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A strictly truncated (weak-coupling) perturbation theory is applied to the attractive Holstein and
Hubbard models in in6nite dimensions. These results are quali6ed by comparison with essentially
exact quantum Monte Carlo results. The second-order iterated perturbation theory is shown to
be quite accurate in calculating transition temperatures for retarded interactions, but is not as
accurate for the self-energy or the irreducible vertex functions themselves. Iterated perturbation
theory is carried out through fourth order for the Hubbard model. The self-energy is quite accurately
reproduced by the theory, but the vertex functions are not. Anomalous behavior occurs near half-
611ing because the iterated perturbation theory is not a conserving approximation.

I. INTRODUCTION

Recently Metzner and Vollhardti showed that the
fermionic many-body problem simplifies in the limit of
infinite spatial dimensions, d. The d -+ oo limit is
taken in such a fashion that the dynamics are local in
space, and the lattice problem can be mapped onto a self-
consistently embedded Anderson impurity model. The
self-energy and irreducible vertex functions of the impu-
rity problem are employed to determine the Green's func-
tions and susceptibilities of the infinite-dimensional lat-
tice. This many-body problem can essentially be solved
exactly by using the quantum Monte Carlo (QMC) tech-
niques of Hirsch and Fye to extract the self-energy
and irreducible vertex functions of the relevant impu-
rity problem. A variety of models have already been ex-
amined in this fashion: the Hubbard model, s s periodic
Anderson model, and the Holstein model.

The in6nite-dimensional limit provides a unique test-
ing ground for various approximation techniques, since
one can compare them to the benchmark QMC re-
sults. Previous work has concentrated on the strong-
coupling limit 'io (perturbation theory in the kinetic en-
ergy) which can be shown to be an excellent approxima-
tion in the region of moderate to strong coupling.

Calculations in the weak-coupling limit are not under
as good control. The main emphasis so far has been on
conserving approximationsi i4 (such as the fiuctuation-
exchange approximation) to the many-body problem.
Conserving approximations are popular because they
satisfy the requisite conservation laws for electronic
charge, energy, and moment»rn. It turns out, however,
that conserving approximations sufFer &om some serious
flaws: (1) truncated approximations (through fourth or-
der) do not show a turnover in T, as the strong-coupling
regime is approached; (2) infinite summations of certain
classes of diagrams can produce a turnover in T, but
the self-energy is overestimated, and many-body features

(such as the upper and lower Hubbard bands) do not ap-
pear in the single-particle spectral function. Similar defi-
ciencies where found by White in his examination of the
Anderson impurity model itself. is

An alternate approximation scheme, which does not
suffer from the above problems (but is not conserving),
has been introduced by Georges and Kotliar and is
known as iterated perturbation theory (IPT). In this
case, the perturbation theory is strictly truncated at a
finite order (as opposed to a conserving approximation
that sums the infinite class of diagrams corresponding to
self-energy insertions into the dressed Green's function).
The motivation for this approximation comes from the pi-
oneering work of Yosida and Yamada, who found that
truncated perturbation theory was an extremely accurate
approximation for the Anderson impurity model because
the sum total of all classes of diagrams at a given order is
an order of magnitude smaller than any of its constituent
parts. This remarkable near cancellation of diagrams was
further verified to high order by Zlatic and Horvaticis
who found that the exact Bethe ansatz solutions can be
rearranged into a power series whose coefBcients die oK
rapidly.

Horvatic and Zlatic generalized Yosida and Yamada's
analysis off of half-filling and found that the strictly trun-
cated perturbation series was also accurate in the doped
case. However, anomalous behavior begins to enter if
the coupling strength is increased too far and the elec-

/

tron concentration is close to half-611ing. Ferrer, Martin-
Rodero, and Flores realized that the reason why the
perturbation theory fails more rapidly away &om half-
6lling is because the second-order perturbation theory
correctly reproduces the atomic limit at half-6lling, but
not away fmm half-6lling. They proposed an ad hoc in-
terpolation scheme that properly reproduces the atomic
limit everywhere and removes some of the anomalous be-
havior of the Horvatic- Zlatic approximation. An alter-
nate interpolation scheme has been proposed by Neal
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based upon functional integral techniques which appears
to be quite accurate for all values of the interaction
strength but is restricted to half-filling.

In this paper, we will examine the iterated perturba-
tion theory through second order for the Holstein model
and through fourth order for the negative-U Hubbard
model. Comparison of the self-energy, the irreducible
vertex functions, and the transition temperatures will be
made to the exact QMC solutions. In Sec. II the infinite-
dimensional formalism is reviewed along with the details
of the IPT approximation. Sec. III contains the results
for the Holstein model, while Sec. IV holds the results for
the Hubbard model. Conclusions and discussion follow

in Sec. V.

II. FORMALISM

The electron-phonon interaction is generally believed
to be responsible for the superconductivity in most low-

temperature superconductors. ' The conventional the-
ory used to describe superconductivity was introduced by
Migdal2s and Eliashberg. 2s Migdal-Eliashberg (ME) the-
ory ignores vertex corrections which can be shown to be
proportional to powers of the Debye frequency divided

by the Fermi energy, and hence are small corrections for
most real materials.

