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In this paper, a generalization of standard spin-fluctuation theory is considered by replacing the sim-

ple Hubbard interaction by the screened Hartree-Fock interaction for f electrons. This model is then

used in both an LS and a JJ coupling scheme to construct the particle-particle scattering vertex. In an

on-site approximation, this vertex is shown to lead to an instability for a superconducting pair state

which obeys Hunds rules, with L =5, S =1, and J=4, whereas for near-neighbor pairing, the most at-

tractive instability is for J=0. The degeneracy of these multiplets is broken by anisotropy of the quasi-

particle wave functions. Detailed calculations are presented for the case of UPt3.

I. INTRODUCTION

After over a decade's worth of theoretical work, there
is no overall agreement on a microscopic theory for
heavy-fermion superconductivity. The overall prejudice,
though, is that the underlying pairing mechanism is simi-
lar to that operative in super6uid He. Most attempts at
a theory based on this approach have been to make the
simplest possible modifications to the standard single-
orbital Hubbard interaction used in the He problem.
These attempts have had mixed success. The philosophy
of this paper will be to actually do for heavy fermions
what was done for He, that is, to use the Hartree-Fock
interaction between f electrons including full orbital and
spin-orbital effects and construct the effective particle-
particle vertex by the appropriate diagrammatic summa-
tion. In principle, this theory contains all relevant phys-
ics within a spin-Quctuation-based approach. Even at the
simplest level, new physics emerges which is not present
when using a simple Hubbard interaction. In particular,
for on-site pairing, the maximum instability in the
particle-particle vertex occurs for a pair state which

obeys Hunds rules. For f electrons, this corresponds to a
state which has I. =5, S =1, and J=4. The degeneracy
of this multiplet is broken in real metals by crystalline an-

isotropy e6'ects in the normal state. This is rejected by
(1) the orbital and momentum dependence of the bare
susceptibility bubble which forms the internal 1ines of the
vertex and (2) the orbital and momentum dependence of
the quasiparticle wave functions which form the external
lines. In this paper, (1) is treated in a simple manner and
(2) is treated within a band-theoretic approximation. The
frequency dependence of (1) and (2), which acts to set the
overall scale for T„ is also treated in a simple fashion.
The theory has the advantage that it can be systematical-
ly improved by removing these approximations. The
above ideas are illustrated by calculations for UPt3.

In the second section, a motivation of this theory is
given by looking at some systematics of heavy-fermion
superconductors and by comparing the heavy-fermion
problem to that of He. In the third section, the general
formalism is described. The single-orbital version of this
theory is shown to yield the paramagnon model for He.

The standard spin-Quctuation models worked on previ-
ously are then shown to be a lattice generalization of the
single-orbital model. In the fourth section, the formalism
for the f-electron problem is derived, with the particle-
particle vertex equations solved for various approxima-
tions for the susceptibility bubble in both an LS and a JJ
coupling scheme. General properties of the vertex are
described based on group theory. In the fifth section, the
pair vertex is projected onto the Fermi surface. Calcula-
tions are then described for the case of UPt3, utilizing in-

formation from a relativistic band-structure calculation.
In the last section, future directions, including the ques-
tion of intersite pairing effects, will be discussed. A
shorter version of this work has appeared earlier. '

II. BACKGROUND

Sufficient evidence has accumulated over the past 11
years to demonstrate that the superconductivity seen in a
number of f-electron metals with large effective mass is
unconventional in nature, that is, the group representa-
tion describing the order parameter is almost certainly
not the identity representation ( I, ). This, along with a
variety of other facts, casts doubt on a traditional
electron-phonon mechanism as mediating the pairing.
The first theoretical work in this area ten years ago
showed a close connection of these metals with superQuid
He. In particular, they are near both a magnetic and a

localization instability. A classic example is UPt3. Dop-
ing with Pd, for instance, causes this metal to become
strongly antiferromagnetic. Further doping causes the f
electrons to become localized. Anderson also em-

phasized that the on-site part of the interaction must be
playing a major role given the large ratio (-0.1) of the
superconducting transition temperature to the Fermi en-

