed in detail in paper I. The inert substrate and the
two layers of solid helium are represented by an external
substrate potential Usyb(z), which depends on the coor-
dinate z only. As a consequence, the liquid is translation-
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ally invariant in the z-y plane and exhibits a “layered”
density profile in the z direction. A peculiarity of the
liquid film system is that stable, translationally invariant
configurations cannot be obtained for all surface cover-
ages. Rather, we found in paper I that three “islands” of
stable coverages occur in the growth of a triple-layer film.
Between the regions of stable coverages, the film passes
through a first-order phase transition. Since these transi-
tions occur at the early stage of growth of each layer, we
have termed them “layering transitions.” A sequence of
representative stable density profiles p;(z) of such films
is shown in Fig. 1. A similar growth scenario has mean-
while also been found in the path-integral Monte Carlo
(PIMC) calculations by Wagner and Ceperley? for helium
on hydrogen.

Equipped with precise knowledge of the ground-state
structure, we proceed in this paper to have a closer look
at the nature of the low-lying excited states of the system.
As was done in paper I, particular attention will be given
to the possible observable consequences of the crossover
from an “essentially two-dimensional” to an “essentially
three-dimensional” system.

Our paper is organized as follows: In the next section,
we will formulate a general theory of excited states which
is based on the concept of temporally fluctuating correla-
tion functions. We will derive a set of equations of motion
for time-dependent one- and two-body correlations. By
including time-dependent two-body correlations we have
allowed for multiphonon effects. Multiphonon effects are
known to have significant consequences on the zero-sound
dispersion relation in bulk liquid “He; in particular it is
necessary to include such effects in order to explain the
energetics and density dependence of the collective exci-
tations in the vicinity of the roton minimum.

In the limit that only single-particle functions are al-
lowed to be time dependent, the theory reduces to the
generalized Feynman theory of collective excitations. In
that case, our approach is conceptually identical to the
one used by Chang and Cohen* (see also the review by
Edwards and Saam, Ref. 5) for nonuniform quantum sys-
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FIG. 1. The density profile of stable configurations of ad-
sorbed films under consideration here. The profiles corre-
spond to surface coverages of 0.033, 0.35, 0.40, ..., 0.065,
and 0.068 A~? for the monolayer, 0.10, 0.105, ..., 0.135, and
0.136 A2 for the double-layer, and 0.165, 0.170, ..., 0.200
A2 for the triple layer. The figure is from Ref. 1.
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tems. Input to the theory are the one- and two-body den-
sities obtained from the ground-state calculations. This
input is obtained here from our ground-state correlations
described in paper I; it could be replaced by results from
Monte Carlo calculations of the pair-distribution func-
tion if such data should become available with sufficient
accuracy.

Undoubtedly, the sequence of layering transitions in
these systems will have interesting consequences on the
excitations. At each spinodal point, where the system
becomes unstable against density fluctuations, we expect
a “softening” of a collective excitation. The physical na-
ture of the “soft” mode will give information on the type
of the phase transition. Furthermore, the mode soften-
ing implies an anomalous dispersion at long wavelengths,
which in turn allows for the possible decay of a long-
wavelength excitation into two excitations. This obser-
vation enhances the importance of having a multiphonon
theory for film excitations.

Section III is devoted to a systematic study of the low-
lying excitations of a liquid monolayer. An indication of
the quality of our different approximations used to cal-
culate the excitations is provided by first looking at the
limiting cases of two and three dimensions. To achieve
an appreciation of the full scope of possible mechanisms
in the monolayer, we then study the particle currents
and transition densities. Near the low- and high-coverage
monolayer instabilities we find an appreciable softening
of the lowest mode. We discuss the effect that this soft-
ening has on the dynamic structure function.

Multilayer films will be considered in Sec. IV. In these
more complicated geometries, we will find a multitude
of different excitations corresponding to surface phonons
(“ripplons” and/or “third sound”) and volume excita-
tions (“bulk phonons”) which may be confined to indi-
vidual liquids layers (“layer phonons”).

Section V contains a discussion of the calculation of
the dynamic structure function S(g,w) on the somewhat
simpler level of the Feynman theory for inhomogeneous
systems. From the corresponding excitations we calcu-
late S(g,w) for mono-, double-, and triple-layer films.
We then make a qualitative comparison of our theoreti-
cal S(q,w) with an experimental one.

II. TIME-DEPENDENT CORRELATIONS

The microscopic description of a strongly interacting
system conventionally starts with an empirical Hamilto-
nian

H= é {_%V? + Ugub(ri)}
+ Y (),

1<i<j<N

(2.1)

where Ugyb(T) is an external “substrate” potential, and
v(|r; —r;|) is the interaction between individual particles,
which we take to be the Aziz potential.® The ground-state
wave function for a system of N identical bosons with
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coordinates ry,...,ry is approximated by a variational
ansatz” of the form

Wo(ry,...,rN) = exp %{Zul(ri) + Zuz(ri,rj)

i<j

+ Y ua(ri,rj,Tx) +} (2.2)

i<j<k

The one-body function u;(r) describes the spatial struc-
ture of the system, and the two-body function ua(r;,r;)
describes the short- and long-range correlations between
pairs of particles. Triplet correlations are needed to pro-
vide quantitative agreement between theoretical predic-
tions and the experimental equation of state,® 10 they
also contribute visibly to the nearest-neighbor peak of
the pair-distribution function. The correlation func-

tions u,(r,...,rn) are determined by minimization of the
energy-expectation value Ej:!!
E
— 0 _—o. (2.3)
dun(r,...,Tn)

Central quantities of the theory are n-body densities

pn(rlv e 7rn)

N! fdsrn+1---darN\I'g(rl,...,rN)

= 2.4
(N—=n)! [d3;- - dPrn¥3(ry,...,rN) (2:4)
and the two-body distribution function
p2(r1,T2)
r1,rp) = PAILT2) 2.5
9(r1,2) p1(r1)pa(r2) (25)

Other key ingredients will be introduced as needed.

In the present and the previous work, we have used the
optimized hypernetted-chain Euler-Lagrange (HNC/EL)
theory for nonuniform quantum liquids!? to describe the
ground-state structure. We have verified in the preced-
ing paper that this theory provides excellent agreement
of our ground-state structure with experiments (when
available) and Monte Carlo calculations. This gives us
confidence that we have the right starting point to study
the excitations in liquid multilayers.

The basic idea of our theory of excitations is to allow
for time-dependent correlations in the variational wave
function (2.2). To formulate the theory, we follow the
general route outlined by Saarela and co-workers!371%

2

%(% \[6U*, [T, 8UT]| o) = :—m{ / &Prpy(r) [Vous (r; )2
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and allow for time-dependent one- and two-body corre-
lations. The rationale for including time-dependent two-
body correlations is that, when the wavelength of an ex-
citation is comparable to the average distance between
pairs of particles, the short-range structure of the system
should be affected by the excitation. The wave function
of an excited state is written as

= e~ iBot/A g (1)),
[ (8) = ™ o 1) -

30U |,)
[(@o [e80(®)] )]/

[To(t)) =

where |¥y) is the (variational) ground state (2.2), and

8U = bus(rijt) + Y Sua(ri rj5t) (2.7)

i<j

is the complex ezcitation operator. The time-dependent

correlations are determined by an action principle!®:'”
5L =0 (2.8)
with a Lagrangian
- /dt vt i —in | v
h at
., 0
_ /dt Wo(t) |H — Bo— bl | Wo(t)) . (29)

We can assume that the amplitude of the time-dependent
part of the correlations is small such that we can expand
the Lagrangian to second order,

L= /dt{é(\llol[éU‘, [T, 6U1)|To) — %K%I&U&U*I\M

—(Wo|6U | W) (To|6U*| W) — c.c.]}. (2.10)

For the derivation of the double-commutator term in
the above equation, one normally assumes that |¥g) is
the exact ground state. However, for the specific form
(2.7) of the excitation operator, it is sufficient to assume
that the correlations up to u4 have been optimized. In-
serting the explicit form of our time-dependent correla-
tions allows us to rewrite the double-commutator term
in terms of one-, two-, and three-body densities:

+/d37‘1d37'zp2(r1, 1‘2) [V15u1 (1'1; t) . V15u;(r1,r2;t) +c.c. + |V16UZ(I‘1, r2; t)|2]

+/d3r1d31‘2d3r3p3(r1,r2,r3)V15u2(r1,rz;t)Vléu;(rl,rg;t) —+ C.C.}.

(2.11)

The time-derivative term in the Lagrangian (2.10) is conveniently expressed in terms of (time derivatives of) the
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time-dependent one- and two-body densities §p;(r;t) and dp2(r;,r;;t) to be taken to first order in the fluctuations

. : , . 1 . .
[(‘I’()I(SUJU*PI’U) d (‘I’o,dUl‘I’o)(‘I’o'&U*l\I’o)] = /da'rpl(r; t)éul(r; t) + 5 /dsrldsrng(rl,rg;t)Juz(rl,rZ;t). (212)

A word is in order concerning the interpretation of the time derivative of the above densities: These are not the
time derivatives of the (real) physical density, but rather should be understood as an abbreviation of the operation

591 1'1) . .
3, . 3, 13 .
1(ry;t /d [Jul( 2)] 0y (ra;t) + /d rod°r3 [-———5112(!'2,1‘3)] dua(ra,rs;t)

Sp1(r1) (2.13)

and a corresponding equation for the time-dependent pair density. In other words, p;(ry) and pa(ry,rz) are complez.
The physical time-dependent densities are obtained by taking the real part of these functions.
With this, we have worked out the energy functional to second order in the fluctuations, and can write down the

equations of motion.

