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EfFective action of a magnetic monopole in three-dimensional electrodynamics with
massless matter and gauge theories of superconductivity
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We compute the one-loop effective action of a magnetic monopole in three-dimensional electrody-
namics of massless bosons and fermions and find that it contains an infrared logarithm. So, when

the number of massless matter species is sufBciently large, monopoles are suppressed and in the
weak-coupling limit charged particles are unconfined. This result provides some support to the idea
of new gauge interactions in planar electronic systems. It also provides a mechanism by which inter-

layer tunneling of excitations with one unit of the ordinary electric charge can be suppressed while

that of a doubly charged object is allowed.

Gauge theories of high-temperature superconductors
assume that in certain planar electronic systems spin and
charge are separated and the resulting new quasiparticles
interact via Abelian gauge forces. This idea is seemingly
in contradiction with three-dimensional confinement due
to magnetic monopoles. One may try to resolve the con-
tradiction by assuming that some of the charged excita-
tions are gapless. Then it is possible that the quantum
eKects of those excitations are suKciently strong in the
infrared to modify the interaction between monopoles in
such a way that the confinement of charges is lost. To see
how this can happen, consider the relativistic version of
the problem —three-dimensional quantum electrodynam-
ics of massless bosons or fermions. A simple calculation
shows that the one-loop contribution of massless charged
particles to the gauge Geld propagator causes its small-
momentum behavior to change from the usual 1/p to
1/~p~. The bilinear part of the corresponding efFective
action for the gauge Geld calculated on the monopole
conGguration then produces a logarithm of the total size
of the system. Indeed, the Geld strength of a monopole
is F,~ e,~t,xi, /rs; therefore

d xF,, F;, -ln —,
cL2 a

where R and a are infrared and ultraviolet cutoffs, re-
spectively. Essentially the same calculation appears in
Ref. 3. The coefBcient of the logarithm increases propor-
tionally to the number N of massless species. This sug-
gests that in the presence of massless charged particles, at
least when N is large enough, monopoles are suppressed
via an "infrared catastrophe" and charged particles are
unconfined.

The reason why Eq. (1) is not sufhcient to determine
the fate of magnetic monopoles in the presence of mass-
less charged particles even in the large-N limit is that the
interaction of a charged particle with a monopole has no
small parameter, so the bilinear part (1) of the effective
action is in no way distinguished relative to terms con-
taining more powers of the gauge field. To make a reliable
conclusion, we need all those terms.

On the other hand, the gauge propagator in the large-
N limit is of order 1/N, so the large-N limit suppresses
higher-loop contributions to the effective action. Because
we Gnd logarithmically large contributions to the effec-
tive action, such as Eq. (1), one may worry that the 1/N
suppression of the higher-loop terms can be overcome by
additional powers of the infrared logarithm that might
come from these higher loops. If that were the case,
the 1/N expansion would be inapplicable. We can ar-

gue, however, that this does not happen in relativistic
three-dimensional electrodynamics of massless bosons or
fermions. We use the fact that in every order of the 1/N
expansion the effective action for the gauge field in these
theories remains ultraviolet Gnite in the limit when the
dimensionful gauge coupling e is taken to inanity. 4 It
follows then that this efkctive action as a function of
momenta of the external gauge field (that is, before the
substitution of the monopole field into it) does not con-
tain any logarithms of e or the ultraviolet cutoff a. For
example, the bilinear part of the effective action in any
loop order, at e ~ oo, is a constant times the one-loop
expression appearing on the left hand side of Eq. (1),
the constant being suppressed by the power of 1/N cor-
responding to the given loop. Then, upon substituting
the monopole field, only a single logarithm of R/a is
produced —that already encountered at one loop. We
thus argue that in the large N limit the problem reduces
to the calculation of one-loop determinants of massless
bosons and fermions in the monopole background.