ergy. This important observation has been 1argely ig-
nored. Anderson was also the Srst to point out that
heavy-fermion superconductors have two f atoms per
unit cell. For on-site pairing, one can have an odd-parity
ground state in this case (with one atom per cell, the pair
state would have to be even for on-site pairing). This
unusual observation has also been largely ignored, except
in a later paper by Appel and Hertel where a formalism
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for describing localized pairs for UPt3 was developed in
great detail. The reason the above points were largely ig-
nored was the observation of antiferromagnetic spin fluc-
tuations in several heavy-fermion superconductors by
neutron scattering. Such fluctuations occur because of
exchange interactions between near-neighbor sites. This
led to a picture of near-neighbor pairing based on these
fluctuations by a number of authors. ' Subsequent work
largely concentrated on generalizing these simple theories
to handle the nonsymmorphic (hcp) lattice structure of
UPt3. ' These theories have had mixed success. In par-
ticular, available data on UPt3 point to a pair state from a
two-dimensional group representation with both line and
point nodes and probably of odd parity. "' This state
would have I'& (Ez„) symmetry. Although nontrivial

group representations occur in these calculations, this
particular state has never emerged as the ground state.
The last work done in this area by the author' indicated
that the anisotropy of the quasiparticle wave functions
plays a fundamental role because this problem cannot be
reduced to an effective one-band form given the two f
atoms per unit cell. Therefore these earlier single-band
models are most likely inadequate for describing real
heavy-fermion metals. Moreover, the orbital degeneracy
of the f electrons, particularly in the uranium case, also
brings into question any single-orbital treatment of the
problem.

This paper is an attempt to improve on these earlier
theories by explicitly including multiorbital effects. This
work was motivated by several additional issues than
those listed above. A number of alternate theories have
been proposed recently, in particular by Cox's and by
Coleman, Miranda, and Tvselik, ' which emphasize an
an-site pairing viewpoint. Cox s work is important in
that he emphasized the important role that orbital effects
play in this problem. Another key motivation was an ex-
periment by Osborn et a/. ' which detected excitations
between Coulomb multiplets with high-energy neutron
scattering, not only in localized f metals like Pr and
UPd3, but also in UPt3 itself. This indicates that multi-

plet correlations present in atoms survive even in a metal
with itinerant f quasiparticles. In Table I, the seven
known heavy-fermion superconductors are listed. There
are two striking things about this table. First, six of the
seven are uranium alloys. Moreover, there is strong ex-

perimental evidence that the uranium atoms are close to
an f configuration. The magnetic susceptibilities of
UPt3 (Ref. 3) and UPd2A13 (Ref. 17) look almost identical
to that of the local f metal PrNi5. ' The susceptibility
of URu2Si2 has been most successfully explained based on
an f ground state. ' Cox's quadrupolar model for
UBe,3 is also based on an f configuration. It should also
be noted that UPt3 is very similar to UPd3 (similar crystal
structures, almost identical f-atom separations) yet the
latter is clearly a local f metal. ' In the high-energy
neutron data, ' the Coulomb excitation seen in these two
metals looks very similar. This would be hard to imagine
if UPts was not close to being f . As for CeCuzSi2, it
may not be like the rest, although it has been pointed out
that an f2 admixture is needed to explain its properties
with the Anderson impurity model. 22 The importance of
these facts is that since the f atom has two bare f elec-
trons per site, this leads to a strong motivation that the
superconducting pairs have two f quasiparticles per site
from a trial wave function point of view. The second
striking point of Table I is that all of these metals either
have two f atoms per unit cell, or undergo some sort of
magnetic transition at temperatures above the supercon-
ducting transition which gives a new unit cell with two f
atoms. As discussed above, this fact has little relevance
to a near-neighbor pairing model (since an atom in any
crystal structure has near neighbors), but plays a crucial
role for on-site pairing (since one can have even-parity or
odd-parity pairing depending on the relative sign of the
order parameter on the two sites).

A further motivation of the importance of on-site pair-
ing can be obtained by comparing the case of He to
uranium alloys. In Fig. 1, a plot is shown of the interac-
tion potential of two He atoms. This is similar to what
one would expect of two f electrons on a uranium site.
In particular, there is strong repulsion at small interparti-

10

TABLE I. List of known heavy-fermion superconductors
with the number of f atoms per unit cell. In parentheses is the
nature of the low-temperature distorted phase in the single-f-
atom case (QP, quadrupolar; AF, antiferromagnetic; '?, not fully

determined) and the resulting number off atoms.