(2.14)

h2? e

2—V1 {Pl(l‘l)V15’u1(l'1;t) + /da?‘zpz(rurz)V15u2(P1,1’2;t)} + ifip1(r1;t) =0
and
hz
2—V1 [p2(r1,r2) — p1(r1)p1(r2)] Vibus(re;t) + p2(r1, r2) Vidua(re, r2;t)

+/d3r3 [pa(r1,r2,13) — pz(rl,rg)pl(rg)]V16u2(r2,r3;t)} + same for (1 ¢ 2)

= —ih[pa(r1,T2;51)

Introducing the one-body current

—ij(r;t) = 277(1 r) {V5 1(r;t) + /d3r'p1(r')g(r, r’)VSuz(r,r';t)},

the one-body equation is readily identified with the con-
tinuity equation
iK1V -§(r38) — pu(rs8)] = 0. (2.17)
Equations (2.14) and (2.15) are the starting point for
the equations-of-motion method for the calculation of
collective excitations in quantum liquids. Different
implementations!371%:18:19 differ by the approximations
used for the three- and four-body densities appearing
in the equations of motion and the time derivative
of one- and two-body densities. The most complete
evaluation'415 of the integral kernels of the equations
of motion (2.14) and (2.15) has provided (with an energy
of 9.7 K) the best theoretical prediction of the energy of
the roton minimum available to date. The simpler convo-
lution approximation,'® which we shall use here for tech-
nical reasons, is not quite as successful, but still bridges a
significant portion of the discrepancy between the predic-
tion of the Feynman theory and the experimental roton
minimum. We also note that the Feynman-Cohen theory
of “backflow?®” assumes a specific form for duz(r,r’;t),
while in the equation-of-motion method it is solved for.
The original Feynman theory of collective excitations?!
is recovered by omitting the fluctuating pair-correlation
function duz(r;,r;j;t). Our applications for the higher-

— p1(r1)p1(r2;t) — pr(ri;t)pa(r2)]. (2.15)

(2.16)

r

lying states will partly be based on this approximation
and, to the extent that we go beyond that, the “Feynman-
phonon” states form a convenient basis to work in. Omit-
ting duz(r;,r;;t), we only need to consider the one-body
equation (2.14). The time-derivative terms (2.13) reduce
to

ép1(ry) _
Jul(rz) = P1(1'1)5(l‘1 - !'2)

+ [p2(r1,12) = p1(r1)pr(r2)]. (2.18)
Defining
r) = 1/p1(r)du, (r)eit (2.19)
leads to the generalized eigenvalue problem
H,(r) = hw, /dsr’S(r, r'), (r) (2.20)

with the coordinate space representation of the static
structure function

S(r,r') = 8(r —r') + /p1(r) pr(r')h(r, 1),

where h(r,r’) = g(r,r’) — 1, and the kinetic energy oper-
ator

(2.21)
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B2 1
Hy = Vp1(r)V~1—~

C o am o () NZC)

The bulk limit of the eigenvalue problem (2.20) is
the well-known Feynman dispersion relation w(k) =
hk%/2mS(k). A convenient normalization of the eigen-
states of the generalized eigenvalue problem (2.20) is

(’lxbm |H1| 'wn) = ﬁwm‘smn

(2.22)

(2.23)

These eigenstates are related to the Feynman excitation
functions du,(r) through Eq. (2.19). The adjoint states

1

on(r) = T

Hyyn(r) (2.24)

are related to the physical density fluctuations [cf. Eq.
(2.18)),

5p1(r) = V/pi(®)n (). (2.25)

We note in passing that the eigenstates ¢, (r) and 1, (r)
are also the essential ingredients of the solution of the Eu-
ler equation for the pair correlations and provide a con-
venient basis for the representation of optimized triplet
correlations.!

The derivation of workable schemes to solve the time-
]

2m

+ same for (1 ¢ 2)

B. E. CLEMENTS et al. 50

dependent two-body equation is considerably more com-
plicated than for the generalized Feynman formula (2.20).
In particular, a rather elaborate diagrammatic analysis
of the three- and four body densities is involved. At
the same time, we must keep the numerical feasibility of
the theory in mind. We note, first of all, that the two
equations of motion (2.14) and (2.15) are not indepen-
dent; the one-body equation follows from the two-body
equation in the limit of large distances between the “ex-
ternal” points in the two-body equation, i.e., in the limit
|ry —r2] — oco. Moreover, we also recover the one-
body equation (2.14) by integrating the two-body equa-
tion over one of the external points, say r,. It is par-
ticularly important to maintain this feature in order to
guarantee that the theory is qualitatively correct in the
long-wavelength limit.

It is beyond the scope of this paper to go through the
rather lengthy algebraic derivations; we only sketch the
essential steps. To shorten the length of the equations
we will drop the explicit time dependence label when it is
unambiguous to do so. First, the one- and the two-body
equations are decoupled by subtracting the asymptotic
limit, multiplied by a pair-distribution function g(ry, ).
At the same time we rewrite the time derivative of the
pair density in terms of the time derivatives of the one-
body density and the pair-distribution function. The re-
sulting equation is

hz
—V1P1(I‘1){g(rl,rz)V15u2(1‘1,1'2) + /d3T3P1(1‘3) [93(!'1,!‘271‘3) - 9(1'1,1‘3)9(!'171‘2)] V15U2(l'1,!‘3)}/01(1‘2)

= zfi[j(rl) . Vlh(rl,rg)pl(rz) + pl(rl)Vgh(rl,rz) j(l‘z)] — ihpl(rl)pl(rz)g(l'l,l'z). (226)

The time derivative of the pair-distribution function is then expressed in terms of the time derivative of the non-nodal
function X (ry,r2), which are basic components of the HNC scheme, and the one-body density:

g(ri,rz) = /d3T3h(rlar3)p1(r3)h(r3,r2) + /d3T3d3T4[5(1'1 —r3) + h(ry,r3)p1(rs3)]

x [X(rg,u) + /d3r5X3(r3,r4,r5)i)(r5)} [6(rq —r2) + p1(rs)h(re,r2)],

(2.27)

where X3(r3,r4,r5) is the set of all three-body diagrams that are non-nodal in all three external points.2? The final
steps of the derivation are the approximations necessary to bring the two-body equation in a numerically tractable
form. Our scheme follows the general strategy of the “uniform limit” approximation” which has been quite successful
for the calculation of the optimal static three-body correlations.® 1% The essence of the approximation is to consider
all products of two or more two-body functions small in coordinate space. In our specific case, the uniform limit
approximation amounts to taking g(ri,rz)dus(ri,r2) = duz(ri,r2) and a similar expression for Viuy(rqy,r2). While
this approximation places more emphasis on the structure of duz(rq,r2), it is physically appealing since it simply
removes the redundant relevant short-range structure shared by g(ri,r2) and duz(ri,rz). Invoking the equivalent
uniform limit for the three-body distribution function, the left-hand side of the two-body equation becomes

h—2V1{Pl(!‘1) [g(l‘l,l‘z)vﬂsuz(!‘urz) + /d3r3p1(r3) [g93(r1,72,73) — g(r1,73)g(r1,T2)] V15u2(r1,r3)} }

2m

=~ h—zvl{pl (l‘l)V1 /dsrgéuz(rl,r;,) [6(1‘3 - 1‘2) + p1(l'3)h(l‘3,l‘2)]}. (228)
2m
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A convenient notation for the convolution product of a pair of two-point functions A(ry,r2) and B(ry,r2) is

[Ax B](ry,rz) = /d3T3A(l'1,!'3)B(l'3,!'2).

(2.29)

Using the one-body equation to eliminate the time derivative of the density, the two-body equation can be written in

the compact form

L0 _ - - _ i 3
Lhatsuz — S % Hy * 8iig — Sty x Hy x S 1] (r1,12) = zﬁ{-l(l'l) - V1X(r1,12)v/pr(r2) +j(r2) - VaX(r1,12)y/p1(r1)

In the above equation, we have introduced the following
tilde notation i ( rl,rz = /p1(r1)duz(r1,12)\/p1(r2),
j(r) = j(r)/+/p1(r), and the inverse of the static struc-
ture function is to be understood in the sense of the con-
volution product (2.29). The fully irreducible three-body
function X~3(l'1,l'2,1'3) is a ground-state quantity; it fol-
lows from the solution of the three-body Euler equation.
With X3(ry,rp,r3) = as(r1,rz,r3), an explicit expres-
sion for the latter quantity is given in Eqgs. (A23)—(A26)
of paper I. Approximating now the full current (2.16) by
the Feynman current j(r) = (i%/2m)p,(r) Véu, (r) allows
us to decouple the equations of motion, in other words the
fluctuating two-point function can be expressed, in closed
form, as a functional of a one-body quantity by inverting
the operator on the left-hand side of Eq. (2.30). This
inversion can be carried out algebraically in the basis of
the Feynman states. For example, the time-dependent
part of the density is expanded in terms of the Feynman
density fluctuations as

6/’1 =V pl(r Z <Pn¢n(r)

(2.31)

These manipulations allow one to solve the two-body
equation explicitly for dua(ri,rz). The result is used
in the one-body equation (2.14) and yields a nonlinear
eigenvalue problem

= fwp,.  (2.32)

Equation (2.32) has the structure that would be pre-
dicted, in a weakly interacting system, by Brillouin-
Wigner perturbation theory. Of course, all the ingredi-
ents of the theory are highly correlated basis states—we
will therefore refer to the theory as a correlated basis
states-Brillouin-Wigner (CBF-BW) theory. The three-
phonon vertices V,2,, are expressed as three-phonon ma-
trix elements

Vi = =g [ €19 | JEL

+(m « n)} - h“-’tanh

[ Yelr) ] ~{em<r)vcn<r)

(2-33)

—/d3r3X3(r1,r2,r3)v P1(l'3)V3'j(!'3)}- (2.30)

—
where we have abbreviated, as in paper I

r) = Vp1(r)dm(r),

(2.34)

1) = $ml®) = ¥m(®)
Cm( )—— m b

and X,,,¢ is the matrix element of the ground-state three-
body correlation vertex of paper I. Inserting the bulk
limits in a normalization volume 2

1 elam'r

m(T) = \/_ﬁW’

eiqm-r

Sm(r) = v S(Qm)w,

one can, after some straightforward algebra, recover the
working formulas of Chang and Campbell.®

(2.35)

