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and nonuniform-field geometries
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This paper describes an integral-equation approach to solving for the flux-front profile in the critical-
state model. Both nonuniform external fields and demagnetizing geometries can be accommodated as
long as cylindrical symmetry is preserved. The solution for a sphere in a uniform external field is
presented and compared with those of other calculation techniques.

INTRODUCTION

The critical-state model was developed to account for
flux pinning in superconductors. ' This model assumes
current flows in a type-II superconductor only at a local
limiting or critical current value. Penetration of rnagnet-
ic flux into the material is determined from the local criti-
cal current through Maxwell's relation. Flux first enters a
solid object from the surface as an external field is ap-
plied. Initially, assuming zero-field cooling (ZFC),
screening currents Sowing at the critical current density
(J, ) are established in the superconductor that shield the
object s interior from magnetic-field penetration. These
currents penetrate to a depth known as the Aux-front
boundary, where the magnetic flux density drops to zero.
Within this boundary, total shielding takes place. As the
external field is increased, the flux-front boundary
penetrates deeper into the object until eventually the ob-
ject is completely filled with screening currents. The
value of the external field at this point is known as the
full field-penetration value (II'). Screening currents are
assumed to How only at the local critical current value,
which depends on the material microstructure (pinning
force) and the local field. The Bean' critical-state model
assumes that J, is independent of the local field; this is as-
sumed throughout this paper, although extension of the
approach to field-dependent critical currents is possible.

The primary use of the critical-state model is for deter-
mining the local critical current for a given sample. This
is often accomplished by using the model to calculate the
magnetization of a sample as it is brought through a mag-
netization cycle with an external field. This calculation is
straightforward for sample geometries that do not exhibit
demagnetization effects due to field lines crossing the
sample surface. Therefore the sample geometries often
assumed are cylinders or plates in fields parallel to the
sample surfaces. Also, some sample shapes can be ap-
proximated by ellipsoidal shapes with known demagnetiz-
ing coeScients. The high-T, superconducting materials
are extreme type II and can be described by the critical-
state model. Recent calculations of the expected magneti-
zation as a function of the external field have been very
successful. ' These calculations are straightforward
enough that even field-dependent local critical currents

can be taken into account analytically.
The situation is much more complicated if the sample

shape or field configuration involves demagnetizing
effects. One such case, which often occurs in practice, is
that of a disk or plate in a field perpendicular to the sam-
ple plane. This geometry is the extreme for deinagnetiza-
tion, but is often preferred experimentally. The full criti-
cal state (completely filled sample) in this geometry has
been treated numerically and the results are used to pre-
dict the fields above the sample surface with good pre-
cision. Partially filled samples, where the flux front
has not penetrated completely, are more complicated;
however, results have been published recently for which
an optimization technique was used to determine the
boundary where the magnetic field inside the sample is
zero for a given external field. ' This method appears to
work well and has been extended to both spheres and el-
lipsoids of various shapes. However, this procedure has
been questioned and it has been proposed that, in order
to have a field-free region inside a solid object, the flux-

penetration region cannot be filled with a single-value
current, as assumed in the Bean model. '0

This paper supports the idea that it is possible to find a
field-free region, agrees with previous work done with
this idea, and presents an alternative approach for deter-
mination of the flux-front profile. An integral equation is
developed for the external field derivative of the flux-
front boundary. Successive applications of this equation
can generate a new boundary from an old one, leading to
determination of the boundary for any external field and
prior history. The model is based on known solutions
for the fields from a single current loop and is therefore
restricted to cylindrically symmetric problems. The ap-
proach, method, and results for a sphere in an external
uniform field are presented.