-5

-10

Case

UPt3
UBel3
U2PtC2
URu2Si2
UPdqA13
UNiqA13
CeCuqSi2

f atoms

2
2
2
I (QP/AF —2)
1 (AF—2)
1 (AF—2)
1 ('P—2?)

-15
4

R (A)

FIG. 1. Interaction potential between two He atoms (Ref.
23). The interaction potential of two f electrons of a uranium
ion would look similar with appropriately scaled axes (attrac-
tion in that case is due to the ion core, though, which is techni-
cally a three-body effect).
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cle separation due to the Coulomb repulsion between the
two f electrons, there is attraction at intermediate dis-

tances (of order 3 a.u. ) since the ion-core attraction
exceeds this repulsion in this range (which leads to an f
ground state}, and then the potential weakens at large
separation due to the exponential decay of the f-electron
radial function. This analogy should not be taken too far,
though, since the source of attraction in the helium case
is the van der Waals force, whereas in the current case
the attraction is provided by the ion core, which is tech-
nically a three-body effect. Also, the direct interaction
potential for He has been shown to be inadequate for
describing the pairing of He atoms in the superfluid state
(it predicts L =2 pairing). The reason for this is the
major role that collective effects play due to polarization
of the medium. This led to the development of the
paramagnon model for He. In this model, a much
simpler direct interaction potential is used, a repulsive
contact interaction between atoms of opposite spin (i.e.,
the bare attraction is not included). But this potential in
turn is used to sum a diagrammatic series to all orders,
thus including the important collective efFects. This gives
a good description of the superfluid state of He. ' In
this paper, a similar approach is taken to the current
problem, with a generalization considered which includes
multiorbital effects necessary in dealing with f electrons.
The paramagnon model for 3He, as well as previous spin-
fiuctuation models for heavy fermions, are subsets of this
more general theory.

III. GENERAL FORMALISM

The particle-particle vertex is defined by

~abed ~ abed ~
k

(2)

where ck are combinations of 3j symbols and Fk are
Coulomb multipole (Slater} integrals defined on p. 217 of
Ref. 31. (A simpler expression of this type has been used

in earlier spin-fiuctuation work and in an Anderson
model approach. ) For s electrons, Eq. (2) reduces to

(3)

where the last term is a scalar product of Pauli spin ma-
trices and the indices now label just spins (1 for up, 2 for
down). Equation (1) is easily solved, giving

gabe pabed ~ paecf, efp fbed

e,f
where I 0 is the bare vertex, yo is the bare susceptibility
bubble, the indices label orbitals, and the minus sign is
due to the closed fermion loop defining the bubble (in I,
the first two indices label incoming lines, the last two out-

going lines). I 0 is taken to be the antisymmetrized
Coulomb interaction ( V' ' —V' "')

Equation (4) [5] is a sum of odd (even) number of longitu-
dinal (e =f) bubbles. The triplet (S =1) vertex is just
Eq. (4), the singlet (S =0}vertex is 2I' ' —I'"' (sinceI' ' is half the sum of the singlet and triplet vertices ).
Alternately, the singlet vertex is I' ' —I' ' [i.e., an-

tisymmetrizing Eq. (5)] where the latter term is a sum of
transverse (elf) bubbles (i.e., ladder diagrams}. These
expressions are equivalent of course. Equations (4) and
(5) form the basis of the standard paramagnon model
(where Fo is generally denoted as I}.

The first thing to note from the above is that the triplet
vertex is negative (attractive) and the singlet one positive
(repulsive). Thus, the vertex exhibits Hunds first rule
(maximal S). In the He problem, the L of the pair state
is determined by projecting Eq. (4) onto the Fermi sur-
face. Since it is isotropic, and L must be odd (since
S =1), it is necessary to include the momentum depen-
dence of go to obtain a nonzero projection. As expected,
L =1 is found since this function has the largest projec-
tion on a spherical Fermi surface for odd-L harmonics.
Note that the momentum dependence is not critical, it is

only necessary to give a nonzero projection. In fact, very
different models of the momentum dependence of the ver-
tex give identical pairing coupling constants. ~ A physi-
cal picture of the pairing in these models based on mutual
interaction of the two particles via their polarization
clouds (a generalized Zeeman effect) has been given by
Leggett.