III. MONOLAYER EXCITATIONS

A discussion of the excitation energetics and mech-
anisms requires the specification of the geometry. As
in our previous work, we assume that the substrate is
translationally invariant in the (z-y) plane and located
at z < 0. The quantum numbers specifying the states
Pn(r) and ¢,(r) are a wave vector q| parallel to the
surface, and a (discrete or continuous) quantum number
describing the z dependence of the excitation functions.
Without loss of generality, we can write

1 iqy T
E'(J)n,q" (Z)e )T

Yn(r) =
(3.1)
%¢"’q" (z)eiq"'r” >

ba(r) =

where L is the dimension of the normalization box, and
r| the coordinate vector parallel to the surface. The
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summations over intermediate states in Eq. (2.32) are
understood to be summations over the discrete quantum
number, and integrals over the parallel momenta. Note
that the generalized eigenvalue equation (2.32) decouples

J
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in the wave number associated with the amplitudes ¢,,
but the integration over intermediate states must still be
carried out. A more explicit representation of Eq. (2.32)
is, for the surface case,

-k, k—q,q)

hws(q)ps(q

A. Excitations in two and three dimensions

Before we discuss the excitations of a layered liquid,
let us briefly summarize the results of both the Feyn-
man and the CBF-BW theories for the dispersion rela-
tion of the homogeneous two- and three-dimensional sys-
tems. The energetics of both systems has been repro-
duced in our ground-state theory quite satisfactorily.!
Of course, the calculation of the excitation energies is
an entirely different problem. In particular, it is well
known that the simple Feynman theory, which leads in
the bulk liquid to the famous Feynman dispersion re-
lation w(k) = kk%/2mS(k), predicts excitation energies
which are, in the maxon-roton regime, about a factor of 2
too high. Thus, the starting point of an improved theory
of excitations is much worse than the one of a variational
theory for the ground state which neglects triplet correla-
tions: Whereas triplet correlations contribute only a 10%
correction to the ground-state energetics, the three-body
vertex function appearing in Eq. (2.32) (and all possible
higher corrections) must account for a factor of 2.

These considerations must be kept in mind when com-
paring the success of the ground-state theory with the
success of the equivalent theory for excited states. Fig-
ure 2 is exemplary of the quality of different methods
for calculating the spectrum. The Feynman dispersion
curve is obtained from the calculated structure function
S(k) at experimental saturation density, and the CBF-
corrected dispersion curve, at the same density, is the

30 : : : .

20t ./

(K)

15 + /,’/ e o B

ho(k)
o
o
S
o
&

0 .
0.0 0.5 1.0 1.5 20 2.5
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FIG. 2. The zero-sound dispersion relation is shown, for
bulk three-dimensional *He, in (a) the Feynman approxima-
tion (long dashed line) and in (b) CBF-BW approximation
(solid line, from Ref. 19), (c) from Ref. 15 (short-dashed line)
at experimental saturation density p = 0.02185 A~2 and (d)
from experiments (Ref. 38) (diamonds).

de Ve (kk—q,q)VL
Z/ wm(k)+wn(|k ql) — w(q)]

et(q) = hw(g)ps(g)- (3.2)
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self-consistent solution of Eq. (2.32) for a homogeneous
system. We also show the most complete solution of the
equations of motion, to date,**'® which further improves
upon the CBF calculation. The comparison with the ex-
perimental zero-sound dispersion allows us to assess the
quantitative accuracy of each theory. The CBF calcu-
lation is identical to the one of Chang and Campbell,®
but uses our more accurate input from the ground-state
structure. From this figure, it is clear that the CBF the-
ory contains the correct physics, i.e., most of the energet-
ics of the roton minimum can be attributed to fluctuating
short-range correlations. Figures 3 and 4 then show, over
the stable regime of “bulk” densities, the calculated dis-
persion curves from (a) the Feynman theory in two and
three dimension and (b) the CBF-corrected theory.
While for the bulk liquids it is possible!*5 to carry
out a nearly complete calculation of the dynamics deter-
mined by Egs. (2.14) and (2.15); we have restricted our
consideration to the simplest nontrivial level, Eq. (2.32),
since the identical theory can also be implemented in the
nonuniform system. In both the homogeneous two- and
three-dimensional phase, better approximations for the
three- and four-body densities can be (and have been)
used in the equations of motion. The quantitative suc-
cess of the method of time-dependent pair correlations
in the calculation of the bulk phonon-roton spectrum of
Refs. 14 and 15, which focuses more closely on the time
dependence of the short-range structure than the uni-
form limit approximation used here, gives us confidence
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FIG. 3. The zero-sound dispersion relation is shown, for
bulk three-dimensional *He, in (a) the Feynman approxi-
mation and in (b) CBF-BW approximation, for densities
p = 0.019, 0.020,..., 0.026 A~3 (dashed lines) and in
CBF-BW approximation (solid lines). The curves with the
highest maxon peak and the lowest roton minimum always
correspond to the highest density.
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FIG. 4. The zero-sound dispersion relation is shown, for
purely two-dimensional *He, in the Feynman approximation
(dashed lines), and in CBF-BW approximation (solid lines),
for coverages n = 0.035, 0.040,. . ., 0.065 A2, The curves with
the highest maxon peak and the lowest roton minimum always
correspond to the highest coverage. The slight “kinks” in the
two curves corresponding to coverages n = 0.035 A~2 and
0.040 A~2 correspond to situations where, due to anomalous
dispersion, multiple modes exist.

that the time dependence of the short-range structure is
indeed the physical mechanism responsible for the roton
minimum. It is now conceivable to use a similar scal-
ing procedure as used in our ground-state calculations to
improve the agreement with more complete evaluations
of the same key quantities of the theory. In that case it
was found that by scaling the elementary diagram con-
tribution by a density and system independent constant
factor we were able to obtain quantitative agreement with
the entire equation of state for both the two- and three-
dimensional liquids, but it had no noticeable effect on
virtually any other quantity. We were confident then,
that using the same scaling factor for the film geometry,
was justified. The proper place to explore such improve-
ments is in the homogeneous phases. Such exploration
is important if a quantitatively precise theory of excita-
tions, that is not only feasible but also physically reliable,
is to be achieved in the case of quantum films. At the
same time, the question as to how these corrections com-
pare with time-dependent triplet correlations, which are
ignored up to this point, should be studied.

B. Monolayer excitations energies

After these preparations, we are ready to study the
low-lying excitations of liquid films. We first focus on
monolayers since the physics of these systems is the most
transparent. In our studies of the monolayer structure,®
we were able to distinguish two characteristic types of be-
havior in these films: Films with low surface coverage can
be approximated reasonably well by a two-dimensional
system. However, when the coverage is increased, it will
eventually be energetically favorable for the atoms to
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populate the third dimension rather than to further com-
press the atomic monolayer. A fair indication of when
this crossover from “essentially” two to three dimensions
occurs is when the incompressibility (= mc2) ceases to in-
crease with increasing coverage. The population of states
in the third dimension is accompanied by an abrupt drop
of c3, the third-sound velocity. The strength and range
of the substrate potential Us,p(2) determine the cover-
age where this occurs. In the case under consideration
here, the coverage n., at the crossover is approximately
neo = 0.05 A~2.

Figure 5 shows the dispersion curves for the lowest ex-
citation energy solutions of the Feynman equation (2.20)
and the CBF-BW equation (3.2) for a two-dimensional
liquid and for atomic monolayers with coverages of n =
0.035, 0.045, 0.055, and 0.065 A~2. The monolayer cal-
culations were carried out as follows: For a real target
energy w, the left-hand side of Eq. (3.2) is evaluated. To
the extent that the mode sum in the CBF part had a
pole, the momentum integral was treated as a principal
value integral and the imaginary part was ignored. For
such a fixed w, the equation is then a Hermitean eigen-
value problem, which was solved for the lowest eigenstate
and excitation energy. Using this energy as a new guess,
the process was repeated until convergence was reached.
The lowest-energy solution of the CBF-BW equation is
real but this solution has, under certain circumstances, a
negligible contribution to the dynamic structure function
S(g,w). We use the term “solution” here in a somewhat
loose way, meaning the lowest visible solution. We will
return to this question further below when we discuss
anomalous dispersion and ripplon damping.

Our investigations of the ground-state structure in
paper I show that the lowest-coverage film with n =
0.035 A~2 is close to an instability against the forma-
tion of “two-dimensional droplets,” whereas the highest-
coverage film with n = 0.065 A~2 is “almost” unstable
against the formation of a second layer. Correspondingly,
Fig. 5 shows a remarkable change in the spectrum of
the lowest-lying excitation as a function of coverage: For
low-coverage films, n = 0.035 and 0.045 A2, the disper-
sion curve of the lowest mode is in close agreement with
the one obtained for the two-dimensional model system.
As the coverage is increased, the dispersion curve of the
lowest mode starts to differ, already at relatively long
wave numbers, significantly from the two-dimensional
model. Moreover, we find a pronounced “kink” in both
the Feynman approximation and the CBF result at mo-
menta around ¢ = 1.2-1.3 A~1 which we will identify
momentarily as a level crossing. Also, the “roton mini-
mum” is considerably less pronounced in the monolayer
than in the two-dimensional model.

Our results can be interpreted on the basis of our
ground-state calculations of paper I. In the lower sta-
ble coverage regime considered here, the excitations are
essentially two-dimensional phonons. These are longitu-
dinal phonons propagating in the thin film. For wave
vectors shorter than 0.2 A~! these excitations are well
described by the dispersion relation Aw = ficg. Near the
low- and high-coverage instabilities the softening of this
mode is clearly visible.
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FIG. 5. Dispersion relation of the lowest excited state of monolayer films with coverages of n = 0.035, 0.045, 0.055, and 0.065
A~ (solid lines) and for two-dimensional *He at the same densities (dashed lines). The lower curves are the CBF-BW results,
and the upper curves the results from the Feynman theory. The dash-dotted lines for n = 0.035 A~2 and n = 0.045 A~2 are
the imaginary parts of modes lying slightly above werit(q). These modes are shown, in the case n = 0.035 A~2, as a closed
dotted line. The gray-shaded area is the regime of energies w > wcrit(g) where the excitation energies become complex.