This paper presents the results and the main steps of
such a calculation. We chose to proceed with relativis-
tic three-dimensional particles mainly because this makes
the computations more transparent. The infrared diver-
gence of the bilinear part of the gauge field action is Dot
limited to this particular case. Besides, the precise dis-
persion laws for quasiparticles that may occur in real
electronic systems are unknown at present. Emergence
of relativistic fermions in quantum insulators is possible,
as discussed, for example, by Ioffe and Larkin. We also
found it advantageous to consider the case of massless
bosons along with that of massless fermions: the two
treatments run in parallel and complement each other.
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Our results confirm the presence of an infrared loga-
rithm in a monopole's effective action in both bosonic and
fermionic cases. We thus show that single monopoles are
suppressed by an "infrared catastrophe" in the presence
of a suKcient number of massless-rnatter fields. We can-
not state at present what exactly this "su%cient" num-
ber is because the answer to this question lies outside the
region of validity of the large-N approximation. Other
methods, most likely numerical simulations, are needed
to establish whether the qualitative picture of the sup-
pression of monopoles holds down to realistic values of
N.

Let us describe the physical effect of the infrared log-
arithm in the weak-coupling limit of three-dimensional
electrodynamics, defined by the condition that the gauge
coupling e2 is much smaller than the ultraviolet scale
M a at which the internal structure of the monopole
becomes essential. In this limit, in the absence of
massless matter, monopoles and antimonopoles would
form a dilute gas. When the number of massless
matter species is sufficiently large, the infrared loga-
rithm causes monopoles and antimonopoles to assemble
into "molecules" —pairs of typical size d that is much
smaller than the average distance between the pairs.
These pairs interact by a short range potential of or-
der (d2/r2) ln(r/d), so it is natural to expect that the
charged particles are unconfined. This picture provides
some support to the idea of new gauge interactions in
planar electronic systems. At the end of this paper we

discuss some further applications of our results.
We now proceed to calculating the one-loop contribu-

tions to the effective action of a monopole that are due to
quantum fIuctuations of a single massless charged bosonic
field and a single massless charged fermionic field in the
monopole background. The quantum Euclidean actions
of bosonic and fermionic theories are respectively of the
form

8& = ~,F,', + ~D;P~'+ V(P+P)
~

d'z,
)(4

SF=
~

F, +ger Dy~d x,f 1

(4e2 U

where F~ = 8;A~ —8~A; is the field strength, A; is the
vector potential, D; = 8, —iA; is the covariant deriva-
tive, oD is a shorthand for P, a;D;, cr; are the Pauli
matrices, and i, j = 1, 2, 3. A scalar potential V(P+P)
does not enter explicitly our one-loop computation but
is necessary, with properly tuned parameters, to keep
bosons massless in full quantum theory. At the clas-
sical (tree) level, the effective action of the monopole
is S~ l = f dszF2. /(4e2), where the vector potential is
taken to be that of the monopole. This action is of order
M/e2, where M is the ultraviolet scale of order of the
inverse monopole core size.

The one-loop contributions of bosons and fermions to
the effective action are respectively of the form

S&~l ——Trln{—D ) —Trln( —8 ),
(2)

S~~
l = —Tr ln(oD) + Tr ln(0.8),

and M~o and —M+2o are obtained analogously &om the
operators —82 and —(o8)2 of the vacuum sector. This
replacement is similar to the one used by 't Hooft in his
four-dimensional instanton calculation. s If, as it is in the
four-dimensional case, the effective action were not in-
frared sensitive, the additional factors of (r2 + R2)/R2
would cancel between the vacuum and nonvacuum con-
tributions in (3). In the present case, we intend to show
that the effective action i8 in&ared sensitive. In this case
Eq. (3) provides an infrared'regularization of Eq. (2), R
being the regulator radius. In what follows we measure
all distances in units of R; hence we set R = 1.

To calculate the traces in (3), we diagonalize the oper-
ators (4) and sum up the logarithms of the corresponding
eigenvalues. The eigenvalue equations for the operators
(4) are

(D'+, , l@&=0,(, 4W

1+v 2)

I ( D)'+(, 4A'

1 +@2 2) (6)

where A and A' stand for the eigenvalues. In bosonic
Eq. (5), radial and angular variables are separated by

= Q(r )Yq ~ ~ (8, P), where Y~ ~ ~ are the monopole
harmonics of Ref. 6. One gets the radial equation