This picture can be contrasted with that given for the
heavy fermions and high-T, cuprates based on singlet
(L =2}pairing. This "violation" of Hunds rules is ob-
tained by considering pairing of electrons on near-
neighbor atoms in a nearly antiferromagnetic metal. In
such a case, g(Q) & y(0), where Q is the ordering wave
vector (assumed to be commensurate with the lattice cor-
responding in real space to antialignment of near-
neighbor spins} and y is the dressed bubble. This means
in real space that y(R, R') is negative (R,R' are site in-

dices, with R ' a near neighbor of R ). This can be
achieved by having momentum dependence in either yo
or in I'0 [y being defined by an equation similar to Eq.
(1)]. The latter is preferable, in that commensurate Q are
rarely obtained for yo except in special circumstances,
and has been used for fitting neutron scattering data both
in heavy fermions and in high-T, cuprates. Now, the
same thing which gives a negative g(R, R') also gives a
sign for I (R,R', R,R') opposite to that of I'(R, R,R,R).
Therefore, if the order parameter is such that b, (R,R) is
zero and b,(R,R') is nonzero (such as found for certain
d-wave states), then one can have S =0 pairing. Note the

complete difFerence in physics than that discussed above
for the He problem. In particular, the momentum

dependence is crucial for this argument. From the lattice
point of view, He is actually more closely related to on-

site pairing models than to near-neighbor pairing models.

IV. fEI.ECTRONS

I & & & & = —y'& y /( 1 —y'2 y2 )

+/3y&/( 1 —y'&/2 }

(4)

(5)

The formalism of the previous section is now applied to
the problem off electrons. At the bare interaction level,
we are already faced with the problem that the uranium
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ion is in the intermediate-cou ling regime (i.e., midway
between LS and JJ coupling). On the other hand, the
spin-orbit interaction is large enough that in electronic
structure calculations, no j=—,'quasiparticles are occu-
pied. Because of this, the susceptibility bubble g0 will
be almost pure j =

—,
' in character. Therefore, even if the

bare interaction is in the intermediate-coupling regime,
the efFective interaction for quasiparticles which comes
out of Eq. (1) will be in the JJ-coupling liinit. Despite
this, we will start out by deriving results in the LS-
coupling limit to make connections to the He problem
discussed in the last section. Then, we will turn to the JJ
scheme.

We start by reviewing the multiplet structure of the f
uranium ion, shown in Fig. 2. There are three spin trip-
lets (L =1,3, 5, each spin-orbit split into three J multi-
plets) and four spin singlets (L =0,2, 4,6). This level
structure can be fitted by the following scheme. At the
Hartree-Fock level, only $later integrals of even rank ap-
pear. Fits of the spectra can be achieved by reducing
these integrals on average by 3&%. This effect is due to
screening caused by Coulomb correlations (i.e., the parti-
cles try to avoid one another, thus reducing their efFective
interaction) which can be approximately calculated
within a configurational interaction (CI) scheme. In addi-
tion, CI causes effective operators of odd rank to appear
not present at the Hartree-Fock level (known as Trees pa-
rameters). These terms are rather small, though, and we
ignore them. To discuss the level scheme, it is useful to
find linear combinations of the ck coefficients of Eq. (2}
which more clearly reflect the group-theoretical structure
of the f electrons, which are labeled ek. This has been
achieved by Racah ' ' ' and is equivalent to replacing
the $later integrals Fk (k =0,2,4, 6) by linear combina-
tions Ek (k =0, 1,2, 3). Eo is defined such that all f2
terms have this energy (en= 1). It is equal to Fo plus a
linear combination of the other Fk terms and is
equivalent to the Hubbard U parameter (the other Ek pa-
rameters do not contain Fo ). E, is defined so as to distin-

e&=[—,
' —S(S+1)][L (L+1)—24g(U)], (7)

where g ( U) is the Casimir operator of the group 62 with
U labeling the representation of G2 appropriate for a par-
ticular LS state [note that L (L + 1) is the Casimir opera-
tor for the group $0&]. The interest is that this has simi-
larities to the case of p electrons, where Van Vleck~
showed long ago that the interaction between two p elec-
trans can be written as