C. Monolayer transition densities

Above n., the film becomes three dimensional. Ac-
companying this crossover is a new type of excitation,
which corresponds to particle motion out of the sym-
metry plane. The effect is seen clearly in the transition
densities, which are the time-dependent part of the total
density. In the present geometry, these transition densi-
ties are of the form dp,(r;t) = ép1(qy, z)e’(q”"“_“’t) , and
only the prefactor p1 (g, 2) is of physical interest. In our
theory, the transition densities are given by the expan-
sion in Eq. (2.31), which collapses to a single term (2.25)
when the time-dependent pair correlations are omitted.
Transition densities corresponding to the lowest-lying ex-
citation are shown, for four monolayer films, in Fig. 6.
At the two lower coverages, the transition densities are
apparently essentially proportional to the ground-state
density p;(r). The situation changes dramatically at the
coverage of n = 0.055 A=2. At that coverage, we see,
indeed, that the lowest mode qualifies for a surface exci-
tation. However, this surface mode appears only at inter-
mediate wave numbers, 0.5 A~! < g <1.2 A-1 whereas

both the long-wavelength and the short-wavelength exci-
tations have a strong overlap with the layer density.

The change of the character of the excitation is partic-
ularly pronounced at still shorter wavelengths; it appears
at the place where the corresponding dispersion relation
exhibits a sharp kink. Evidently, we encounter at this
wavelength the familiar phenomenon of a level crossing.
The same phenomenon has been observed in our ear-
lier calculations?32* which were based on the Feynman
approximation and partly?3 used a less accurate ground-
state structure. The level crossing appears even sharper
at the coverage, n = 0.065 A~2. At this coverage, the film
is almost unstable against the elevation of particles into
a second liquid layer. At this coverage the lowest mode
is, up to the point of the level crossing around q =~ 13
A-1, clearly a surface mode.

For coverages exceeding n., more and more particles
occupy positions elevated out of the two-dimensional
plane and the incompressibility of the entire system
shows a marked falloff. It is useful to comment on the
relation between the long-wavelength transition densities
and the incompressibility. The incompressibility referred
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to here and in paper I refers to the entire film and is
related to the speed of the lowest-lying mode. We now
introduce a quantity which reflects the local compress-
ibility corresponding to different regions (values of z) in
the film. The concept of the local compressibility, which
has been the subject of much studies in classical inho-
mogeneous fluids,?® is most important near the layering
transitions; obviously the divergence of the compressibil-
ity does not imply that the film is everywhere infinitely

n=0035(AD

10.0 0.0

n=0.055(A?%
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compressible.
We define the zero-temperature local compressibility,

k(z), by
5 = /dz k(z),

where we use ¢ to denote the sound velocity. From the
analysis of paper I, we immediately deduce

(3.3)

n=0045(A%

FIG. 6. Transition densities of the lowest excited state of monolayer films with coverages of n = 0.035 A~2 (upper left),
n = 0.045 A2 (upper right), n = 0.055 A~2 (lower left) and n = 0.065 A~2 (lower right). The shaded area in the background
is the ground state profile, the grayscales at the bottom of the figure are a measure for the amplitude of dp1(z, q)-
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k(z) = %/dz'\/pl(z) [Hl(qn =0,z,2') + ZVP.h(q” = O,z,z')] - V(2 .

In the long-wavelength limit the transition densities
(in both the Feynman and the CBF approximations) are
given by Eq. (2.18), i.e.,

5pa(r) = \/pl(r)minmwn(r).

We now invert the convolution product of eigenvalue
equation [Eq. (2.23) in paper I] for the 1,:

(3.5)

(Hy + 2Vpp] ¥ Hytp, = B2w2 4, (3.6)

in the g = O limit, and note that ¥,(z,qy — 0) =

:;’;ﬁ p1(r), where ¥, denotes the lowest-energy eigen-

function. Comparing the results of these manipulations
with Eq. (3.4) shows that, up to a prefactor containing a
q) and only z-independent quantities, the z dependence
of the long-wavelength transition densities for the low-
est energy mode can be directly interpreted as the local
compressibility of the film.

In Fig. 7 the transition densities are shown for ¢ =
0.1 A—1. We also show the particle currents which will
be the subject of the next section. In light of present
discussion we can immediately identify the regions of high
compressibility in the film. Most strikingly, at n = 0.065
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(3.4)

A2, we see that the outer shoulder that has formed in
the density profile is highly compressible. Alternatively,
atoms “residing” in this shoulder are very susceptible to
low-energy, long-wavelength density fluctuations. On the
contrary, at n = 0.055 A2, the film is still very rigid at
its outer surface at long wavelengths. This is the reason
that a surface mode can only be excited at relatively high
energies (and thus, large g) at this coverage. As the
film thickens the lowest energy needed to excite an out-
of-plane mode steadily decreases. This is the mechanism
that will eventually soften the surface mode so much that
the dispersion law will change, from a linear dispersion

3/2 law.

relation, to a q

We conclude this subsection with a remark on the com-
parison between the CBF-BW and the Feynman theory
of excitations. Clearly, the CBF theory provides a consid-
erably improved agreement between the theoretical and
experimental dispersion relations. Otherwise the qualita-
tive features of the results (i.e., the appearance of a level
crossing, and the manifestation of that in the transition
densities) are in both theories essentially the same. This
adds to our confidence that the much simpler Feynman
theory is for many purposes sufficient to provide insight
into the physical nature and mechanisms of excitations
in nonuniform quantum liquids.
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FIG. 7. The transition densities (solid lines) are shown for long-wavelength excitations g = 0.1 A7 for four monolayer films

with n = 0.035, 0.045, 0.055, and n = 0.065 A7?. The shaded area and the scale on the left side correspond to the background
density. The vector fields superimposed to the figures show the particle currents corresponding to these excitations.



D. Particle currents

In the Feynman approximation, it is quite straightfor-
ward to calculate the particle currents from the excitation
functions. Setting in Eq. (2.16) duz(r,r';t) = 0 and re-
calling the connection (2.19) lets us express the current
in terms of the Feynman excitation functions as

) h
Equation (3.8) defines for each state a family of vector
fields parametrized by the parallel momentum qj.

Before we discuss the numerical results for our mono-
layer films, we should consider what is expected and
where the limits of the Feynman approximations are. In
the approximation (3.8), the current is derived from a
velocity field

vy = 3B ()
®) ( pl(r))’

which is curl free because it corresponds to irrotational
flow. Effects like the Feynman-Cohen backflow?? are not
expected to be described correctly, and will be considered
in future work.

Turning now to the specific case of our liquid films, one
would expect the following picture: As long as the exci-
tation is predominantly a compression wave, the particle
motion should be essentially in the direction of the wave
propagation. However, in a surface mode, one would also
expect particle motion out of the surface as well as in the
direction of the wave propagation. More definite state-
ments are difficult for adsorbed films, but an exact cal-
culation is possible in the limit of an infinite half-space.

In that limit, the surface excitation is a ripplon and
its excitation function can be calculated exactly?® in the
long-wavelength limit: The excitation function has the
form

(3.9)

o(z,q)) = C/p1(z)elam=+iar) (3.10)
and the Feynman current is
i(r) ~ p1(2) [cos(qy - 1)) , sin(q) - T))], (3.11)

i.e., the current is circular.

The clearest transitions between the different charac-
ters of the excitation modes happen for the high-coverage
monolayer n = 0.065 A~2, we therefore concentrate our
discussion on this case. Figure 8 shows current patterns
for three different wave numbers; one well within the “rip-
plon regime,” ¢ = 0.5 A-1, and two, for q =14 A-1 q
= 1.5 A1 in the area of the roton minimum, above and
below the wave number where the level crossing occurs.
Further current patterns for very long-wavelength exci-
tations are shown in Fig. 7. Note that the current pat-
terns shown in these figures correspond to the Feynman
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gy cos(a - ) v/ P1(r)¥n,q, (2) » p1(r)sin(qy - r")dz (dinf;l%((ri)))] .
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(3.7)

In the specific, flat surface geometry, we can use the rep-
resentation (3.1) of the excitation functions and obtain
for the (real part of) current
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FIG. 8. Particle currents for the lowest excited state of a
monolayer film with a coverage of n =0.065 A2 and parallel
momenta g; = 0.5 A (upper figure), ¢ = 1.4 AT (middle
figure) and , ¢y = 1.5 A (lower figure). The shaded area
and the scale on the left side correspond to the background
density, the solid line is the transition density.
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dispersion curves (upper curves) in Fig. 5, in particular
the wave number ¢ = 1.4 A-1 in Feynman approxima-
tion, is still a surface excitation whereas in the improved
CBF-BW theory it is already a layer phonon.

The current patterns reflect more clearly than the tran-
sition densities the character of the different excitations.
Before focusing on the details, note that the currents
shown in these figures are drawn in a plane perpendicular
to the substrate, and parallel to the direction of propa-
gation of the wave. Parenthetically, one could also study
the current in a plane parallel to the substrate. In partic-
ular in the roton regime, one should expect “backflow”-
like patterns to appear in two-particle currents. However,
the Feynman theory will not display such patterns and
we therefore defer consideration of three-dimensional flow
patterns to future studies.

We consider two cases: the g dependence of the cur-
rents, at constant coverage (n =0.065 A=2 ), and its
coverage dependence at fixed g|. In the fixed coverage
case, at long wavelengths (g, = 0.1 A-1) even though
the mode appears to be a surface mode, most of the par-
ticle current is located within the first layer. At inter-
mediate wavelengths (¢ = 0.5 and 1.4 A-1), the current
displays the circular flow pattern expected for a ripplon,
whereas at short wavelengths (¢ = 1.5 A-1), the cur-
rent is again essentially a compression mode propagating
in the first layer. This is consistent with the level-crossing
picture. In the case of fixed ¢ we will restrict ourselves to
I
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the long-wavelength limit and consider only the currents
shown in Fig. 7. The most obvious point to be made is
that the ripplon nature of the current, although weak for
n =0.065 A2 at g, =0.1 A1, is considerably enhanced

relative to the one at n = 0.055 A~2. This observation
complies well with the surface compressibility discussion
in the last subsection.