Here, iterated perturbation theory is examined in a
systematic fashion for the attractive electron-phonon in-

teraction described by the Holstein2r model (the effects
of Coulomb repulsion are explicitly neglected). The Hol-

stein model consists of conduction electrons that interact
with localized (Einstein) phonons:

H = — ) (c cg~ + cg cj~)
2 d (0%)

oo, U = finite), the Holstein model maps onto the attrac-
tive Hubbard model

t*
H = — ) (c, cl, +c„c, ) —p) (n,g+n, g)

2
(&,a)~ 2

+U) (n,„—-', )(n,„——,'),

with U defined by Eq. (2).
The infinite-dimensional limit of Metzner and

Vollhardt is taken (d ~ oo), in which the electronic
many-body problem becomes a local (impurity) prob-
lem that retains its complicated dynamics in time. The
hopping integral is scaled to zero in such a fashion
that the &ee-electron kinetic energy remains finite while
the self-energy for the single-particle Green's function
and the irreducible vertex functions have no momen-
tum dependence and are functionals of the local Green's
function. ' ' This lixnit retains the strong-correlation
effects that arise from trying to simultaneously minimize
both the kinetic energy and the potential energy.

The many-body problem is solved by mapping it onto
an auxiliary impurity problem in a time-dependent
field that mimics the hopping of an electron onto a site
at time ~ and ofF the site at a time 7'. The action for the
impurity problem is found by integrating out the degrees
of &eedom associated with other lattice sites in a path-
integral formalism. The result is an effective action

P
Sgff = ) dr d'r c (r)Go (r —7 )c~ (7 )

0 0

+) dr[gz(7 )
—p][c~(T)c~(7 ) —

2]
0

+ M dr[A'z'(r) + z'(r)]
0

where G0 is the "bare" Green's function that contains
all of the dynamical information of the other sites of the
lattice. The interacting Green's function, defined to be

where c (c~ ) creates (destroys) an electron at site j
with spin 0, n~ = c. c~ is the electron number op-

erator, and xz (p~) is the phonon coordinate (momen-
tum) at site j. The hopping matrix elements connect
the nearest neighbors of a hypercubic lattice in d dimen-
sions. The unit of energy is chosen to be the rescaled
matrix element t*. The phonon has a mass M (chosen
to be M = 1), a frequency 0, and a spring constant
v = MO associated with it. The electron-phonon cou-
pling constant (deformation potential) is denoted by g;
the e6'ective electron-electron interaction strength is then
the bipolaron binding energy

g2g2U=—
MO2 (2)

The chemical potential is denoted by p and particle-hole
symmetry occurs for p = 0.

In the instantaneous limit where U remains finite and

g and 0 are large compared to the bandwidth (g, 0 -+

Tr(e ~~T c(r)ct(0))
Tr(e-~~)

is determined by Dyson's equation

G„=G (i(u„) = Go (i(u„) —Z(iu)„).

A self-consistency relation is required in order to de-
terraine the bare Green s function G0. This is achieved
by mapping the impurity problem onto the infinite-
dimensional lattice thereby equating the full Green's
function for the impurity problem with the local Green's
function for the lattice,

G~~(i(u ) = ) G(k, iw )
k

= ) [i(u„+ p —E(k) —Z(i~„)]

= F [iu) + y, —z(i(u )].
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Here I' (z) is the scaled complimentary error function
of a complex argument,

(z) —= dy
1 exp( —y2)

vr z —y

= —isgn[lm(z)]~me ' erfc( —isgn[lm(z)]z}.

The dynamics of the (local) impurity problem are
identical to the dynamics of the Anderson impurity
model. z ' s This many-body problem can either be
solved exactly with the QMC algorithm of Hirsch and
Fye, z or it can be approximately solved by employing a
truncated perturbative expansion. The impurity is self-
consistently embedded in the host, since it must satisfy
the self-consistency relation in Eq. (7).

It is important to note that since one does not a pri-
ori know the bare Green's function Gs in Eq. (4), one
must iterate to determine a self-consistent solution for
the Green's function of the infinite-dimensional lattice.
This is achieved by calculating the self-energy as a func-
tional of the bare Green's function Go, and then deter-
mining the new local Green's function from the approx-
imate self-energy and Eq. (7). The new bare Green's
function is then calculated Rom the Dyson equation in
Eq. (6). This process is iterated until convergence is

achieved [for the perturbation theory approximation the
maximum variation of each G(iu ) is less than 1 part in
10s which typically takes between 5 and 30 iterations,
for the QMC calculations the algorithm is iterated &om
7 to 9 times]. Note that the iteration required to deter-
mine a self-consistent bare Green's function t 0 should
not be confused with the the iterative techniques used to
self-consistently sum all of the self-energy insertions in a
self-consistent perturbation theory —the perturbation se-
ries is alisays strictly truncated at a Pnite order hem.

The QMC algorithm proceeds by discretizing the
imaginary-time interval from 0 to P into L time slices
of equal width Ar = P/L and evaluating the relevant
path integrals in a grand canonical scheme. Both local
moves, in which the phonon coordinate is shifted by a
different amount at each time slice, and global moves,
in which the phonon coordinate is shifted by a uniform
amount for every time slice, are incorporated into the
QMC algorithms . The values of L used ranged from 20
to 160 with the largest values of b,r reserved for the low-
est temperatures (usually b,r was fixed at 0.4). No sign
problem was found at any filling.