guish spin singlets from spin triplets, with e, =0 for trip-
lets and e, =2 for a11 singlets but L =0. Note that these
coeScients are identical to the s-electron problem of the
previous section. Thus E, plays the same role in the f-
electron problem as the paramagnon I(Fo) plays in the
He problem. This is quite interesting, since E, is a

shape-fluctuation term instead of a charge-fluctuation
term (i.e., it does not involve Fo }. This means that the in-
clusion of orbital degeneracy qualitatively changes the
physics relative to single-orbital models. As for the L =0
singlet, it has ei =9. This is another consequence of or-
bital degeneracy; basically L =0 has a difFerent group
structure than L =2,4, 6 since it already appears at the
f level (i.e., it has a difFerent "quasispin" or "seniority").
We summarize by writing down the expression for e, :

e, = {LS~q»+—,
' —2s si~LS ) =2—S(S+1)+75«,

(6)

where 1,2 label the two electrons, q is the seniority opera-
tor, and s is the spin operator. Note the similarity to the
last expression of Eq. (3}. As for e2, it is isomorphic to
L =2,4, 6 and thus acts to split these three multiplets
apart (it is zero for all other L states). The expression for
this term is quite complicated and will not be written
down. The most interesting parameter is E3. It acts to
split apart the three spin triplets, with e3= —9,0, 33 for
L =5,3, 1 respectively (it is nonzero for all terms but
L =0). This can be written as

wi2 =Fo+( 5 3li '12 12si's2)Fi (&)

P
P

P

D G

with I the orbital angular momentum operator. This
looks like an orbital generalization of the last expression
in Eq. (3). A summary of the ek coefficients for the f
states is given in Table II.

We now turn to a solution of Eq. {1}.At this time, we
will assume that yf {q}=go(i.e., no orbital and momen-
tum dependence to the bubble). This approximation will

F F
H

TABLE II. f' energies in the LS scheme (Ref. 38).
F

H
Term Energy

0

0 1 2 4 5 6

FIG. 2. f multiplet structure of a U4+ ion (Refs. 36,83). En-
ergy is plotted versus J, mth labels referring to I..

H
3Q

3p
11
1G

1g)

's

Ep —9E3

Ep+33E3
Ep +2E

&
+70E2 +7E3

Ep +2E
&

260E2 4E3
Ep +2E I +286E2 1 1E3

Ep+9Ei
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FIG. 3. Effective interaction of Eq. (10) versus yo.

be discussed below. States of definite LS have antisym-
metrized wave functions. So the vertex for the state
L =5,ML =5(S=1,Ms =1)will be

5, 5 0

where indices label m& (with all spins up). The first term
involves longitudinal bubbles, the second transverse bub-
bles, and the last compensates for double counting (since
the bare vertex is antisymmetric by definition). Vertices
for other LS states can be obtained either by using the
appropriate antisymmetric combination of the I or by
employing Slater's diagonal sum rule. ' This is
equivalent to the two derivations of the singlet vertex in
the paramagnon model discussed after Eq. (5).

In certain cases, analytic results can be derived by ex-
panding Eq. (1) into a bubble summation, just as was
done in the previous section for He. In particular, let us
start with just including the E0- term. The result for all
states of definite LS is

r=Ec/[(1 —Eoyo)(1+13Eoyo)]+Enyo/(1 —Eoyo) .

The first term comes from longitudinal bubbles, the

FIG. 4. Effective interaction of Eq. (11}(triplet, lower curve)
and Eq. (12) (singlet, upper curve) versus yo. This is very similar
to the effective interaction in the He problem.

second from transverse bubbles and double counting.
Note that 13 is the orbital degeneracy (14) minus 1. This
expression, plotted in Fig. 3, is always repulsive. The
behavior of this term is that, as yo increases from zero,
the repulsion is reduced compared to Eo and then begins
to increase again and diverges at E0y0=1. This corre-
sponds to a localization instability.