From these studies of the transition densities and the
particle currents we have to conclude that the mecha-
nism of mode softening is quite different from the tradi-
tional ripplon picture. Conventionally, one would have
expected that the ripplon and/or third-sound mode ex-
tends down to g = 0, and that the strength of that mode
increases as the film approaches the instability. This does
not appear to be the case: Rather, momentum range of
the surface excitation extends to longer and longer wave-
lengths.

E. Ripplon damping

The scenario of the development of the low-lying exci-
tation energies can have interesting consequences on the
damping of the ripplon and/or third sound mode. For
the discussion, let us return to Eq. (2.32) and consider
the right-hand side as a function of the energy w, i.e., we
define a function y4(w) to be the lowest eigenvalue of the
left hand side of the problem

2k k—q,q)

Fiw, (q Ps (Q)

where w is now a free parameter, and ¢,(w) the eigen-
vector corresponding to the eigenvalue y4(w). Stability
of the system requires that v4(0) > 0, and the structure
of Eq. (3.12) has the consequence

dyq(w)
——— <0 3.13
o (3.13)

when w is small enough that the integrand has no pole.
Therefore, it is guaranteed that a solution of the tran-
scendental equation

Yq(w) =w (3.14)
exists which is below the lowest Feynman energy. For the
discussion to follow, it is sufficient to concentrate on the
lowest Feynman modes which we will denote with wq(q).
Defining

werit () = miny [wo(k) + wo(lk — ql)], (3.15)
the condition for a real v4(w) is, for fixed g,
w(q) < werit(g)- (3.16)

If the Feynman spectrum is monotonic for 0 < k < g,
one has werit(q) = 2wo(q/2), and if the spectrum is con-
vex, this value will be below the lowest Feynman energy.
This is the familiar consequence of anomalous disper-

d*k V2, (k,k—q,q)V}
Z/ (2m)?2  Awn(k) + wa(lk — q|) — ]

pt(q) = Avg(w)ps(q), (3.12)

f
sion. Clearly, the condition of anomalous dispersion is

met whenever the lowest excitation becomes “soft.”

Closer analysis of equation (3.12) (cf. Appendix)
shows that the imaginary part of v4(w) is discontinu-
ous at w — werit(g), and that the real part has a loga-
rithmic singularity at that point. This singular behav-
ior, together with Eq. (3.13) has the consequence that
Yq(w) = —o0 as |w(q) — werit(q)| = 0. Therefore, the
lowest solution of the CBF-BW equation is always real,
albeit it may be arbitrarily close to the singularity.

It is worth noting here that the analytic structure of
the self-energy in two dimensions is quite different from
the one in three dimensions?” for the case of anomalous
dispersion. In three dimensions, the imaginary part be-
haves as Imyg(w) ~ [w(q) — werit(g)], and the real part
as

Reyg(w) ~ [w(g) — werit(9)] In |w(q) — werit(9)]-

Hence, the damping of any mode slightly above werit(q)
is expected to be much smaller.

In our numerical applications of the full surface prob-
lem, we found that the logarithmic singularity around
Werit(g) is, for long wavelengths, quite narrow compared
with the relevant energy scales in the problem [for ex-
ample, wo(g)]. For small g the solution of v,(w) = w(q)
is very close to werit(q), typical values of werit(g) — wo(q)
were 1072 K or less. Hence ,(w) has a very large slope.
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However, the contribution of each mode to the dynamic
structure function is proportional to the residue of the
matrix

[ﬁ(w-(q) = w)dst

d*k V2. (k,k—q,q)V},.(k,k —q,q)
Z./ (2m)? ’i[wm( ) + wn(k —ql) — w(q)]

(3.17)

at the solution—it is therefore extremely small. For fre-
quencies above the logarithmic singularity, the function
vq¢(w) is reasonably flat. Normally, one will find another
solution in that frequency regime which will give a finite
contribution to the residue. This solution will be the
experimentally visible one. In this situation one cannot
guarantee, a priori, that the solution is below the cor-
responding Feynman solution, although this was always
found to be the case in our work. The analytic structure
of the multiphonon correction term in a thin monolayer
is very similar to the one of a two-dimensional liquid;
more discussions of the above points will be given in the
Appendix.

In Fig. 5 we see that the “visible” solution enters the
regime w > werit only at long wavelengths. When signif-
icant, we also show the imaginary part of the spectrum,
calculated as described above. It appears that, as the
lower-coverage instability is approached, the damping
can be quite pronounced. Indeed, for the low-coverage
case, our theory produces a linewidth on the order of 1
K. In contrast, neutron-scattering experiments done for
“He on graphite,2®2? at a temperature of 0.8 K, indicate
that the characteristic linewidth, determined mainly by
the experimental resolution, is on the order of 0.6-0.8
K. Consequently, a sufficiently low-temperature scatter-
ing experiment (so as to not destroy the structural phase
transitions associated with the layered growth of the film)
done over a range of coverages which include an instabil-
ity, should be sensitive to this anomalous broadening.
The main technical feat that must be overcome is to
probe the very long-wavelength excitations; a situation
which is yet to be realized in neutron-scattering experi-
ments on the *He films.

As the coverage is increased, the lowest mode becomes
“stiffer,” the anomalous dispersion is reduced, and the
damping is reduced. Interestingly enough, the same
damping effect is not so pronounced at the high-end sta-
bility limit. At n = 0.065 A~2, the self-consistent solu-
tion of the CBF-BW equation is always below the “crit-
ical” energy wcrit. Correspondingly, no imaginary part is
shown in Fig. 5 for that coverage.

Our results suggest an interpretation of the “reentrant
superfluidity” of “He films on graphite recently reported
by Crowell and Reppy.3° These authors report that on
a graphite substrate superfluidity disappears before the
completion of the second layer and reappears early in the
third layer. The disappearance of the superfluidity be-
fore completion of the second layer can be thought of as
being connected with the solidification of that layer. In-
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deed it is well known that the second layer, while initially
liquid, freezes under the pressure of the growing third
layer. Crowell and Reppy’s second layer is, in our ap-
proach, modeled by a static substrate potential. Our first
liquid layer should be identified with their third atomic
layer on the substrate. The appearance of superfluidity
would therefore be connected with the disappearance of
damping of the lowest collective excitation. Another way
to argue that superfluidity should disappear is that the
Landau construction3! is no longer possible when a mode
becomes soft for long wavelengths.

Additional evidence for ripplon damping at very low
coverage liquid monolayers is found in the data of Zim-
merli, Mistura, and Chan3? where no “third sound” is
observed at low coverages. These experiments have been
discussed, in light of the present theory, in Ref. 2.

An equally intriguing observation, made by Crowell
and Reppy,3? is that the amount of connected superfluid
present, as determined by their torsional oscillator ap-
paratus, is not simply proportional to the total amount
“He present, but rather follows a sequence of rapid jumps
and plateaus which they correlate to the completion of
their third through seventh layers and at temperatures
well below the Kosterlitz-Thouless transition tempera-
tures. This is the very behavior, for the superfluid mass
to total coverage, that the present theory predicts; un-
derlying completed layers will continue to be superfluid
(there is a substantial energy gap needed to create an
excitation in them), while the outer most layer will con-
tribute to the connected superfluid mass only when it is
not in the coexistence regime, i.e., when the lowest mode
is not soft. In the transition regions between two uniform
configurations, the two-dimensional clusters on top of the
“highest” uniform layer are disconnected from the super-
fluid and can couple, for example through hydrodynamic
backflow, to the substrate. In that sense, these clusters
behave very similar to single impurity atoms such as 3He,
whose effective mass can also be determined by torsional
oscillator experiments.

The primary limitation for the applicability of our
theory to experimental systems stems from assumptions
made regarding the substrate interaction; in all cases the
substrate has been assumed to be flat and rigid. For
liquid helium on certain substrates such as graphite or
solid hydrogen on glass, we believe that this assumption
is valid for four reasons: (i) the phase separation for the
submonolayer is found experimentally,3® at almost ex-
actly the coverage where one would expect it to occur on
a perfectly flat substrate; (ii) corrugation effects should
be reduced by the first two layers of solid helium for the
graphite substrate; (iii) layering transitions have been
seen experimentally in the growth of solid “He;3* (iv)
recent PIMC calculations® done on a corrugated surface
have found evidence for layering transitions.

The width of the coexistence region will be influenced
by several factors. It can be expected that the width
should decrease with increasing temperature. Indeed,
above the maximum critical temperature, for all layer-
ing transitions, it should be possible for the film to grow
without cluster formation at any coverage. Furthermore,
as the film thickness increases it is expected that sub-
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sequent layering transitions should have lower and lower
critical temperatures.

Another factor will influence the plateau width mea-
sured in a torsional oscillator: Growing clusters in the co-
existence region can percolate before the film uniformly
covers the underlying layer.3° If this occurs, and the per-
colating cluster is superfluid, then superflow will occur
even inside the coexistence region. Under these circum-
stances, torsional oscillator experiments will produce a
plateau width that is reduced from that which is pre-
dicted by theory. The fact that percolation may very
well be taking place is apparent from their experimen-
tal data. Percolation should affect the high-coverage side
of the coexistence regions and inspection of their data
always shows the expected “rounding” in that region.

We have also determined the ground-state structure for
other substrate potentials. We find that layering transi-
tions are quite insensitive to small variations in the well
depth of graphite substrate potential,! however quanti-
ties such as the speed of sound are sensitive to this. For
the slightly longer-range solid hydrogen on glass sub-
strate, we again find multiple layering transitions.! In
contrast to these, we find only one well-defined layering
transition for a magnesium substrate. A second transi-
tion may occur but it is sufficiently weak that our numer-
ical treatment is not necessarily accurate enough to make
a definite statement. Most likely, it would be completely
washed out at any finite temperature. Consequently, on a
magnesium substrate, one would expect to see an abrupt
onset of superfluidity around a coverage of n = 0.04 A~2,
but no significant plateaus.