Static two-particle properties are also easily calculated
since the irreducible vertex function is local. s4 The static
susceptibility for charge-density-wave (CDW) order is
given by

(q)
—= ) e'~'~ ' ' T dr dr'[(ni (r)n& (r')) —(n~ (r))(n& (r'))]

Rq —Rg, crier I 0 0

=-T) x' (q, i~ i~ ) =T) x . (q) (9)

x.'(q) —= —
N ):&-(k)&-(k+ q)

k
2

e1 1 OO

dy.~x gl —X2(q) i(u„+ p —Z„—y

i(u„+ p —Z„—X(q)y
Ql —X2 (q)

and all of the wave vector dependence is included in
the scalars i X(q):—g. i cosq /d. The mapping

q m X(q) is a many-to-one inapping that determines an
equivalence class of wave vectors in the Brillouin zone.
"General" wave vectors are all mapped to I = 0 since

at each ordering wave vector q. Dyson's equation for the
two-particle Green's function becomes '

x . (q) =x'(q)~ -T).x'(q)1' „x (q),
p

(10)

with I'CD the (local) irreducible vertex function in the
CDW channel.

The bare CDW susceptibility x (q) in Eq. (10) is de-
fined in terms of the dressed single-particle Green's func-
tion,

cosq can be thought of as a random number between
—1 and 1 for "general" points in the Brillouin zone. Fur-
thermore, all possible values of X (—1 & X & 1) can
be labeled by a wave vector that lies on the diagonal
of the first Brillouin zone extending from the zone cen-
ter (X = 1) to the zone corner (X = —1). The pres-
ence of incommensurate order in the attractive Holstein
model is restricted to a very narrow region of parame-
ter space, s is and so only the "antiferromagnetic" point
X = —1 is considered for CDW order. The integral for

(X) in Eq. (11) can then be performed analytically, s

X~ (X = —1) = —G„/(i~„+ p, —Z„). The irreducible
vertex function I'CDw is either directly calculated in a
perturbative expansion (IPT) or is determined by invert-
ing the Dyson equation in Eq. (10) (QMC).

A similar procedure is used for the singlet s-wave su-
perconducting (SC) channel. The corresponding defini-
tions are as follows: The static susceptibility in the su-
perconducting channel is de6ned to be

R~ —Rg,

P
'( ~t(r)c~g(r)cJ~(r')c„~(r'))

0 0

= +) .x (q '~ '~ ) = +).x (q) (12)
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for superconducting pairs that carry momentum
Dyson's equation becomes

x".(q) = x' '(q)b- —T):x' '(q) I'",x,".(q), (»)

with I' „ the corresponding irreducible vertex function
for the SC channel; the bare pair-field susceptibility be-
comes

Yamada, but the irreducible vertex functions were not
investigated in their analysis of the Anderson impurity
model, and so it is not a priori clear which will be a
better approximation.

The transition temperature of the infinite-dimensional
Holstein model is now found by calculating the tempera-
ture at which the relevant susceptibility diverges (CDW
or SC). One can determine this transition temperature
by finding the temperature where the scattering matrix
(in the relevant channel)

yo'(q) =——) G„(k)G „ i(—k+q)
k

1 1 OO e
dg.~x gl —X2(q) i(u„+ p —Z„—y

'lid — i + p —Z i —X(q)g
Ql —X2(q)

has unit eigenvalue. ss Note that the fully dressed Green's
functions are always used in calculating the bare suscep-
tibility yo because the bare susceptibility is a property
of the infinite-dimensional lattice, and not the Anderson
impurity problem, and we expect to find better agree-
ment with the QMC results if we use the correct bare
susceptibility.

with the special value go'(X = 1) = —ImG„jim(i~„—
Z„) for the SC pair that carries no net momentum; and
finally the irreducible vertex function is also either di-
rectly calculated in a perturbative expansion (IPT) or is
determined by inverting the Dyson equation in Eq. (13)
(QMC).

There are two different approximation schemes that
can be used for determining the irreducible vertex func-
tions in a perturbative expansion. The first scheme, de-
noted IPT, is in the spirit of Yosida and Yamada's origi-
nal analysis: The vertex functions are also expanded in
a perturbation series that is strictly truncated at a finite
order. In the second scheme, denoted IPT', the fully
dressed local Green's functions are used to calculate the
irreducible vertex functions. In general, one might ex-
pect the IPT approximation to be more accurate than
the IPT' approximation from the work of Yosida and

III. HOLSTEIN MODEL

The diagrammatic expansion for the IPT is depicted
in Figs. 1 and 2. The wiggly lines denote the bare
phonon propagator, and the straight lines denote the bare
Green's function Go. Figure 1 shows the self-energy for
the IPT approximation through second order. The self-
energy includes, respectively, the Hartree term (which is
a constant that is reabsorbed into the chemical poten-
tial), the Fock term, the second-order term that dresses
the phonon propagator, the lowest-order vertex correc-
tion, and the second-order rainbow diagram (which corre-
sponds to the self-energy insertion of the first-order Fock
diagram into the first-order Fock diagram).

To be more explicit, the self-energy for the second-
order IPT approximation is

O2Z„= UT ) ~
—
z Go(i~„)+ n —v

02 O2 O2
+ U T ) —2~2 2 + s 2 2 Go(iu)„)Gp(i(u, )Gp(i(u„„+,)

O2 O2
+ U T ) 2 2 Go(iu)„)Gp(iv), ), (16)

which includes the Fock diagram contribution and the three second-order contributions of Fig. 1. The bosonic
Matsubara frequency v~ is defined to be v~ = 2lmT.

