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Two-dimensional resonant modes in stacked Josephson junctions
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In a vertical stack of Josephson junctions, vortices in adjacent junctions are coupled by screening
currents if the electrodes are thinner than the London penetration depth. We investigate typical junc-
tion parameters of both niobium multilayers and intrinsic Josephson junctions in high-T, single crystals.
Using coupled one-dimensional sine-Gordon equations, stable coherent motion of Josephson vortices in
an external magnetic field is predicted. This motion is triggered by two-dimensional resonances of the
stack. For the resonance frequencies and amplitudes analytical expressions are derived.

Stacked Josephson junctions are valuable objects both
for theoretical and experimental investigations at least for
three reasons. First, nonlinear effects resulting from the
sinusoidal current-phase relation of the Josephson
currents and the dynamics of fiuxoid quanta, moving
along the barriers between the superconducting layers
(Josephson vortices), can be studied in general. If the
thicknesses of the superconducting layers d are much
smaller than the magnetic penetration depth A, , screening
currents flowing around Josephson vortex will spread
over several junctions. Thus vortices moving along
different junctions interact, one of the possible results be-
ing coherent motion of these vortices. Under appropriate
conditions, Josephson vortices will excite cavity reso-
nances of the stack (the Fiske resonances), which in turn
infiuence the vortex motion. The existence as well as the
stability of a coherent vortex motion has been shown for
a stack of two junctions. ' There are two difFerent reso-
nant modes in these stacks, a symmetric mode with equal
electric fields across each junction and an asymmetric
mode involving opposite equal fields. ' A priori, it is un-
clear if similar results can be obtained for stacks of more
than two junctions. The two-junction stack is symmetric
in the sense that each junction has one outermost elec-
trode and one electrode shared with the second junction.
This symmetry is obviously broken in larger stacks.

The second reason is that many high-T, superconduc-
tors, e.g., Bi2SrzCaCu20s (BSCCO), as well as some or-
ganic superconductors like ~-(BEDT-TTF)2Cu(NCS) 2, act
intrinsically as natural stacks of thousands of junctions.
In these materials, the ratio of the thickness of the super-
conducting layers (Cu02 or BEDT-TTF layers respective-
ly), and the field penetration depth A, is of the order of
10 resulting in a strong coupling between different
junctions. An analysis of stacked Josepson junctions will
thus give insight into the electrodynamics of these impor-
tant superconductors.

Third, there are promising applications of stacked
Josephson junctions. Tunable high-frequency sources
based on planar arrays of phase locked junctions already
produce power levels of several pW into high-impedance
loads (20—60 0}in the submillimeter wave range. Long
Josephson junctions are used as Quxon oscillators, the os-

cillator frequency being controlled by an external mag-
netic field directed parallel to the layers. Vertical pack-
aging in arrays will help to increase the number of junc-
tions, while keeping the array dimensions small. Stack-
ing in the case of fiux-fiow oscillators helps increase their
output power and decrease their impedance mismatch.

The purpose of this work is to show, both numerically
and analytically, that under appropriate conditions the
interaction due to screening currents should give rise to
coherent motion of vortices in difFerent junctions. We
will show that coherent motion is promoted by two-
dimensional resonances. These resonances are the two-
dimensional analog of Fiske resonances known from sin-
gle junctions.

We first introduce the model of coupled sine-Gordon
equations describing the dynamics of stacked Josephson
junctions, ' which is derived for arbitrary ratios of the
thickness of the superconducting electrodes and the Lon-
don penetration depth A, . A schematic drawing of a stack
of N Josephson junctions is shown in Fig. 1. For the sake
of simplicity we write down the following equations for
identical junction parameters. The time variable ~ is nor-
malized to Coo /(2n j,t); o is the electrical conductivity,

j, is the maximum density of the Josephson currents.
Lengths are given in units of the junction length b in x
direction, electrical fields e,

„

in units j, /o, magnetic
fields b in units 4o/(potb ), and current densities in units

j,. Integrating the phase gradient of the order parameter
in the nth electrode,

p'„=2m/40( A„„+poA,j„„),
along the contour shown in Fig. 1, and using Maxwell's
equations, yields the coupled sine-Gordon equations
describing the dynamics of stacked Josephson junctions,