IV. DOUBLE- AND TRIPLE-LAYER
EXCITATIONS

The monolayers discussed in the last section provide
the simplest and cleanest picture of excitation energies
and mechanisms. As the coverage is increased to two or
more layers, excitations may extend over all liquid layers
and also include the surface region. Figure 9 shows a
typical set of dispersion relations. We have chosen, for

the double layers, the three coverages n = 0.105 A_z,

n = 0.120 A—z, and n = 0.135 A_z. The lowest cov-
erage is close to an instability against the formation
of two-dimensional clusters, the second one is a “most
stable” case in the sense that the incompressibility has
its maximum there, and the highest coverage is close
to an instability against the elevation of particles into
a third layer. Nevertheless, we see only very little de-
pendence of the dispersion relation on the coverage. In
particular in the low momentum “ripplon” regime up to

about ¢ = 1A_1, the dispersion relations are almost
identical. The anomalous dispersion is very small and,
consequently, we do not obtain any significant ripplon
and/or third-sound damping; the imaginary part of the
ripplon energy is never larger than 10~2 K. Significant
differences are found only around the roton minimum,
where the low-coverage modes are flatter. In particular
there is no visible minimum for the lowest coverage of

B. E. CLEMENTS et al. 50

20

15+

10

ho (K)

0
0.0 0.5 1.0, LS 2.0
q (AD

FIG. 9. The calculated dispersion relations for three dou-
ble layer films with coverages n = 0.105 A~ n = 0.120, and
n =0.135 A% and a triple-layer film with n = 0.170 A~ in
(a) CBF theory (solid lines) and (b) Feynman theory (dashed
lines). The dispersion relations with the more pronounced
roton minimum correspond to the higher coverages. Also
shown are the data of Ref. 29 for a film with 1.54 (dia-
monds), 1.85 (squares), and 2.16 (crosses) liquid layers, the
bulk phonon-roton spectrum (+ - symbols) and the calculated
bulk phonon-roton spectrum in CBF theory (stars).

n = 0.105 A%, The kink in the dispersion relation can
again be attributed to a level crossing between the rip-
plon and a layer phonon, which has also been observed
in the monolayers discussed in the preceding section, and
our earlier work of Refs. 23 and 24. The same picture
emerges at the level of the Feynman approximation. The
size of the CBF correction and the accuracy of the pre-
diction is comparable to the size of the same correction
in the bulk, which we show along with the experimental
phonon-roton spectrum.

The theoretically determined coverage dependence of
the ripplon dispersion is qualitatively similar to the one
found experimentally:2® Similar to the theoretical disper-
sion curve, the experimental one is also weakly coverage

dependent up to ¢y =1 A7, Above this wave vector,
the 1.54-layer film shows a significant departure from the
higher-coverage films. The 1.54-layer film, similar to our

n = 0105 A~° film, has a very shallow rotonlike min-
imum in its dispersion curve. It will become clear in
the next section that the kinks observed in the higher-

coverage experimental curves, near q; = 1.5 Aq, are also
level crossings.

Somewhat more information on the nature of the exci-
tations and confirmation of our interpretation of the level
crossing can again be obtained from the transition den-
sities and the particle currents. We show in Fig. 10 the
transition densities corresponding to the four dispersion
relations shown in Fig. 9, and in Fig. 11 the current pat-
terns of a double-layer film close to an instability against
promoting particles into a third layer. The case of a
double layer is to some extent an “in-between” situation.
Note that, as the population of the second layer is in-
creased, the spectrum develops from a rather flat one (at

n = 0.105 A_z) comparable with a low-density mono-



layer, to one that has a pronounced roton minimum at
the high coverage, (n = 0.135 A_z). A similar picture is
seen in the transition densities: At the low populations
of the second layer, the lowest excitation propagates es-
sentially in the second layer. At higher wave numbers
we see again the typical picture of a level crossing. How-
ever, this level crossing is not between a “ripplonlike” and
a “phononlike” mode, but rather between two phonons

n=0.105 (A%

0.04

z (/'\)
n=0.135 (A% 0.0
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propagating in different layers. The situation changes as
we increase the population of the second layer: The low-
est mode develops into a surface mode and, at high wave
numbers, two level crossings occur, one between a surface
mode and a layer phonon, and the second one between
two layer phonons. However, it takes a finite wave num-
ber for the usual circular current patterns of a surface
mode to develop.

n=0.120 (A%

z (A) 10
n=0.170 (A% 0.0

FIG. 10. Transition densities of the lowest excited state of a double layer films with coverages of n = 0.105 A2 (upper left),
n = 0.120 A~2 (upper right), n = 0.135 A =2 (lower left), and a triple-layer films with n = 0.170 A~2 (lower right). The shaded
area in the background is the ground state profile, the grayscales at the bottom of the figure are a measure for the amplitude
of ép1(2,q)).
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FIG. 11. Particle currents for the lowest excited state of a doublelayer film with a coverage of n = 0.135 A7?. See Fig. 8 for

further explanations.

V. DYNAMIC STRUCTURE FUNCTION
A. Generalized Feynman theory of S(g,w)

The excitations of many-body systems such as quan-
tum liquids, atoms, or nuclei are normally studied by
scattering experiments. In these experiments, not only
the lowest mode(s), but also a whole sequence of higher-
lying modes can be excited, and their strength and dis-
persion gives further information on the structure of the
system. The question of the location and the strength
of the higher-lying modes is particularly relevant in the
present case: The lowest-lying mode will, in the case of
a finite system, always be the ripplon. However, as the
system becomes bigger, the excitations will eventually
be dominated by the bulk excitations, in other words the
phonon-roton spectrum. These excitations have much
higher energy than the ripplon, in fact they are, in the
systems studied here, in the continuum [cf. Eq. (5.15)
below]. The ripplon on the other hand should, while
always present, lose relative strength and eventually be-
come negligible.

When the probe is weak, the scattering cross section
is given by the Born approximation by3®

d’c  ps(do
dQdw E('dﬁ)os(q"")’

where (do/dRQ)o is the differential scattering cross section

(5.1)

for scattering from a single constituent, p; and py are the
initial and final momenta, q = ps — p; is the momentum
transfer, and

S(q,w) =Y (¥nlo(a)|¥o)[*8(Aw — En + Eo)
n#0

(5.2)

is the dynamic structure function related to the response
function by

S(a,w) =~ Tmx(a,w) (> 0). (5.3)
The operator p(q) introduced above is the density op-
erator. Inelastic neutron scattering off helium films?8-2°
can map out the dynamic structure function. Theoret-
ically, the calculation of S(q,w) requires knowledge of
both the excitation spectrum E,, — Eg and the complete
set of transition densities (¥,|p(q)|¥o).

For practical calculations, a model of the excitation
mechanisms such as the (generalized) Feynman theory
described above is needed. Unfortunately, calculation of
the dynamic structure function within the generalized
theory that allows for time-dependent pair correlations
is computationally quite time consuming. Since we have
convinced ourselves by the studies of transition densities
and particle currents that the simpler Feynman theory
gives, for most applications, a qualitatively correct pic-
ture of the physics, we restrict our analysis of the dy-



namic structure function to the Feynman approximation
dug(r;,rj;t) = 0. In this approximation, the present
study is analogous to our earlier work;?%24 it expands
on that work by studying physically different cases and
using a better structure of the static background.

The Feynman theory can be interpreted in terms of a
linear-response theory with a local particle-hole interac-
tion. The density-density response function is given in
the random-phase approximation by the relation

Xo(r1,r2;w)
+ / d3r3d®ryxo(r1,r3;w)

XVp-h(l'a, l'4)X(I'4, r2; («J),

X(l‘l,rz;w) =

(5.4)

where xo(r1,r2;w) is the response function of a “nonin-
teracting” system defined by the one-body Hamiltonian
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HIZ
Xo(r1,T2;w) = 2¢/p1(r1) Hy [(Aw)? — HE + i)~
X4/ pl(rz). (5.5)

In Eq. (5.4), the local particle-hole interaction is the sec-
ond variational derivative of the correlation energy func-
tional with respect to the density:

0’E,

Vera(rnre) = o )

(5.6)

The HNC theory employed in paper I provides a specific
expression for this effective interaction.

Using the representation (5.5) of xo(r,r’;w), one can
formally solve for the full response function x(r,r’;w):

x(r,r';w) = 24/p1(r) { [(}i‘,,;)2 —H?-2H,V,p + in] - H1} p1(r’)

(wn)?

=2 Z VP (l‘)d)n(l‘)

where Vp_h r,r') = 1/p1(r)Vpn(r,r')y/p1(r’') and the

@ (r) and the fuw,, are the eigenfunctions and eigenvalues
of the equation
[Hf + wlv;,,,] bn = (Fwn)?dn. (5.8)
In Eq. (5.8), we recover the Euler equation of the opti-
mized HNC theory.!
From the density-density response function (5.7) one
obtains finally the dynamic structure function

S(r,r';w) = —%Imx(r, r';w)

= VP1(r)4n(r)én(r') /1 (r') (5.9)
and static structure function (2.21)
: 1 = d(fw) '
S(r,r') =— Imx(r,r’,w
() pi(r)ps(r’) /;oo X e e)
= (5.10)

3 ba®)dalr).

In both equations (5.7) and (5.10), the summation over
the frequencies is understood as an integration when the
spectrum is continuous. The last step in the analysis
is to identify the functions ¢, (r) of Eq. (5.8) with the
excitation functions ¢, (r) introduced in Eq. (2.24). This
final identification lets us write the dynamics structure
function as

S(r,r';w) = 8pu,(r)dp.(r').