The self-consistency step involves first determining a new local Green s function G &om the integral relation in
Eq. (7) with the approximate self-energy of Eq. (16). Next the new bare Green's function is found from the Dyson
equation in Eq. (6) using the same approximate self-energy. A new self-energy is then calculated f'rom the new bare
Green s function [using Eq. (16)], and the process is iterated. This iteration process terminates when the maximum
deviation in the local Green's function is less than one part in 10 .

Once the Green s functions and self-energies have been determined, the irreducible vertex functions can be calculated
for the CDW or SC channels. In the CDW channel [see Fig. 2(a)] one must include both direct and exchange diagraxns
as well as the vertex corrections. The result is
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I' „=2U—2U T) [Go(i(u„)G (i(u „,)+G (i~„)G (i(u „„)]02+ v2 „
02 02 02—U 2

—2U T) Go(i(u„)Gp(i(u „+„)+~~—n

02 0
+ U2T ) Gp(i(u„)Gp(i(u +„„)

r

- 2

02
02+ V2 „

for the IPT approximation. The IPT' approximation has the same functional form as in Eq. (17), but the bare Green's
function Go is replaced by the dressed Green s function G (this functional form is the same as the one used for the
conserving approximation ). Note that the vertex corrections (arising from the first-order exchange diagrams) modify
the internction in the CDW channel so that it properly interpolates between the zero-frequency limit I'+Dw -+ 2U
and the infinite-frequency limit I' ~ U. At an intermediate frequency, the CDW interaction strength has a
complicated temperature dependence. In the SC channel [see Fig. 2(b)] one finds

ser „=U„,+v
02 02

+ U T ) Go(i~„)Gp(i(u +„) 2 2

2—U T) Go(i~„)Go(i(u + +„pi) + m+t'+1 + ta+v +1

02
Az+ v2

02

+ "m+~+i.

(18)

for the IPT approximation. Once again, the IPT' ap-
proximation has the same functional form as in Eq. (18),
but the bare Green's function Go is replaced by the
dressed Green's function G.

At half-filling the Holstein model interaction is
particle-hole symmetric, and so the Green's function and
self-energy are purely imaginary and the vertices are
real. The self-energy can be expressed by Z(itd„)
i~„[1—Z(i~„)], with Z(iu„) the renormalization func-
tion for the self-energy. At half-filling, both y (X = —1)
and the maximal eigenvector of the scattering matrix are
also even functions of Matsubara frequency, and so the
only contribution of the irreducible vertex function to the
eigenvalue of the scattering matrix comes from the even
Matsubara frequency component [I' „+I' i „]/2.
The same result holds for the SC channel at all fill-

ings, because both the maximal eigenvector and the bare
susceptibility are symmetric functions of Matsubara fre-

quency.
A comparison of these approximations to the exact

QMC results for the electronic self-energy and one col-

umn of the irreducible vertex function in the CDW and
SC channels is made in Figs. 3—5 for three difFerent inter-
action strengths at half-filling. The phonon frequency is
set to be approximately one-eighth of the efFective band-
width (0/t' = 0.5) as was done in the QMC solutions. s

The energy cutofF is set to include 256 positive Matsub-
ara frequencies for the perturbative approximations.

At weak coupling (g = 0.4, T = 0.0625, Fig. 3), the
second-order IPT approximation is a reasonable approx-
imation to the electron self-energy [Fig. 3(a)] and to the
CDW irreducible vertex function [Figure 3(b)]. Note that
the IPT underestimates the self-energy (an efFect that
raises Tc) and overestimates the magnitude of the vertex
(an effect that also raises T,), and so one expects it to
overestimate the CDW transition temperature (both the

(o)

+ 2 ~~ ii +

—iX=2 +~+2
I+2(+ I + I +

(b)

FIG. 1. Dyson equation for the self-energy of the Holstein
model. The solid lines denote the bare (electronic) Green's
function Go and the wavy lines denote the phonon propa-
gator. The self-energy includes the Hartree and Fock con-
tributions, the second-order dressing of the phonon line, the
lowest-order vertex correction, and the second-order rainbow
diagram (which arises &om the self-energy insertion of the
Fock diagram into the Fock diagram).

FIG. 2. The irreducible vertex functions in the CDW and
SC channels. The CDW irreducible vertex function is shown
in (a). Note that the vertex corrections (exchange diagrams)
modify the interaction to lowest owlet in the CDW channel.
The SC irreducible vertex function is shown in (b). The vertex
corrections Srst enter at second order in the SC channel. In
the IPT approximation the electron propagator is the bare
Green's function Go, while in the IPT' approximation the
electron propagator is the dressed Green's function G.
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IPT and the IPT' approximations yield similar results
for the irreducible vertex function). Clearly third-order
diagrams play an important role even at this weak a value
of the coupling strength. In this sense, the IPT is less
accurate for retarded interactions than it is for instanta-
neous interactions (see Sec. IV).