Y"™(p,Y'+}'+j'—1',„,},
with gauge-invariant phase differences
'Y (Xi . ~ }'N» j'=(siny], . . . , SinyN),
j...=j,„,(&, . . . , I). p, =2~em~, t/o'4, is the
McCumber parameter; e is the dielectric constant. The
elements of the matrix M are given by M, ,

= ( b /A. . ),
M;;+i=M;;, = (b/Ak), wit—h A.J =A,~ +2k,

„
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FIG. 1. Stack of N Josephson junctions in a magnetic field.
The electrodes are numbered from 0 to N. The width of the
stack in the x direction is b. Its width in the y direction, a, is as-
sumed to be smaller than the characteristic correlation lengths

and kk introduced in the text. Screening currents flowing
along the nth electrode are denoted j„„.The z-axis currents j, „

flowing across the nth Josephson junctions of the stack are
given by the sum of Josephson currents, quasiparticle currents,
and displacement currents. Transport currents with homogene-
ous density j,„,are fed into the outermost electrodes Nos. 0 and
N. The external magnetic field is directed along the y parallel to
the layers. The integration path (thick line) is used to obtain
Eq. (1).

multilayers (A, =33 pm, Ak=37 pm, X.=21 pm,
b = 100 pm) and with parameters typical for the strongly
coupled (d «A, ) intrinsic Josephson junctions in BSCCO
(A, =340 pm, A,&=1.5 pm, A, .=l. l pm, b=20 pm).
For all simulations a parameter spread of 5% has been
used.

%e emphasize, that for Nb parameters both the width
of the stack b and its thickness are large compared to A.

and k, respectively. In contrast, for BSCCO parameters,
the stack is much thinner than A, , and its width, b, is
much smaller than A, but larger than A, In this situa-
tion only a tiny fraction of an external field is screened,
although screening currents still vary on the short scale
of A, . This situation is different from fluxon dynamics in

standard long Josephson junctions. Nevertheless, we
want to refer to vortices arising from this situation as
"Josephson vortices. "

The results can be summarized as follows.
(1) In zero or weak magnetic fields there are only few

stable phase-locked modes with vortices located in
different junctions. An example is the motion of three
vortex-antivortex pairs in a stack of five junctions.
Coherent modes, e.g., one vortex moving in each junc-
tion, turned out to be stable only in the N =2 case. '

(2) Stable collective modes exist in the flux-flow regime
for h,„,»1 ~ Josephson vortices can excite cavity reso-
nances of the whole stack, which in turn trigger the
motion of vortices. At the resonances the electrical field
is approximately given by

E, „=E,+E,'„cos(ok,x )cos(tot ),

= [@o/( 2~Pot nj, ) ]', A I,
= [ (@'od s }l( 2~P o~~j, ) ]

'

t, st+2k, t nha[d/(2A, )], and ddt=A, sinh(d/l, ). Other
elements of M are zero. Boundary conditions are

y'(x =0)=y'(x =1)=2nh,„,l, 1=(1, . . . , 1) .

Equation (1) is the analog of the sine-Gordon equation
of a single long Josephson junction of the overlap
geometry. The length A, describes the screening length
for magnetic fields directed along y. k, corresponds to
the "core" diameter of the Josephson vortex in the static
case.

For Nb-Al/A10„-Nb multilayers, typical junction pa-
rameters are d =A.=90 nm, t =2 nm, and j,=250
A/cm . This yields A. =33 }Ltm, A. k

=37 pm, and A, =21
pm. For intrinsic Josephson junctions in BSCCO we
have d =3 A, t =12 A, A, = 1700 A, and j,=150 A/cm .
For these stacks we thus get A, =340 pm, A, k =1.5 JMm,

and k =1.1 pm.
The coupled sine-Gordon equations have been solved

numerically for stacks of up to N =19junctions. For the
numerical treatment Eq. (1) has been decomposed into
Fourier components as described in Ref. 9. For the simu-
lations shown below we used 40 Fourier components.
The McCumber parameter is P, = 100, i.e., we investigate
the underdamped case, where ballistic vortex dynamics
takes place. The simulations were performed both with
parameters typical for the weakly coupled (i.e., d =A, } Nb