THEORETICAL APPROACH

Figure 1 shows a superconducting sphere placed in a
uniform external magnetic field, H'"'=H,'"'e„where e, is
the unit vector along the z axis. Cylindrical symmetry re-
quires any induced current inside the sphere to travel
along the azimuthal direction, e&=e, Xe„,where e„is the
unit vector in the radial direction. All induced currents
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FIG. 1. A sphere in a uniform external field showing the hor-

izontal current loops that make up the critical-state currents.

inside the sphere form loops in the x,y plane with radius
and vertical coordinates (r', z') measured with respect to
the center of the sphere. According to the Bean critical-
state model, a region of shielding current is created, start-
ing at the sphere boundary and extending inward, that
satisfies V XB=poJc. This leads to a decrease of the net
magnetic flux density from the surface to zero at the
flux-front boundary. The region inside this boundary is
free of magnetic field, shielded completely by the induced
screening currents. The goal of the model for this
demagnetizing geometry is to predict the shape of this
field-free region for calculation of magnetization and
other measurable parameters for comparison with experi-
mental results.

The approach described below uses the vector potential
to determine where the flux-front boundary is located.
The boundary, defined as the surface on which the total
magnetic field is zero, can be described by a vector equa-
tion. However, it can also be defined as a surface of zero
vector potential, as shown below. The use of the vector
potential simplifies the calculations since only one com-
ponent is needed for problems of cylindrical symmetry.

Consider a simply connected region Q with a closed
surface BQ, with no currents inside Q and only tangential
currents on BQ. Let the normal component of the mag-
netic induction, 8„,be zero on BQ (normal unit vector e„
points into Q), then, following Refs. 8 and 9, B=0 for all
points in 0 and A=0 for cylindrically symmetric
geometries, where 8=VX A. This can be shown as fol-
lows. Given J=O inside O, VXB=O, with B=p&H and
B„=O.Then, since V.B=O, 8=VV and V 4'=0, and
the following integral becomes

f v +@+«=. f ev'+d~+ f Is+I'«= f &'«.

Coulomb gauge V. A=O, A=V@, V 4=0. Repeating
the above argument for the vector potential yields

j e~„ds=f ~'dr=0.
an

" n
(3)

For cylindrical symmetry, the component of the vector
potential normal to the surface is always zero, and there-
fore A =0 inside 0 and on BQ.

The converse argument is also true: given A =0 inside
Q and on BQ, then it can be shown that 8„=0on M
and, from the above, B=0 in Q. The key to showing this
result is that there is no magnetic flux penetrating
through BQ. Consider an infinite plane intersecting Q
with the intersecting area being E, which has a normal
vector pointing into Q. This intersection forms a closed
loop Xk (with a counterclockwise sense) on BQ. Then,
using Stokes's theorem, the magnetic flux IIx through

XK into Qis

II = Ad = V'XA. ds= B„ds. 4
K K

Since A=O on BQ, Ilx =0. In the limit as the size of E
is shrunk to zero, the above argument states that B„=O
on BQ and, by the previous argument, B=0 in Q.

In the following sections, the flux-front surface is
defined as that surface on which the vector potential is
zero.

ZERO-FIELD-COOLED SPHERE
FLUX-FRONT BOUNDARY

where you&(r, z;r', z') is the vector potential at (r, z) due

to a single current loop of unit current with radius and
vertical position (r,z') and the minus sign indicates that
the induced currents shield the external field. This func-
tion is well known" and can be written in terms of com-
plete elliptic integrals of the first and second kind as

a&(r,z;r', z')

Let the radius of the sphere be ro and the magnitude of
its critical current density be I, . Throughout, it is as-

sumed that the critical field for entrance of a single flux
line (H„}is zero. In this case, flux begins to enter the

sphere immediately as the external field is increased from
zero. The vector potential produced by the external field

1S

Zg extr
A'"'( ) =

2

Inside the sphere, the induced field A &" is

Pp Tp Zd'" tr, zi= —f dz' J dr'Izg, z (r, z;r , z ), ''
p(Z, H )

(6)