As the coupling strength is increased to the point
where a double-well structure begins to develop in the
effective phonon potential of the QMC simulations of
Ref. 8 (g = 0.5, T = O.lll) one can see strong-coupling

effects begin to enter into the QMC vertex. The IPT
still underestimates the self-energy [Fig. 4(a)], but as the
strong-coupling regime is approached, the vertices be-
come increasingly attractive [Fig. 4(b)]. This enhanced
attraction is not represented by either the IPT or the
IPT' approximations. Note that in this regime the self-

energy and the vertices are underestimated, which im-

plies that the transition temperature may be determined
more accurately than expected, because these eH'ects tend
to cancel each other out in determining T,. The under-
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FIG. 3. Comparison of the second-order IPT (solid line)

and IPT' (dashed line) to the QMC solutions (solid dots)
for the Holstein model at half-filling with phonon frequency
0 = 0.5t, interaction strength g = 0.4t', and tem-
perature T = t'/16. This example is generic for the
weak-coupling limit. In (a) the self-energy renormalization
function Z(ice ) —1 is plotted against the Matsubara fre-
quency. In (b) the symmetric combination of the first col-
umn of the irreducible vertex function in the CDW channel
is shown. Note that even at this weak a value of coupling
strength the third-order diagrams must play an important
role.

FIG. 4. Comparison of the second-order IPT (solid line)

and IPT (dashed line) to the QMC solutions (solid dots)
for the Holstein model at half-6lling with phonon frequency

0 = 0.5t', interaction strength g = 0.5t, and temperature
T = t'/9. This example is generic for the transition region

to the strong-couphng limit. The self-energy renormaliza-

tion function (a) and the irreducible vertex function in the

CDW channel (b) are pictured. Note that in the limit where

the strong-coupling efFects begin to manifest themselves, the

QMC vertex becomes increasingly attractive at low-frequency

transfer.
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estimation of the magnitude of the vertex will eventually
cause T, to drop due to the large self-energy renormal-
ization.

When one is well into the strong-coupling regime (g =
0.625, T = 0.167, Fig. 5) the deficiencies of the IPT ap-
proximation become more apparent. The self-energy is
underestimated by alinost a factor of 2 [Fig. 5(a)], and
the vertices are underestimated by almost a factor of 3 at
intermediate f'requencies [Fig. 5(b)). Even at this large a
value of the coupling, both the IPT and IPT' approxi-
mations remain similar to each other. At this point one
would say the approximate theory is failing to faithfully

represent the exact solution.
A comparison of the IPT approximation to either

a second-order conserving approximation or to ME
theory shows that the IPT is a superior approxima-
tion for both the self-energy and the vertices, but none
of these approximate methods is accurate over a wide
range of interaction strength, indicating once again the
importance of the third-order diagrams.

At half-filling, the Holstein model always has a tran-
sition to a CDW-ordered phase at q = (z, z, z, . . .)
(X = —1). The transition temperature to this com-
mensurate CDW is plotted in Fig. 6 as a function of
the interaction strength. Both second-order IPT approx-
imations are compared to the QMC simulations. s The
IPT and the IPT' approximations are very accurate in
determining T„ the peak position and height are both re-
produced well. This result is definitely a numerical coin-
cidence, since the self-energy and vertices are poorly ap-
proximated at the peak of the curve (g = 0.625). Further-
more, it is the self-energy renormalization that ultimately
causes T, to turn over, but T, drops far too rapidly in
this strong-coupling regime. This result is similar to what
was found for a strong-coupling approximation: There
the transition temperature dropped too rapidly in the
weak-coupling regime.

The IPT and IPT' approximations are superior to ei-
ther a second-order conserving approximation or to ME
theory in both a qualitative and a quantitative determi-
nation of the CDW transition temperature at half-filling.
They also have the correct limiting behavior as U —+ 0 be-
cause they are second-order perturbation theories.

As the system is doped away &om half-filling, the
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FIG. 5. Comparison of the second-order IPT (solid line)
and IPT* (dashed line) to the QMC solutions (solid dots)
for the Holstein model at half-filling with phonon frequency
0 = 0.5t, interaction strength g = 0.625t', and temperature
T = t'/6. This example is generic for the strong-coupling
limit. The self-energy renormalization function (a) and the
irreducible vertex function in the CDW channel (b) are pic-
tured. Note that in the strong-coupling regime the QMC
vertex becomes quite attractive at low-frequency transfer.

FIG. 6. Transition temperature to the CDW-ordered state
at half-filling in the Holstein model at an intermediate phonon
frequency (0 = 0.5t'). The IPT approximation (solid line) is
compared to the IPT' approximation (dashed line) and the
QMC results (solid dots). Both approximations are similar
to each other and are accurate at predicting the peak height
and position. This occurs because the underestimation of the
self-energy is canceling the underestimation of the vertex in
the calculation of T, .
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vertex functions are poorly reproduced, implying that
third-order diagrams are important when the interaction
is retarded, but remarkably, the transition temperatures
are reproduced quite well. At half-filling both approxi-
mations show a peak in the CDW transition temperature.
Off of half-filling, the SC transition temperature is deter-
mined more accurately than the CDW transition temper-
ature (indeed anomalous behavior enters into the CDW
channel near half-filling when the interaction strength is
large enough). The phase boundary between CDW and
SC order is also accurately reproduced.

CDW instability remains locked at the commensurate
point (X = —I) until it gives way to a SC instability (in-
commensurate order may appear in a very narrow region
of phase space near the CDW-SC phase boundary '

but is neglected here). In Fig. 7, the phase diagram of
the Holstein model is plotted for three values of the in-
teraction strength (g = 0.4, g = 0.5, and g = 0.625).
The weak-coupling QMC data (g = 0.4) are reproduced
most accurately by the perturbative approximations, as
expected from the comparison of the self-energy and the
vertices in Fig. 3. As the coupling increases to g = 0.5
(where the double-well structure begins to form in the
effective phonon potential ), the approximations become
less accurate. The anomalous behavior of the CDW
transition temperature not being a maximum at half-
filling already appears for the IPT approximation, but
the IPT approximation is more accurate at determining
the CDW-SC phase boundary. This anomalous behavior
in the CDW transition temperature most likely occurs
because the approximation is not a conserving approx-
imation. Note that the SC transition temperatures are
still accurately reproduced in this regime.