Now assume that only E, is nonzero. Analytic results
can also be obtained. For the spin-triplet states, Eq. (1) is
now

I = —11Eiyo/[(1 —81Eiyo)(l —4Eiyo)]

+2E i go/(1 —4Eiyo),

where the erst term comes from longitudinal bubbles, and
the second from transverse bubbles. This expression,
plotted in Fig. 4, is zero for go=0 and then has a negative
divergence as 9E,yo approaches 1, corresponding to a
magnetic instability. This behavior is analogous to the
triplet vertex in He. Equation (1) can also be solved for
the L =6 singlet

I =(4E, + 13Eiso —126E,yo —162E,yc)/[(1 —81Einc)(1 4E, yc) ] 2Ei,— — (12)

where the first term comes from longitudinal bubbles, the
second from transverse bubbles, and the third from dou-
ble counting. Just as for the sing1et vertex in He, this in-
teraction, plotted in Fig. 4, is repulsive for pc=0 (equal
to 2E, ) and has a positive divergence at 9E,y~= l. This
expression is also valid for the L =2 and L =4 singlets.
The vertex for the L =0 state is more repulsive.

The general solution to Eq. (1) is difiicult to construct

analytically due to the complicated nature of the bare
vertex when all Ek terms are included. Solving numeri-

cally would also appear to be dificult since there are four
orbital indices involved. Progress can be made, though,
by defining

gabe pb+n, e, b, e+n .

with this definition, Eq. (1) reduces to
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(14)

10

0—

2f

0.05 0.1

X (1/eV)
0.15 0.2

FIG. 5. Effective interaction (LS) in eV for H, F, P, 'I, '6,
'D, and 'S versus yo for parameters appropriate to a U ion
(Refs. 36,41) (Eo = 1225 meV, E& =470.3 meV, E2 = 1.923 meV,
E, =43.28 meV). The zeros of energy for the f' and f cases
are marked by the dashed lines.

Thus, an N matrix equation has been reduced to an 1V

matrix equation for each value of n (n =0 are the longitu-
dinal bubbles, the rest are transverse bubbles). This is
easily solved on the computer given input values for the
Ek and y0.

The Ek parameters were taken from Goldschmidt.
They have been fit to uranium ion data (the level scheme
for F0=0 in Fig. 5 differs in some quantitative details
from the experimental level scheme of Fig. 2 since the
spin-orbit interaction has not been included at this point}.
These parameters are on average 62%%uo of their Hartree-
Pock values due to screening. By comparing to the
high-energy neutron scattering data of Osborn et al. on
UPt3, ' these parameters should be reduced by another
28% when going into the solid. The latter efFect is only
of quantitative significance and is based on one transition
which is seen (assumed to be from H4 to F2), so is ig-
nored in order to use the well-established values of Ek
listed in Goldschmidt s article. Hopefully, detailed
solid-state values of these parameters will become avail-
able with further experimental work. An additional note
is that the fitted Eo is referenced to some arbitrary value
of the energy zero, so has no intrinsic meaning. The
value listed in the Goldschmidt article, though, gives an
Fo of 1.83 eV, which is fortuitously close to estimates of
the screened Coulomb U for uranium, ' so we retain it
without adjustment.

A final comment concerns the energy zero of the prob-
lem. Superconductivity involves an instability of the Fer-
mi surface. For a uranium ion, two f electrons are occu-
pied. Even in band-structure calculations for UPt3, the
number of occupied j=—,

' f electrons is just above two.
Thus the term Eo (the Coulomb repulsion between the
two f electrons} is already included in the definition of

Fermi energy and represents the zero of energy for the
uranium problem (for the cerium case, where only one f
electron is occupied, E0 is not included in the energy
zero, since it represents the energy of f above f '). But
the energy term for the L =5 ground state of an f ion is
E0—9E3. What about the term E3? Since this term
cannot be reduced to an effective single-particle form, it
would not seem to enter into the definition of the quasi-
particle Fermi energy. This gives the rather bizarre re-
sult that the L = 5 vertex is already attractive at the bare
interaction level. Of course, one could imagine a scenario
where one considered an f -f Anderson lattice model,
with the effects of E3 built into the ground states. The
effective quasiparticle operators in this case might impli-
citly contain the effects of E3. Since a detailed theory of
this has not been worked out yet, we cannot make any
definitive conclusions one way or the other. Since the
effective interaction, though, strongly departs from the
bare value as g0 increases from zero, this question is of
minor significance. For purposes of this paper, we as-
sume that the energy zero is at Eo for the f case and 0
for thef ' case.