By applying the divergence theorem, this integral be-
comes

1/2
1 r' (l —k /2)K(k ) —E(k )

k

f VB.ds= f VB„ds=f B d~=0 . (&)
an an

" n

Since B is positive definite, 8=0 everywhere in Q and
on BQ. Consequently VX A=O in 0 and, along with the

where

4rr'
(r+r'} +(z —z')
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The flux-front surface is described by r=p(z, P) where
the external field dependence is included in the normali-
zation parameter P=II;*'/roJ, . The total normalized
vector potential at (r,z) is given by

g ext + g iIlg

A~(R, Z, P) =
por4

d A ~(P(Z, P),Z)
BP

(9)

Another way of stating this requirement is that, if a coil
is placed on this flux front, that is, with radius P(Z, P),
no flux passes through the coil. Differentiating Eq. (8)
and evaluating on the flux-front boundary yields

+ J dZ'~p(P(Z, P),Z;P(Z', 8),Z')

=0 . (10)

This is a single-integral equation describing the flux-front
surface.

NUMERICAL PROCEDURE FOR
FLUX-FRONT RESOLUTION

In Eq. (10) both the flux-front profile and its rate of
penetration (the derivative term) are unknown. As sug-
gested by the critical-state model, when the external field
P is initially turned on, flux enters the sphere from the
surface. Thus P(Z, 13=0)=V 1 —Z and, when P is
small, the flux-front profile is very near the sphere sur-
face. With substitution of a known P(Z, p), Eq. (10) be-
comes a so-called linear Fredholm integral equation of
the first kind for the unknown derivative BP/BP. This
type of linear integral equation is well understood and

Xa&(R,Z;R', Z')

(8)

where all lengths are normalized to the sphere radius
R =r/ro, Z=z/ro, P=p/ro, etc. The position of the
flux-front surface is obtained by finding those positions
[P(Z,P),Z] where the vector potential of Eq. (8) is zero.
This is a difficult problem in general, but can be
simplified by reducing Eq. (8) to a single integral as fol-
lows. In general, Hz"', and therefore P, is a function of
time. This paper deals only with the quasistationary
states of the critical state. The time scale for changes in
the external field is typically very much longer than that
exhibited by flux-line motion, so the model always as-
sumes a sequence of stationary states uniquely defined by
the history and present value of the external field.
Changes in the external field, therefore, produce a corre-
sponding change in the flux-line profile position, but at all
times the vector potential on this profile is zero. There-
fore a requirement of the flux-penetration profile is that

A](P(Z, P+hP), Z)= A](P(Z, P),Z)

=0

there are several algorithms for resolving it. Most of
these algorithms use the iteration approach; convergence
of the iteration is either guaranteed by rigorous
mathematical arguments or shown to be so in applica-
tions where no mathematical proof is available. A simple
convergent iteration scheme proposed and analyzed by
Gold' was used to resolve Eq. (10) (see the Appendix).
Using this iteration technique, the derivative term can be
resolved satisfactorily within a finite number steps, typi-
cally two. For the case of a very small external field, the
derivative term can be determined by equating the low-
field flux penetration to a surface current density as out-
lined in Ref. 9, with the result [BP(Z,P)/BP]~Ii —0= ——', .
This result is verified by substituting into Eq. (10) where
satisfactory convergence is achieved with the first itera-
tion. However, the initial value of the derivative quantity
is not necessarily needed. When not available, it can be
resolved from Eq. (10) by applying Gold's algorithm,
given a reasonable trial function. As the external field is
increased to P=b,f3, the new flux-front profile is approxi-
mated by

P(Z, P=bP)=P(Z, P=O)+ ' bP .

This approximation is acceptable as long as the incre-
ment hP is sufficiently small. With this approximation,
the flux-front profile at P=hP is known but its derivative
is yet to be determined. This is the same situation as at
the beginning when P=0. The above procedure is repeat-
edly employed, using the previous derivative term as a
trial function, to solve for the new derivative term corre-
sponding to each profile. The proposed methodology for
resolving Eq. (10) involves an incremental numerical
scheme with N steps 1 & n ~ N and an iteration technique
with M steps 1 ~i &M. The complete method can be
summarized by expressing Eq. (10) as

n, i

=0

with P„=P(Z,P„)and (BP/BP), , = —
—,'. The values for

the flux-front boundary are given by P„+,=P„
+ ( dP /BP)„EP.