When one is well into the strong-coupling regime
(g = 0.625) both the IPT and IPT' approximations have
large anomalous behavior near half-filling. The CDW-
SC phase boundary is also poorly approximated. Clearly
both approximations are failing at this large value of the
coupling.

Both the IPT and IPT* approximations yield virtually
identical results for the Holstein model at a moderate
phonon frequency. The self-energy and the irreducible

IV. HUBBARD MODEL
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FIG. 7. Phase diagram of the Holstein
model with 0 = 0.5t* at three different coupling strengths
(g = 0.4, 0.5, 0.625). The solid dots are the QMC solutions
with CDW order, and the open triangles are the gMC re-
sults with SC order (the dotted lines are a guide to the eye).
The kinks in the solid (IPT) and dashed (IPT') lines occur at
the CD&-SC phase boundaries. Note the anomalous behav-
ior of the CDW transition temperature not being maximal at
half-filling sets into the approximate theories as the coupling
strength increases.

The Hubbard model in Eq. (3) is the infinite phonon
frequency limit (0 ~ oo) of the Holstein model. The
Hubbard model has an electron-electron interaction that
only occurs between electrons with opposite spins. This
happens because of the cancellation of the direct and
exchange diagrams which causes all electron-electron in-
teractions between like-spin particles to vanish. The
perturbation theory becomes much simpler in the Hub-
bard model case, because of this reduction of diagrams,
and can be performed to higher order. Here the trun-
cated IPT approximation will be carried out to fourth
order, and will be compared to the QMC simulationss
to determine their accuracy. Previous work has concen-
trated on second-order conserving approximations,
third- and fourth-order conserving approximations, or
the fluctuation-exchange (FLEX) approximation. ii i4

One expects that a truncated approximation will be su-
perior to an infinite summation of random-phase approx-
imation (RPA) bubbles and particle-hole and particle-
particle ladders because the many-body problem re-
duces to a self-consistently embedded Anderson impu-
rity model, and the analysis of Yosida and Yamada
has shown that the total fourth-order corrections to the
self-energy are an order of magnitude smaller and oppo-
site in sign to the fourth-order contribution of the FLEX
approximation. The irreducible vertex functions should
have similar effects, but have not yet been analyzed in
detail.

The diagrammatic expansion for self-energy (in the
IPT approximation) of the Hubbard model is given in
Fig. 8. Here, the solid lines denote the bare Green's
function GD and the dotted lines denote the instanta-
neous Coulomb interaction U. The first line includes
the first-order Hartree contribution (which is a constant
that is absorbed into a renormalized chemical poten-
tial), the second-order contribution, and the third-order
particle-hole and particle-particle ladders. The second
line contains the fourth order contributions from the RPA
bubbles and the particle-hole and particle-particle lad-
ders. The third and fourth lines include all of the re-
maining diagrams that enter at fourth order. The 6fth
line contains the insertion of the second-order self-energy
into the second-order diagrams. The irreducible vertex
functions are too cumbersome to represent diagrammat-
ically. Explicit formulas for the electronic self-energy of
the Hubbard model through fourth order and for the
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lattice. The answer is affirmative, as can be seen in
Fig. 9, where each of the individual contributions to the
self-energy are plotted at half-filling for U = —1 and
T = 0.05. The dashed line shows the second-order con-
tribution to the self-energy. The dotted lines are each of
the four different fourth-order contributions. FLEX de-
notes the first fourth-order contribution corresponding to
the fourth-order bubbles and ladders. Line 2 and line 3
denote the contributions arising &om the next two lines
respectively in Fig. 8, and IPT is used to denote the
contributions arising from the second-order self-energy
insertions into the second-order diagram (the last line of
Fig. 8). The total of all of the fourth-order diagrams is
plotted with the solid line. One can see that the remark-
able near cancellation of the fourth-order diagrams still
holds in infinite dimensions, and in this case the fourth-
order contribution is the same sign, but more than an
order of magnitude smaller than the FLEX contribution
at fourth order.

A comparison of the diferent approximation schemes
versus the exact QMC results is given in Figs. 10—12 for
three difFerent values of U. The second-order and third-
order approximations employ an energy cutoff of 256 pos-
itive Matsubara frequencies; the fourth-order approxima-
tion uses 64 positive Matsubara frequencies. In Fig. 10(a)
the self-energy renormalization function is plotted for the

0
IPT

CDW vertex have been given before (except for the
second-order self-energy insertions into the second-order
diagrams which are easily determined). Once again IPT
denotes the approximation where the irreducible vertex
is strictly truncated at a given order, while the IPT' ap-
proximation determines the vertex functions by using the
dressed Green's functions.

Since the Hubbard-model interaction is particle-hole
symmetric, the half-filled band corresponds to p = 0, and
the Green's functions are purely imaginary. The odd-
order contributions to the self-energy all vanish and each
of the fourth-order contributions on a given line in Fig. 8
are identical. Since the self-energy is an even function
of U at half-filling, but the irreducible vertex function
contains both even and odd powers of U, the only dif-
ference between a truncated approximation of order 2n
and of order 2n+ 1 is that the irreducible vertex function
is larger for the odd-order approximation. Therefore, we
expect that an even-order approximation will underesti-
mate the transition temperature (in weak coupling) and
an odd-order approximation will overestimate T .