Normally, the dynamic structure function is discussed in

(5.11)

Rw)? = (hwa)? +

l‘,) V pl(r, 9

(5.7)

momentum space. In our geometry, the dynamic struc-
ture function is diagonal in the momentum q parallel
to the surface. Scattering experiments are performed at
grazing angles to obtain a sufficient strength of the sig-
nal; we therefore consider only momenta parallel to the
surface. Thus, we define the diagonal dynamic structure
function in momentum space

S(ayw) = [ deds'dnye /@S (e, )V or )

= |6pu(qy)? (5.12)

with

Spulay) = / dz8pu(z,q)) = / dzy/p1(2)¢u(2, q))
2 H
- [m] /dzv p1(2)Yu(z,qp)-  (5.13)

The static structure function in the parallel direction,
S(q)), is then defined as

S(q) =

ZS(QH,W)

In order to analyze the character of the higher-lying
resonances, it is again instructive to study the z depen-
dence of dp.,(z,q)). This can be done at the level of the
Feynman approximation or within the generalized for-
malism which also contains fluctuating pair correlations
duy(ri,rj;t). For the lowest modes, we have discussed
these transition densities above; our findings in the Feyn-
man approximation are, for the lowest mode, qualita-

(5.14)
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tively the same. For the higher-lying modes, transition
densities have been discussed in Ref. 23; our results in
the present case are similar and shall not be repeated
here.

B. Monolayer dynamic structure

At the level of the Feynman approximation, our model
for the dynamic structure function assumes nothing but
the ability to compute the static structure function with
good accuracy. The spectrum of excitation energies Aw is
discrete for energies smaller than the separation energy,
i.e., for

hw + p < kg /2m, (5.15)
otherwise it is continuous. When the eigenvalue equa-
tion (2.20) is discretized on a finite mesh, only a dis-
crete subset of the continuum states is obtained. This set
of states corresponds to excitation functions that vanish
at the boundary of the discretization box. However, all
functions appearing in the kernels of Eq. (2.20) vanish ex-
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ponentially for large distances from the surface. One can
therefore extend the mesh to large distances to obtain a
very dense spectrum from which reliable information on
the density of states can be extracted. We have typically
discretized the eigenvalue problem (2.20) in a box of 50—
100 A as compared to our film thickness of about 10-15
A. No matter how large the discretization box is, one will
still obtain an approximation of S(g,w) in the form of a
series of § functions,

S(gpsw) = D 1600 (@) 28w — wn). (5.16)

In order to smooth these § functions, we have replaced
them in Ref. 23 by a square-well function with the width
of the energy spacing between two neighboring states.
To obtain a somewhat smoother representation of the
dynamic structure function and to allow for a compari-
son of the relative strength of both the discrete and the
continuum states, we have decided in this work to replace
the 4 functions by Gaussians of width 0.5 K, i.e., we write

30 30
20 20
< )
3 3
= 10f = 10
n = 0.035A2 n = 0.045A72
%.0 0.5 1.0 . 1.5 2.0 %.0 05 1.0 . 1.5 2.0 FIG. 12. The dynamic struc-
q A q A% ture function S(g),w) is shown,
30 30 in the Feynman approxima-
tion, for a representative sam-
ple of monolayer films. The
20 20 grayscale indicates the strength
o o of S(g,w), the parabolic line
= ~ in the middle of the frames
2 3 is the boundary of continuum
10 10 states. All modes below this
tinuum are discrete in Feyn-
- 2 = 0.055A2 con wre ciscred
n = 00504 n=0 man approximation; in order to
00 5 05 10 15 20 % 0 05 o 5 2.0 display their relative strength
’ q A1 ' ' ) ’ q A1 we have artificially broadened
these states by a Gaussian of
approximately 0.5-K width.
2 2
2 2

00.0 0.5

10 15 20
q A



50 DYNAMICS OF BOSON QUANTUM FILMS

2
S@iw)~ Y |5pu(q||)12;% exp [— (w —ew") } :

(5.17)

A set of representative dynamic structure functions of
liquid monolayers is shown in Fig. 12. In particular the
relative strength of the higher-lying modes is seen more
clearly than in Fig. 5, where we show only the dispersion
relations. Note in particular that, starting with a cover-

age of n = 0.055 A-—z, we see some strength appear in
the continuum where a “mode” can no longer be defined
unambiguously.

Figure 12 gives also a very clear account of the develop-
ment of the monolayer excitations from a pure, longitudi-
nal two-dimensional phonon, through a mixture between
a phonon and a surface excitation, to the ripplon picture,
including the level crossing at high momenta. At the very
low coverage, we see essentially one mode, which we have
identified above with a two-dimensional phonon. Also,
the anomalous dispersion which leads to ripplon damping
is clearly seen. As the coverage is increased, gradually a
second mode, above the two-dimensional phonon but be-
low the continuum, emerges but there appears to be very
little interaction between these modes up to a coverage
of n = 0.055 A™°. At that coverage we find the typical
phonon-maxon-roton shape of the dispersion relation. At
the same coverage we see, at intermediate wave numbers,
an excitation that qualifies as a surface mode (cf. Fig.
6). Even though Fig. 6 shows results from the general-
ized theory, the transition densities in the corresponding
Feynman approximation are very similar and have there-
fore not been shown. The case of n = 0.055 A~ is
also interesting in the sense that the dispersion relation
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shows a small kink around ¢ ~ 0.4 A™'. With some-
what less confidence, one would be inclined to identify
this kink with another level crossing. The nature of the
mode is again confirmed by considering the transition
density shown in Fig. 6; we see indeed that at this wave
number the two-dimensional phonon turns into a surface
excitation.

As the coverage is further increased, the appearance
of two distinct types of excitations is clear: We see one
type of excitation with the typical shape of the phonon-
maxon-roton spectrum and one typical ripplon mode.
The phonon-maxon-roton mode is for most wave num-
bers above the ripplon, and partly in the continuum.

Around q) =~ 1.4 A_l, a clear level crossing occurs. The
effect appears both in Feynman approximation and in
the more general CBF-BW theory. A “hybridization”
of the phonon and the ripplon, as recently proposed by
Pitaevskii and Stringari3® has, except at one singular mo-
mentum value, not been observed.

C. Multilayer dynamic structure

Figure 13 shows finally the dynamic structure function,
in the Feynman approximation, for the four examples of
double- and triple-layer films discussed above. In essence,
we see the same picture as in the monolayers: a strong
low-lying mode with the typical shape of a ripplon disper-
sion relation, and a high-lying mode with the shape of a
phonon-maxon-roton spectrum. Unlike in the monolayer
case, we find several other dispersion branches. To the
extent that these modes can be clearly identified, they
correspond mostly to phonons propagating in individual
layers. Of course, the higher the energy of the mode,

g g
2 2
n = 0.105A2 n = 0.120A2
%0 05 1.0 15 20 %0 0.5 1.0 15 20 FIG. 13. Same as Fig. 12 for
q A q A1) double- and triple-layer films
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the more nodes it will have and a clear identification be-
comes increasingly difficult. Our findings for multilayer
excitations are in essential agreement with our earlier
work;23 the improved description of the background has
some effect on the curvature of the dispersion relations in
the vicinity of the roton minimum, but causes very few
changes of the overall picture. This gives strong support
for our assessment that the simple hypernetted chain ap-
proximation for the ground-state structure contains the
essential physics of the system; extensions of the theory
provide quantitative improvements, but little qualitative
change. This is also true for the Feynman approximation
of the excited states.

The question can now be asked how well does our
theoretical picture of the excitations compare to ex-
perimental results. In Fig. 14, the experimental dy-
namic structure function for a triple-layer film is shown.
The experiment?® was performed at the time-of-flight
spectrometer IN6 at the Insitute Laue-Langevin’s reac-
tor. The scattering sample consisted of *He adsorbed to
graphite (Paypex), and was kept at a temperature of 0.65
K. The scattering is done at grazing angles. Each exper-
imental curve within the family of curves, corresponds
to a different wave vector q. The wave vectors range be-

tween 0.25 and 2.0 A ™" and occur at approximately equal
intervals. For bulk helium, the largest wave vector corre-
sponds to the position of the roton minimum. We have
vertically displaced S(q,w) for each g to provide a clear
representation of the excitations. In the figure, symbols
have been added to indicate the positions of the various
excitations. It is clear from the figure that, already for
three layers, there is a rather strong signal coming from
the mode that will evolve into the bulk phonon-maxon-

S(q,w)
/A

L I L L 11 1

0 2 4 6 8 10 12 14 16 18
ho (K)

FIG. 14. The experimental S(q,w) for a triple-layer
film. The experimental data (solid curves), the phonon-
maxon-roton mode (+), the ripplon (%), and a layer-phonon
mode (*), are shown. Each experimental curve corresponds
to a different wave vector (See text for discussion).
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roton spectrum. This may indicate that capillary con-
densation is occurring between the graphite crystallites.
The low-energy surface excitation is equally clear from
this figure and has been shown, for other coverages, in
Fig. 9. At this coverage, it is appropriate to refer to this
mode as being a ripplon.

Another intriguing aspect is the observation that, be-
tween the phonon-roton excitation and the ripplon, there
is a plateau in the strength of S(g,w). Indeed, there
is too much scattering to be explained by the phonon-
roton mode (whose experimentally determined maximum
linewidth is obvious from the figure), the surface mode,
and multiphonon contributions. The latter can be quite
safely ruled out, as a possible cause for the large plateau,
by looking above the phonon-roton mode. There it is seen
that multiphonon excitations produce very little scatter-
ing at this low temperature. An explanation for the ex-
tra scattering is provided by the theory; these are layer-
phonon modes that occur between these two excitations
and begin to be significant in S(g,w) at wave vectors

above 1.0 A™'. In fact, the possibility of seeing at least
one of these modes is very evident from Fig. 14. A
rather clear mode has been indicated by a line of *’s in
that figure. It is very interesting that that mode actually
appears to level cross with the surface mode, and for ¢
near the roton minimum, where it has emerged out of
the continuum, the full strength of the mode is shown.
It is also very convincing that the sharp kink seen in the
surface mode, in this figure and for those in Fig. 9, are
very similar to the sharp kinks observed in the theoretical
values where level crossings occur. It is equally impor-
tant to note that the strength of the surface mode, in the
experimental S(g,w) actually continues for g above the
level crossing. This is not obvious from the figure but
follows by an analysis of the data which involves study-
ing the linewidth of the surface excitation through the
level-crossing region; below and above the level crossing
there is a clearly defined shoulder in S(g,w) which is the
surface mode. This is again consistent with the theoret-
ical calculations. While these experimental observations
should be regarded as preliminary, they are extremely
promising and have prompted new investigations using
neutron scattering.