Figure 2 shows several intermediate calculated flux-
front surfaces as a function of the normalized radial dis-
tance R and vertical distance Z. Because of spherical
symmetry, only the results in one quadrant are shown.
The intersection point on the Z axis (Zo) was determined
for each new flux-front surface. From this intersection
point to the origin, the same number of calculation points
was used for each flux-front surface to obtain similar ac-
curacy between fronts. The calculated profiles agree well
with those given in Ref. 9.

The method of resolving Eq. (10) can be verified by
comparing the full field-penetration value obtained with
that determined analytically. Figure 3 shows the distance
from the center of the sphere (Ro), determined numeri-
cally, of the fiux-front surface. The value of P that fills
the sphere with current loops and produces zero field at
the center is called P* and is calculated analytically by
setting
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the sphere. The magnetic moment of the current distri-
bution in the sphere is m=me where m= —' rXJ dZ7 r
and the integral is taken over the filled portion of the
sphere.

This becomes
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m(P)= —f dz'f dr'mr' J, ,
~0 P(z', P)

~ZJ r4
c 0

8

(13)
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The magnetization of the sphere in normalized coordi-
nates is then

m(p)
( ', m.r )c—

FIG. 2. Flux-front profiles calculated from Eq. (11) for the
first quadrant of the sphere as a function of applied field.

harp

1, +1—Z'
dZ' dR'R'

4 —1 ~(z, ls)

lttcrcHz(0, 0)=P' —f dZ' f dR'hz(0, 0;R', Z')&1—Z/2 =M' —1+ Z'P Z',3' —1
(14)

where

=0
4 7 (12) where M'=M(P')=3m J,rc/32.

MAGNETIZATION HYSTERESIS LOOP

1 R'
hz(0, 0;R ', Z') =-

ZI2+R 2)3/I2

Numerically, p'=0. 789 at Re=0. The numerical and
analytical values agree to within 0.5%, consistent with
the expected accuracy of the calculation procedure used.

MAGNETIC MOMENT CALCULATION

Once the Aux-front profile's dependence on the exter-
nal field for the ZFC case is known, then the response of
the sample to a complete cycle of changes in the external
field can be readily calculated. The following illustrates
this by calculating the magnetization hysteresis curve for

The foregoing describes the magnetization as the exter-
nal field is increased from the ZFC state to some value

p~,„(p'. When the external field is subsequently re-

duced to p from p,„,a second flux-front boundary enters
the sphere from the outer surface with currents fiowing at
+J,e&. It is now necessary to label the two flux fronts as

P, (Z,p,„)and P2(Z, p). The first front is filled with
negative currents (defined as flowing in the direction that
produces a magnetic moment that opposes the external
field) and remains fixed as the second front fills with posi-
tive currents, as depicted in Fig. 4. Now the total nor-
malized vector potential [normalization factor given in

Eq. (8)] at an arbitrary location (R,Z) is
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FIG. 3. Locations of the flux-front profile intersection Ro
with the sphere axis as a function of the applied field.

FIG. 4. Schematic of the fixed initial flux-front profile (P& )

and the second profile (P2) entering as the field is reduced from
its maximum value.
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da(RZ, P,) = —f dZ'f, dR'a((R, Z;R', Z')+2f dZ f', dR'a&(R, Z;R', Z') .—1 1 ' max
—1

(15)

The factor of 2 in the last integral is introduced to ac-
count for the negative current neutralizing the previous
positive current and then filling that space. Let
p' =p,„—p; then application of the previous argument
maintaining the total vector potential zero on the first
flux-front boundary by introducing a second boundary
similarly to the first yields

P2(Z, p'}
+2 Z'ap P2 Z, ',Z;P2 Z',

M2( ) 8= + 1+ f dZ'p, (Z', p,„)
f dZ'p (Z', p},

or as

Mi(P) Mi(P,„) Mi((P,„—P) d'2)'" —2M* M* M

(18)

ap, (Z,p ) =0. (16)