(8 &' 2 8 ~(~+1)
I,8r ) r 8r r2 (1 + r2)2

where a = [(l + 1/2) —q ] ~ —1/2, l = [q~, ]q~ + 1, ...,
and the multiplicity of the eigenvalue A is (2l + 1). Pa-
rameter q assumes integer and half-integer values as a
consequence of the Dirac quantization condition. All our
results depend only on [q[, so in what follows we take

q & 0. In fermionic Eq. (6), the variables are separated by

using any of the three angular dependences ((~) (2)

introduced in Ref. 7. We find that in all three cases the
resulting radial equations have the same form as Eq. (7)
but with different values of o.. For the angular depen-
dence (l~l, o. = p —1, where p = [(j+1/2) —q ]

~ and

j = q+ 1/2, q+3/2, ..., while for the angular dependences
(~~& and rl, a = p, with j = q+ 1/2, q+3/2, ... for (~ l and

j = q —1/2 for rl. In all cases the multiplicity is (2j + 1).
In three dimensions, fermionic wave functions (or, more
precisely, wave sections ) 4'y in (6) are doublets. This

where A; inside the covariant derivatives is the monopole
vector potential. Equation (2) requires both ultraviolet
and infrared regularizations. We compute not expres-
sions (2) directly but rather

S~ ~ (R) = Tr ln M~ —Tr ln M ~0,
(3)

S~~
~ (R) = —~ [Tr ln( —M~) —Tr ln( —Pt~o)],

where

Mg = — (r' + R )D (r' + R ),I

JH—2~ =—,(r'+ R')(oD)'(r'+ R'),
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doublet structure is carried by the angular dependences,
so both for bosons and fermions the radial functions Q in

Eq. (7) are one-component objects. Therefore, unlike the
scattering problem in (3+1) dimensions, our calculation
does not require any special treatment of j = q —1/2
fermionic modes.

We can treat the bosonic and fermionic cases simulta-
neously using Eq. (7) if we adopt the following notation:

We still need an ultraviolet regularization for the traces
in Eq. (3). A convenient one is provided, again in parallel
with 't Hooft's calculation, by two Pauli-Villars regula-
tors with masses M; and metrics e; satisfying g, e,
—1, P e;M; = 0, i = 1,2. Regularized traces that we

will need are

Tr ln M (M, ; r.)

a = [(j + 1/2) —q ]
—r. —1/2,

j = q+r, q+K+1, ... .

Then, K = 0 corresponds to bosons, r = 1/2 to fermions
with the angular dependence (1il, and r. = —1/2 com-
bines fermions with the angular dependencies (121 and g.
The results for the vacuum sector are obtained by sub-
stituting q = 0. Though such a substitution leads to an
unphysical value j = —1/2 for r = —1/2, the eigenvalues
corresponding to this unphysical value do not participate
in the fermionic trace in (3) because of vanishing multi-
plicity factor (2j + 1).

By the change of variables

0() ="(1+") '"&(~) ~=(1+") '
(9)

Eq. (7) is converted into a hypergeometric equation. The
resulting eigenvalues are

A„= (m+ a+1/2)(n+ a+3/2), n = 0, 1, . .. .

= ) (2j+1)) ) e;ln[(s+ a)'+ p,,'],
j=q+K s=l i=0,1)2

where we have defined eo ——1, Mo ——0, and p; = M;—
1/4, i = 0, 1, 2. The effective action in the fermionic
case is obtained from the half sum of the traces (11) with
e = kl/2. Those two traces are in fact related to each
other in a simple way.

Because the one-loop effective actions (2) are dimen-
sionless, and do not depend on the gauge coupling t,
they can depend only on products of infrared and ultra-
violet regulator parameters, M;R. In the system of units
where R = 1, we are then interested in the dependence
of the effective action on M, in the limit when M, are

large. The nonregulator, i = 0, terms in Eq. (11) cannot

produce such dependence. Applying the Euler-Maclaurin
formula to the regulator terms in Eq. (11), we get

) 'ln[(s+ a)'+ M'] = dain[(s+ a)'+ M']
s=l 0

0

where A )) M. The remainder in Eq. (12) gives a convergent contribution of order 1/M when summed over j with
the multiplicity factor (2j+ 1) and hence may be neglected. Terms divergent at A ~ oo as well as those proportional
to M,. get canceled when all the regulator and nonregulator contributions are added together and we obtain