with k, = 1,2, . . . . %e note that k„doesnot depend on
the junction number n. The amplitudes E,'„vary approx-
imately sinusoidally, E,'„=E,sin[mk, n/(%+1)j, with

k, =1,2, . . . .
These collective resonances have found to be stable

both in weakly coupled and strongly coupled stacks. As
an example, Fig. 2 shows a mode with k„=9and k, =3.
The simulation has been done for a stack of 19 strongly
coupled junctions. The external magnetic field is h,„,=5;

the bias current is j,„,=0.6. The left part of the figure
shows the Josephson currents j,'„ofall junctions; the

right part shows the electrical fields. Black dots mark the
center of mass of the Josephson vortices, where
y„=(21+1)m., I =0, 1,2. . . . The vortices are aligned in

three domains (junction Nos. 2 —5, 8—11, and 15—18}.
Vortices of the second group move with a phase shift of m.

with respect to the other groups. Vortices moving in

junctions where the amplitude of the electrical field is
small (i.e., junction Nos. 1, 6, 7, 12—14, and 19) are not
locked to the standing wave pattern. For the N =2 case
such a bunched movement of Auxons has been shown
analytically to be stable. ' Figure 3 shows the superposi-
tion of the corresponding I—V characteristics of all junc-
tions for h,„,=5. Resonances show up as current steps.
Note that the average voltage drop across unlocked junc-
tions is larger than the voltage drop across locked junc-
tions. Besides the resonance shown in Fig. 3, resonances
with k„between 8 and 10 and k, of 2 and 3 have also
found to be stable for this special value of the external
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FIG. 2. Simulation of a stack of N=19 strongly coupled
Josephson junctions with the parameters given in the text. The
left part of the figure shows the Josephson currents j,'„vsthe x
coordinate of the stack. All curves have been vertically offset
proportional to the junction index in order to map the junctions
of the stack. Thick and thin curves correspond to two different
values of the normalized time ~=26 and 32. In order to show
that the Josephson vortices move in three aligned domains the
centers of mass of the vortices have been marked with black
dots for ~=26. The right part of the figure shows the electrical
fieM component in z direction e,„.The figure shows that a
two-dimensional standing wave pattern has developed. In the
nth junction the electrical field is approximately of the form
e„=e0+K, si [nnk, /(N +1)] co(snk, x)c so(e rO) with k„=9and
k, =3.

magnetic field. Varying the external field, a large number
of difFerent resonances can be stabilized including the
k, =l mode, where almost all vortices, except the ones
moving in the outermost junctions, move in phase.

In order to find analytical expressions for the reso-
nance frequencies we approximate the electrical field by

j (x, r) =epl+e, cos(nk„x)cos(epr), k„=0,1,2. . . ,

which yields

e&
$(x,r) =eprl + cos( trk„x)sin(epr)+2'irh, „,x 1+go

ep

(2)
The following approach is very similar to Kuliks ap-
proach for the single-junction case. ' It is strictly valid
only if magnetic fields of currents flowing along z are
small. This condition is normally fulfilled at least for the
strongly coupled intrinsic Josephson junctions, where
typical crystal dimensions are much smaller than A, . In-
serting Eq. (2) in Eq. (1), multiplying with cos(rtk„x)and
integrating along x from 0 to 1 yields

n k2
sin(ept ) =M [P,epe, sin(ept ) —e, cos(ept )—2I],e)

ep
(3)

l8pT (gI„=Im e 'e"

nnk,
n ++

Akn k, , 1

b')/P, Q(A, &/A, ) +2[1 cos(nk—, /(N+1))]

(5a)

(Sb)

n =1,2. . . ,N; k, =1,2, .. ,N We not. e t.hat in absolute
units the resonance frequency co is given by

0

e8„= '
sin(epr) .

ep
We neglect the contribution to I=(I„.. . , I~) oscillat-
ing proportional to sin(epr) for p, »1. From Eq. (3) we
then get the eigenvalue equation:

n k'
XMe)=
2 ej

p e2

with the solution

k
CO

=
COp)