VI. SUMMARY AND OUTLOOK

We have discussed in this paper the excitation spec-
trum of adsorbed films of “He within a generalized Feyn-
man theory of excited states. Formally, this is the first
application of the theory to nonuniform systems. In this
work, we have adopted the strategy of Saarela and co-
workers!371% and developed the theory from the starting
point of time-dependent pair correlations. The approach
has the appealing feature that it attributes much of the
excitation mechanism in the vicinity of the roton mini-
mum to fluctuating short-range correlations. We hasten
to point out that the same working formulas can also
be derived by correlated-basis functions theory.'® This
is, theoretically, a very satisfactory situation since the
derivation of the basic equations of the theory is a mat-



50 DYNAMICS OF BOSON QUANTUM FILMS

ter of strategy, and not of substance.

We have seen in our comparisons that the simpler
Feynman theory applied here provides, for most effects,
a physically plausible and appealing qualitative picture
of the excitation spectrum of adsorbed films. A number
of effects are, however, new. Most important is our re-
sult from paper I that the growth of the film does not
happen continuously, but in a number of discrete steps
corresponding to the formation of mono-, double-, and
triple layers. Along with the structural phase transitions
connected with this discontinuous growth are “mode soft-
enings” which lead to anomalous dispersion and possibly
ripplon damping. We found in our calculations that the
effect of ripplon damping is noticeable only for monolayer
films. This finding is consistent with the observation of
Zimmerli, Mistura, and Chan3? that no “third sound”
is observed at low coverages, and those of Crowell and
Reppy®® on “reentrant superfluidity” in the third layer.
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APPENDIX: ANALYTIC STRUCTURE
OF THE CBF-BW SELF-ENERGY

In this appendix, we study the analytic structure of
the CBF-BW self-energy as a function of an external fre-
quency w. We restrict the investigation to the simipler
case of the two-dimensional system, which is identical to
Eq. (2.32) when the summation over the discrete quan-
tum numbers is restricted to the lowest state. In that
limit, the Brillouin-Wigner eigenvalue problem reduces
to a scalar equation, and the CBF self-energy «,(w) is of
the form

Vq(w) = hwo(q)
_l/ d’k !V(k,lk_qI,Q)lz
2 J (2m)2 hlwo(k) + wo(|k — q) — w(q) + in]’
(A1)

We are specifically interested in values of the energy
where the function ~y,(w) becomes complex. We assume
that the lowest mode (or the Feynman phonon in two
dimensions) wg(k) is a monotonic function of k. This
restricts our analysis to the low-momentum regime which
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is acceptable since this is the only regime where we found
complex modes below the Feynman spectrum. Defining
[cf. Eq. (3.15)]

Werit() = ming [wo(k) + wo(/k — q[)], (A2)
the condition for a real v4(w) is, for fixed g,
w(q) < werit(q)- (A3)

If the Feynman spectrum is monotonic for 0 < k& < g,
the minimum value of wp(|k — q|) will be assumed when
k and q are antiparallel, i.e., wo(|k — q|) = wo(|k — ¢|).
Due to symmetry, the function wg(k) + we(|k — g|) has an
extremum for k = ¢/2, i.e., one has

wcrit(q) = 2(.4)0((]/2) (A4)

If the spectrum is convex, this extremum is a minimum,
and its value is below the lowest Feynman energy for the
same momentum gq.

To evaluate the imaginary part of the integral (A1) for
W R wert 1t 1s sufficient to consider the area where the
angle 6 between k and q is close to zero, i.e.,

Im~yg(w)

L[ &k |V (k, [k — ql, 0)|”
2 (27)2 Alwo(k) + wo(|k — q|) —w + 47|

(A5)
Next we expand the energy denominator in the vicinity

of it’s minimum value, weit(q). Letting p = [k — q|, we
have

wo(k) + wo(p) = 2wo(a/2) +w'(p+k — q)
5" [(k = a/2)% + (p - 4/2)"]

= 2wo(q/2) + %“’" [/\(p +k—4q)

1

+2 (k* +p* - q2/2)] ; (A6)

where
2
W = d“"(i)(q) , W = d :OZ(Q) (A7)
q q
q/2 q/2
and
2w’

For cosf ~ 1, we can also expand (recall that we are
considering momentum transfers k =~ ¢/2):

p = Vk? + % — 2kq + 2kq(1 — cos )
kg
(¢ —k)
~q—k+ (4k — q)(1 — cos8)

~q—-k+ (1 — cos8)

(A9)
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and therefore
w(k) +w(p) = 2w(q/2)

2, .1
q‘w k
+ 2 [A <4q 1) (1 —cos#)

2k (k ) 1
+— [ ——cosf )+ -|.
7 \¢ 2

This form of the energy denominator is correct, to second
order in the momentum, in the vicinity of it’s minimum
value and for small angles. We can now carry out the
angle integration and find

(A10)

1. [® kdk [ |[V(k|k—q|,q)
I ~ -1 4o
myg(w) 2 m/o (27)? A A+ B cosf
1= [Vk|k—g],9)
=——Im kdk————=2 """ All
- /0 hV/AZ — B2 (A1)
with

2 .1 2
A = 2u0(q/2) + L2 [A(4§‘1)+£+1]

2 > 2
—w+ 17 (A12)
and
2, .1 k 2%
B=-1% [,\ (4— - 1) —] (A13)
2 q q
l() T T T T
q= 11318
<
3 q=0.5993
: AT
4 | q=05106 4
q=04219 \ \
AR —
5 |La=0332 \l \
O()/ 2 4l- é 8 10
ho (K)
FIG. 15. The CBF self-energy ~v4(w) is shown, for

two-dimensional *He, as a function of w for a sequence of mo-
mentum values for n = 0.035 A~2. Solutions of the CBF-BW
equations correspond to the points v4(w) = w along the dot-
ted line. Clearly, for ¢ < 0.77 A~! one has three solutions.
It is also clearly seen that the logarithmic singularity is ex-
tremely narrow at small momenta.
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FIG. 16. The three long-wavelength “solutions” of the
CBF-BW equation in two-dimensional *He for n = 0.035 A2
The solid line is the lowest solution of the CBF-BW equation,
the dashed loop the two solutions above fiwerit(g) (dash-dotted
line) and the dotted line at the bottom of the figure is the
imaginary part of the highest solution.

For k =~ q/2 and w = 2wq(q/2), we can further simplify

A? — B? = 2kw'w" (k — k_)(k — k) (A14)
with
q [w — 2wo(k/2)

For w > 2wp(k/2) and k_ < k < k4, the integrand is
imaginary, and we get

V(44,9
Imvy,(w) = J——%}—f;——‘

x/’“+ kdk

k_ ﬁ\/2kw’w"(k —k_)(k+ — k)
2

_ V(.49

? 4k 2qu’ W™’

whereas the imaginary part is zero for w < we;i¢. With
this, we have demonstrated that the imaginary part of
the CBF self-energy has a finite discontinuity at w =
werit- Analyticity argument537 are then sufficient to show
that the real part must have a logarithmic singularity at
the same place, and to determine the strength of that
logarithmic singularity.

Figure 15 shows the CBF-BW self-energy, for a low
density two-dimensional case, as a function of momen-
tum ¢ and energy Aw. The logarithmic singularity at
W = werit(q) is clearly seen, also that this singularity is,
for low momenta, very sharp and permits under certain
circumstances three solutions. These three solutions are
shown in Fig. 16. There, the dash-dotted line is the
boundary Aw;;(k) above which all solutions are com-
plex, and the dashed loop is the solution of the real part
of the CBF-BW equation. Also clearly seen is the imag-
inary part if the complex solution peaks just before the
“mode” disappears.

(A16)
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FIG. 10. Transition densities of the lowest excited state of a double layer films with coverages of n = 0.105 A% (upper left),
n = 0.120 A~? (upper right), n = 0.135 A™2 (lower left), and a triple-layer films with » = 0.170 A~? (lower right). The shaded
area in the background is the ground state profile, the grayscales at the bottom of the figure are a measure for the amplitude
of dp1(2,q)-
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FIG. 11. Particle currents for the lowest excited state of a doublelayer film with a coverage of n = 0.135 A% See Fig. 8 for
further explanations.
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FIG. 12. The dynamic struc-
ture function S(gy,w) is shown,
in the Feynman approxima-
tion, for a representative sam-
ple of monolayer films. The
grayscale indicates the strength
of S(g),w), the parabolic line
in the middle of the frames
is the boundary of continuum
states. All modes below this
continuum are discrete in Feyn-
man approximation; in order to
display their relative strength
we have artificially broadened
these states by a Gaussian of
approximately 0.5-K width.
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FIG. 5. Dispersion relation of the lowest excited state of monolayer films with coverages of n = 0.035, 0.045, 0.055, and 0.065
A~2 (solid lines) and for two-dimensional *He at the same densities (dashed lines). The lower curves are the CBF-BW results,
and the upper curves the results from the Feynman theory. The dash-dotted lines for n = 0.035 A% and n = 0.045 A~2 are
the imaginary parts of modes lying slightly above werit(g). These modes are shown, in the case n = 0.035 A% as a closed
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FIG. 6. Transition densities of the lowest excited state of monolayer films with coverages of n = 0.035 A~2 (upper left),
n = 0.045 A~ (upper right), n = 0.055 A~? (lower left) and n = 0.065 A~2 (lower right). The shaded area in the background
is the ground state profile, the grayscales at the bottom of the figure are a measure for the amplitude of dp: (2, q)).
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FIG. 7. The transition densities (solid lines) are shown for long-wavelength excitations q; = 0.1 A7 for four monolayer films

with n = 0.035, 0.045, 0.055, and n = 0.065 A™?. The shaded area and the scale on the left side correspond to the background
density. The vector fields superimposed to the figures show the particle currents corresponding to these excitations.
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FIG. 8. Particle currents for the lowest excited state of a
monolayer film with a coverage of n = 0.065 A% and parallel
momenta g = 0.5 A™" (upper figure), q =14 A™" (middle
figure) and , ¢ = 1.5 A (lower figure). The shaded area
and the scale on the left side correspond to the background
density, the solid line is the transition density.