2 2 fx a't 1 a
Trln&(M;;~) = ) (2j+ 1) & ) e, —(a+ 1/2) ln(a + p, ) + 2p, [

——arctan —
~

——
2 2 + C(g) &(2 p;) 6a2+y2

where C(j) denotes terms independent of M;.
The dependence of Eq. (13) on M; can be found by the

following method. We decompose each sum over j into
two—one running from q+ K to some value J—1 such that
q (( J (( M;, another running from J to a cutofF A' ))
M. As in the sum over 8 before, the dependence on the
cuto8' will disappear when all regulator and nonregulator
terms are added together. The number J is integer or half

a = a, —q (2j+1) '+O(j ),
For example,

ai = j —K. (14)

(13)

l

integer when q+ K is integer or half integer, respectively.
Now, in the region q + K & j & J —1 we can neglect j
compared to M;, while in the region J & j & A' we can
use the Euler-Maclaurin formula. At J & j & A' we can
also use the expansion

) (2j+ 1)(a+ 1/2) 1n(a + M ) = ) (2j+ l)(a+ 1/2) 1nM + ) (2j+ 1)(ai + 1/2) 1n(ai + M )

(15)
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It turns out that other terms in Eq. (13) do not produce
contributions in either bosonic or fermionic trace that
distinguish between the monopole and vacuum sectors.
Proceeding with Eq. (15), we finally obtain the one-loop
effective action of a monopole with monopole number q
in the presence of massless bosons and fermions, up to
terms independent of R:

S~ ~(R) = K~ F(q) ln M R + O(R ),

1/2
1

3/2

Ks (q)
0.0968
0.2266
0.3850
0.5682

KF (q)
0.0151
0.1730
0.4358
0.7852

TABLE I. CoefBcients of ln R in the one-loop effective
action of a monopole with monopole number q in the presence
of massless bosons and fermions.

K~(q) = lim ) (2j+1)[(j+1/2) —q ]'

—-', J'+ —,
' J+q'J

K~(q) = —lim ) (2j+ 1)[(j+1/2) —q ]
- i =a+&/2

—-J +-J+q J3
3 6 2

We assumed that both regulator masses are of the same
order, M; M. The limits in Eqs. (16) and (17) were
done by computer. The results for a few values of q are
presented in Table I.

%hen there are N massless species of particles of given

type, the corresponding numbers from Table I should be
multiplied by N. For sufficiently large N, the logarithms
of R coming &om the e8ective action will overpower
31n MR that comes with the opposite sign from the vol-
ume factor in the monopole amplitude. Thus, when there
is a large number of massless matter species, monopoles
are suppressed. For small N, we cannot draw any con-
clusions from the present work because the one-loop cal-
culation is not a reliable guide in this case. Possibly,
numerical simulations can help to establish whether the
suppression of monopoles holds for small N.

Let us now state some applications of our results. They
show that nonconfining Abelian gauge interactions are
possible in (2+1) dimensions when gapless excitations

are present, thus providing some support to the idea of
new gauge interactions in planar electronic systems. In
a somewhat difFerent interpretation, our results provide
a mechanism by which interlayer tunneling of excitations
with one unit of the ordinary electric charge is suppressed
while that of a doubly charged object is allowed. Recent
works shows that a viable theory of high-temperature su-
perconductors can be constructed if such a mechanism is
assumed to exist. Let us postulate that a planar system
describing one layer in a layered material supports quasi-
particles that carry magnetic flux with respect to the
new gauge field. There are two varieties of such quasi-
particles corresponding to positive and negative fluxes,
respectively. Assume further that these quasiparticles
carry ordinary electric charge ("holons") which has the
same sign for both positive and negative fluxes. Events of
interlayer tunneling of these quasiparticles are described
by monopoles and antimonopoles in three dimensions. If
there are also excitations of another sort ("spinons" ) that
carry charge, rather than flux, with respect to the new
gauge field and are gapless, the tunneling of a single flux
can be suppressed by their infrared effects as discussed
above, while a pair of positive and negative fluxes can
tunnel freely.
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