Q(Ai, /A, ) +2[1—cos(ek, /(N+ I))]

0.5

0
0 0.5 1.5

FIG. 3. Normalized bias current i =I/I, vs normalized volt-
age u = U/U, of a11 of the junctions of the N = 19 stack. The
external Seld is h,„,=5. The inset shows i vs the total voltage
across the stack u, . Junction parameters are the same as in Fig.
2. DifFerent cavity resonances showing up as current steps are
denoted a —d. The k„and k, values are {a) k„=9,k, =3, {b)k„=8, k, =2, {c)k„=9,k, =2, and (d) k„=10, k, =2.

where co~i=[(2', t)/(/peep)]' is the Josephson plasma
frequency. Inserting the expressions for to i, A,z, and A,

we find that m depends only on the dielectric constant e,
the junction length b, and the ratios A, /t, A, /d. An ap-
proximation of the amplitude e, can be found in the same
way described in Ref. 10 for the single junction case.
After some algebra one finds

F$
2, =Jp F(h,„,),

2ep

2 h,„,~
sin [n.(h,„,—k„/2) ] ~F(h,„,)=—
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TABLE I. Comparison of resonance frequencies obtained
from numerical simulations and from the analytical formula,
Eq. (Sb), for resonances with various mode indices k„and k„s
is the intrinsic Josephson junctions (strongly coupled d &&A,),
and m is the semiconductor-insulator-superconductor multilay-
ers (weakly coupled, d =A, ); the model parameters are given in

the text.

05l::
0 5 10 15

Junction index n

20 k, k„ h,„, eo

(simulation) [Eq. 5(b)] Coupling

The maximum supercurrent (i.e., the step height) is ap-

proximately given by
2

e) e&

JDc=Jo Ji F(h,„,),
2ep 2eo

(8)

FIG. 4. Comparison of the z component of the electrical 6eld

e, „{x=0) with the sinusoidal form predicted by Eq. (5a). The
dashed line is given by eo —e, sin[ink, l(N + 1)] with

co=0.591, el =0.52, k, =3, and N=19.
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wher e Jp J
&

are Bessel functions. The amplitudes e,
„

form a standing wave along z with nodes located in two

imaginary junctions, which may be labeled "0" and
"N+1". Figure 4 compares a plot of the amplitudes e,

„

vs n for the simulation of Fig. 2 with the sinusoidal form

predicted by Eq. (5a). For this mode the values of eo and

e, are co=0.457 and e& =0.52. From Eq. (Sb) we find

co =0.46 and from Eq. (7) e& =0.55 in very good agree-

ment. For the maximum step height, Eq. (8) yields

Joe=0. 15. The step height found in the simulation is

0.1, i.e., somewhat smaller than the prediction of Eq. (8).
In Table I resonance frequencies found in numerical
simulations and the predictions of Eq. (5b) are compared
for various resonance modes. The agreement is excellent.
For large values of k, the resonance frequency is always

smaller than for small values of k, . For small values of
k, the resonances occur approximately at

eo = (2p, )
' (X + 1)(A,

„

Ib )(k„Ik, )

in the case of strong coupling, A, k &&A, . In the case of
weak coupling (A, k =A, ) and small values of k, the reso-
nances occur at eo=~k„p, '~

A, Ib, i.e., they are almost
independent of k, .

In summary, we have found that in stacked Josephson

junctions the interplay between Josephson vortices and
collective cavity resonances leads to the formation of
domains of vertically aligned vortices moving along
different junctions. In particular, the situation with al-

most all vortices aligned was found to be stable even in
the presence of a S%%uo parameter spread. We have ob-
tained similar results both for parameters that are typical
for artificially grown all-Nb multilayers and for parame-
ters that are typical for intrinsic Josephson junctions in

the high-T, superconductors. Different resonances can
be selected by choosing appropriate external magnetic
fields. For the resonance frequencies and amplitudes
analytical expressions have been found. In contrast to
the well-investigated two-junction case, coherent vortex
motion in zero magnetic field has been found to be unsta-
ble for all investigated junction parameters. On the basis
of this resonant vortex motion, flux-How oscillators based
on all-Nb junctions, as well as on intrinsic josephson
junctions, should be feasible.
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