One of the most remarkable results of Yosida and Ya-
mada is that the total fourth-order contribution to the
self-energy is an order of magnitude smaller than any of
its component pieces. One can ask if the same near can-
ceQation holds in the mapping to the infinite-dimensional

3
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2nd

—0.6
0

~ ~

Matsubara Frequency iv„

FIG. 9. Near cancellation of the fourth-order contribu-
tions to the self-energy. The second-order contribution to
the self-energy (dashed line) is compared to each of the
four fourth-order contributions (dotted lines) and the net
fourth-order contribution (solid line) at U = t, T = t'/20, —
and half-filling. The dotted line denoted FLEX corresponds
to the first line of the fourth-order contributions in Fig. 8.
The labels line 2 and line 3 denote the next two lines of
fourth-order contributions in Fig. 8, and the label IPT refers
to the last line in Fig. 8 corresponding to the second-order
self-energy insertions into the second-order diagrams. Note
that the total contribution of the fourth-order diagrams is an
order of magnitude smaller than any of the individual classes
of diagrams in Fig. 8, and that it is the same sign as the FLEX
contributions.



6948 J. K. FREERICKS AND MARK JARRELL 50

two different approximations at U = —1 (T = 0.05).
Note that the fourth-order approximation virtually re-
produces the QMC results. In Fig. 10(b) the even com-
ponents of one row of the irreducible vertex function for
the CDW channel are compared for U = —1 in the IPT
approximation. All of the approximations are in reason-
able agreement with the QMC results, but the accuracy
is signi6cantly reduced relative to what was found for the
self-energy. The IPT* approximation is compared to the
QMC results in Fig. 10(c). These results are similar to
the IPT approximation, but perhaps not as accurate.

As the coupling strength is increased to U = —2 (T =
0.125) the self-energy is becoming bracketed by the two

low-order approximations, with the fourth-order approx-
imation overestimating the self-energy, and the second-
order approximation underestimating the self-energy, as
shown in Fig. 11(a). The CDW vertex is plotted in
Fig. 11(b) for the IPT approximation. One can see
strong-coupling effects beginning to enter as the QMC
vertex becomes more attractive at low-&equency transfer
than predicted by the even-order approximations. The
third-order IPT approximation is producing the correct
qualitative shape of the vertex, but it is overestimating
the magnitude by a large amount. The IPT' approxi-
mation is shown in Fig. 11(c). Here the two different
methods for calculating the vertex yield quite different
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FIG. 10. Comparison of the IPT and IPT' approximations to the QMC solutions for the Hubbard model at half-filling in
the limit of weak coupling (U = t', T = t'/20). T—he second-order (dashed line), third-order (dotted line), and fourth-order
(solid line) approximations are compared to the QMC solutions (solid dots). In (a) the self-energy renormalization function is
plotted against Matsubara frequency. In (b) the even component of the first column of the irreducible vertex function in the
CDW channel is plotted in the IPT approximation, and in (c) it is plotted in the IPT approximation.
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results. In the IPT' approximation, all orders are show-

ing a weakening of the vertex at lower &equencies, which
is not present in the QMC data.

Finally, at a rather strong value of the coupling
(U = —3, T = 0.167), where the transition temperature
reaches its maximal value, the self-energy is still repro-
duced quite accurately by both orders of the IPT [see
Fig. 12(a)j. The vertices are, however, quite poorly ap-
proximated. In Figs. 12(b) and 12(c) the results for the
IPT and IPT', respectively, are presented. The QMC
vertex is becoming strongly attractive here. Only the
third-order IPT approximation has the correct qualita-
tive behavior, but it overestimates the magnitude of the
vertex. The IPT' approximation produces a fairly flat
&equency dependence to the vertex which is quite accu-

rate at all but the lowest-frequency transfers (where it is
almost an order of magnitude too small).

The conclusion that we can draw &om this compar-
ison of the self-energy and irreducible vertex functions
is that the IPT approximation is quite accurate for the
self-energy, but is a rather poor approximation for the
irreducible vertex function. It is known that the reason
why the IPT is so accurate for the self-energy arises &om
the fact that it properly reproduces the atomic limit, 2~'4

but it is possible that it does not produce the atomic
limit for the irreducible vertex functions. If this were the
case, one could try another ad A:oc interpolation scheme
that interpolates between the perturbative result for the
vertex, and the atomic limit, to provide a more accurate
approximation.
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FIG. 11. Same as in Fig. 10, but with a stronger value of the coupling (U = 2t', T = t'/8—). The self-energy is still
reproduced accurately by all orders, but only the third-order IPT approximation has the correct qualitative behavior for the
vertex.
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Note also that since the self-energy is reproduced quite
accurately by the IPT, but the magnitude of the vertex is
grossly underestimated, the transition temperature will

drop too rapidly in the strong-coupling regime (with the
exception of the third-order IPT approximation where
the transition temperature will grow too rapidly). This
is illustrated by plotting the transition temperature for
the CDW transition at half-filling in the attractive Hub-
bard model as a function of U (Fig. 13) and compar-
ing to the QMC solution. s In the IPT approximation
[Fig. 13(a)], the peak in T, as a function of U is prop-
erly reproduced for the even-order approximations, but
not for the odd-order one. The transition temperature
decreases too rapidly in the strong-coupling regime be-
cause of the underestimation of the vertex. In the IPT*

approximation [Fig. 13(b)], all orders have a peak in T,
as a function of U. The third-order approximation is the
most accurate here, because it has the most attractive
vertex, but even in this case the quantitative agreement
with the QMC is not as good as was found for the trun-
cated conserving approximations, 14 where the transition
temperature did not have a peak, but the underestima-
tion of the self-energy compensated for the underestima-
tion of the vertex to produce reasonably accurate transi-
tion temperatures into the strong-coupling regime.