This is the flux-front equation for Pz. The equation for
the ZFC fiux front P, is recovered if p'=2p". Therefore

A complete hysteresis curve for the magnetization is ob-
tained by calculating P3 for P,„~—P~P,„.The
third flux-front profile, obtained in a similar manner to
the second flux front, is given by
P3(p) =P, ((p,„+p) l2) for p,„~—p~+p,„andthe
magnetization becomes

P2(Z, p) =Pi Z, 0&P,„—P & 2P,„, M3(p)
M*

M i(P,„) Mi((Pm, „+P)/2)
+2 . (20)

M* M*

Mi(P) =— 3J,ro

4

which retraces all the locations of P, but at a slower pace
with respect to p. This accounts for the hysteresis ob-
served in the critical-state model.

The total magnetic moment of the sphere for
p'&p ..&p& p—

Figure 5 shows the resultant hysteresis curves for various
values of the maximum external field p,„&p*. Once
the magnetization curve is known, the response of the
sphere to any time-dependent external field can be calcu-
lated. In particular, if the response to a sinusoidal field is
found, then it can be decomposed and the sphere's har-
monic response to ac fields is known.

CONCLUSION

This can be written as
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FIG. 5. Magnetization hysteresis loops for the sphere for
various limiting fields up to the full penetration value P .

A procedure has been presented for calculating the
flux-front profile for a sphere in a uniform external field.
The technique relies on finding a surface with zero vector
potential for cylindrically symmetric problems. This sur-
face is deterinined by simple integration of its derivative
with respect to the external field, found by resolving a
linear Fredholm integral equation of the first kind. It has
been shown that the entire hysteresis loop response can
be found by extension of the ZFC magnetization response
with increasing external field. Other experimentally mea-
sured quantities relating to the critical state can be calcu-
lated directly from the hysteresis loop if the time depen-
dence of the external field is known.

The technique developed in this paper for solving the
critical-state model in the Bean approximation can be ex-
tended to field-dependent critical currents, other cylindri-
cally symmetric sample shapes, and planar samples in cy-
lindrically symmetric external fields. ' ' This work is
presently in progress.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, under DOE
Idaho Operations Office Contract No. DE-AC07-
76ID01570.



6928 K. L. TELSCHOW AND L. S. KOO 50

APPENDIX

In this section, the procedure used for resolving Eq.
(10) with a known fiux-front profile P(Z, P) is given. To
simplify the discussion, Eq. (10) is rewritten symbolically
as

(Al)

where f is the unknown vector dP(Z', P) ltd and b is the
given vector P—(Z,P)l2 T.he symbol E represents the
integral operator with tt&(P(Z, P),Z;P(Z', P),Z') being
the kernel. Following the iterative resolution technique
discussed by Gold, ' the resultant quantity f can be ex-
pressed as the product of a diagonal matrix D and the
known vector b as f=Db. In the first iteration, f is re-
placed by a guessed value f"' and the corresponding out-
put vector b"' is then obtained by substituting f"' into
(Al). From this step, the matrix D has the first iterated

value D'" with its ith element being D,"=. f;"'Ib ". For
the next iteration step, the initial guess is f' '=D'"b.
Then the above steps are repeated until the difFerence

~

f' ' —f' "~ remains within an acceptable small value.
The final vector f'"' is subsequently considered as the
resolved value of f for the corresponding external field P.
For all the results reported in this paper, k =3. At P=O
and with f ' " being the analytically exact value,

~f '"' f '"—"~ remains acceptably close to zero for k ~ 2.
However, knowledge of the analytically exact value for
f'" is not necessary. When other reasonable values are
used instead, a satisfactory result can be achieved within
a finite number of steps, often k &6. At the full field-

penetration value P=P', this iteration technique together
with the incremental procedure mentioned in the main
text returns a numerically estimated P' within a 0.5%
difFerence from the analytical value. Hence the validity
of this iterative technique is verified at both P=O and
13=P"
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