The doping dependence of the SC transition tempera-
ture is plotted in Fig. 14 for both the second- and third-
order IPT and IPT' approximations and U = —1. Even
at this weak a value of the coupling strength, the second-
order IPT and IPT' approximations show the anomalous
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reproduced accurately by all orders, but only the third-order IPT approximation has the correct qualitative behavior for the
vertex.
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behavior of an increase in T, for small dopings off of half-
filling. A third-order approximation works much better
(because third-order contributions to the self-energy en-
ter when the electron concentration is not equal to 1),
and does not display the anomalous behavior (at this
value of U). Once again, the IPT' approximation is more
robust against the anomaly in T'„but all IPT approxi-
mations quickly fail as the coupling strength increases
beyond U = —1 (because they fail at half-filling as shown
in Fig. 13).
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FIG. 14. Transition temperature to the SC state in the
Hubbard model as a function of electron concentration at
U = —1. The second-order IPT (solid line), third-order
IPT (dotted line), second-order IPT' (dashed line), and
third-order IPT' (chain-dotted line) are compared to the
QMC results (open triangle). Note that both second-order
approximations display anomalous behavior near half-Slling
even for this small a value of the interaction strength.
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FIG. 13. Transition temperature to the CDW-ordered
(and SC-ordered) state in the Hubbard model at half-filling.
The second-order (solid line), third-order (dotted line), aud
fourth-order (solid line) IPT (a) and IPT' (b) approxima-
tions are compared to the QMC results (solid dots). Note
that the transition temperature curves all have a turnover
(except for the third-order IPT approximation) because the
vertex is underestimated as the coupling strength increases.
The third-order IPT approximation does not turn over be-
cause the vertex is overestimated.

V. CONCLUSIONS

The iterated perturbation theory approximation~ has
been applied to the attractive Holstein and Hubbard
models in infinite dimensions. This weak-coupling theory
is not a conserving approximation because it corresponds
to a strictly truncated perturbation series for the self-

energy. The vertex functions are either approximated
with a strictly truncated perturbation series too (IPT),
or with a truncated perturbation series that includes all
self-energy insertions (IPT') .

At half-filling, these approximate theories are accurate
in reproducing the electronic self-energy (for the Holstein
model, the accuracy increases as the phonon frequency
increases) but do not reproduce the correct behavior of
the irreducible vertex functions in the strong-coupling
regime.

In particular, for the half-filled Hubbard model, the
IPT is a very accurate approximation for the self-energy
of the Hubbard model, but is a poor approximation for
the irreducible vertex functions a low-frequency transfer.
As a result, the transition temperature does in general
display a peak (because of the large self-energy renormal-
izations), but decreases too rapidly in the strong-coupling
regime.

The IPT is a much less accurate approximation for
the self-energy of the Holstein model at 6nite phonon
frequency (indicating the importance of higher-order di-
agrams). The IPT is also a poor approximation for the
vertex functions, but, remarkably, the transition temper-
atures are quite accurately approximated both at half-
filling and off of half-filling (for small enough coupling
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strength). The peak position and height of T, at half-
filling are reproduced well, as is the doping dependence
of T, up to the region of parameter space where a double-
well structure begins to develop in the effective phonon
potential.

As both of these systems are doped away from half-
filling, the transition temperatures (to either a CDW or a
SC) display the anomalous behavior of initially increasing
with doping. This anomalous behavior first enters at
some critical value of the coupling, and becomes worse
as the coupling strength is increased. For the Holstein
model (with 0 = 0.5) this critical coupling lies near g =
0.5, whereas for the Hubbard model it occurs at ~U~ —1.
Third-order diagrams tend to push this anomaly out to
larger values of interaction strength as expected because
the third-order contributions to the self-energy can be
large as the system is doped off of half-filling.

As a final summary, the IPT is a highly accurate ap-
proximation for the self-energy when the interaction is
instantaneous, but generally underestimates the magni-
tude of the vertex functions at low-frequency transfer;
it does not approximate the transition temperature well
in the strong-coupling regime. The IPT is a less accu-
rate approximation for both the self-energy and vertices
for retarded interactions, but is much more accurate in
determining transition temperatures because the errors
in the self-energy and the vertices tend to cancel in the

determination of T . The the explanation for this behav-
ior is that the IPT is an accurate approximation when
third-order terms can be neglected. This occurs for the
self-energy of the Hubbard model at half-filling, but is not
true for the self-energy when the interaction is retarded or
the filling is diHerent from 1, or for the irreducible vertex
functions. Qualitatively the IPT approximation is better
than the same order conserving approximation for the
self-energy of the Hubbard model, but the transition tem-
peratures are better approximated (quantitatively) by
the conserving approximation. For the Holstein model,
the IPT is superior to the conserving approximation in
all aspects except for the anomalous behavior in T, near
half-filling and for large enough coupling strength.
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