In Fig. 5, I is plotted for the triplet states L =5,3, 1

and for the singlets L =6,4, 2, 0. Just as found for the
3He problem, the triplet interactions are attractive and
the singlet ones repulsive, with an instability in both cases
at (Eo+9E, )go=1. Note that this criterion is a com-
bination of the two analytic results discussed above; thus
the instability has both a localization and a magnetic
component. This observation indicates that the debate
concerning both He and heavy fermions about whether
the physics is nearly localized or nearly magnetic is mere-
ly semantics, as both effects are intertwined. A
significant difference from the He case is the effect of or-
bital interactions in the current problem. In He, the or-
bital degeneracy of the pair state is lifted by Fermi-
surface projection of the vertex; in the f-electron case,
this degeneracy is already lifted by the interaction itself.
Note that the largest attractive instability is for
L =5,S= 1 (in such a state, the Coulomb repulsion is
minimized). Thus, the pair state is predicted to satisfy
both Hunds first and second rules, and is a generalization
of the results obtained for He. A similar result has been
obtained by van der Marel and Sawatzky based on the
Anderson model.

We now turn to a discussion of the problem at the JJ-
coupling level, which, as argued above, is more physically
relevant at the quasiparticle level than the LS scheme (or
even the intermediate-coupling scheme). The bare in-
teraction vertex can be gotten by replacing the orbital-
spin indices of Eq. (2) by the indices p which range from

to —,
' (we assume only j=—', quasiparticles are in-

volved). By taking into account the mixed spinor nature
of the relativistic orbitals, the formulas for ck can be cal-
culated in a manner similar to that used on p. 217 of Ref.
31. Note that only k =2 and 4 are involved (k =6 comes
in when considering j= —', states). The resulting expres-
sions were checked against tabulated results on p. 560 of
Ref. 42. As in the I.S case, the Fk are not useful in ex-
ploiting the group properties of the f electrons, so one ro-
tates to another basis Ek. It should be noted that these
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Ek are not the same E& as in the LS case. They have
been discussed in the context of nuclear physics, where JJ
coupling has been traditionally of more use, and the
analogous ek coeScients are listed in Table III. In this
case, there are only three terms, J=4,2,0 (corresponding
to L =5,3, 1 in the LS case). As in the LS case, eo is 1 for
all states. e, is 3 for J=0, and 0 otherwise, which has
analogies to e, in the LS case. In particular, J =0 ap-
pears at the f level and thus has a different quasispin
(i.e., seniority) than J =2,4. The term ez splits the latter
two states apart (similar to e3 in the LS case). In this no-
tation, the ground-state J=4 term is E0—5E2. This is
lower than the E0 energy zero just as found for the L =5
LS case. By fitting these values for states of definite J, we
can infer an interaction vertex analogous to Van Vleck's
of Eq. (8) for the p-electron LS case:

0&2
Wi2 =Ep+ Ei +[ 2ji.j2 —

—,'( I+qi2 }]E2, (15}

where q, z is a seniority operator ((J~q, z ~
J ) =65Jo) and j

is the total angular momentum operator.
Analogous analytic series can also be constructed. In

Particular, keePing just Eo gives an exPression like Eq.
(10) with 13 replaced by 5 since the orbital degeneracy is
now 6 instead of 14.

We now solve Eq. (1) exactly as done for the LS case.
The interaction parameters are again obtained from
Goldschmidt. The results are plotted in Fig. 6. An at-
tractive instability is found for J=4, a repulsive instabili-
ty for J=2,0. The instability occurs at a value
(Eo+E, +12E2 }go=l. This result is important in that it
makes a very definite prediction; if a paramagnonlike pic-
ture analogous to He applies to heavy-fermion supercon-
ductors, a pair state of relative J =4 should be realized.

How does this change if we replace uranium by ceri-
um? First, the energy zero does not contain Eo so that
the bare interaction is more repulsive. Second, E0 is
about three times larger since U is around 6 eV for ceri-
um ions. Although this means that the instability
occurs for a smaller value of go, we expect the interaction
to be more repulsive since E0 is larger. This is illustrated
in Fig. 7, which is analogous to Fig. 6 except parameters
tabulated by Goldschmidt for the cerium ion are used
(with an Eo of 6.0 eV). As can be seen, the interaction in
all channels is repulsive except very close to the instabili-
ty for J =4. On the other hand, in strong-coupling calcu-
lations for the paramagnon model in He, the calculated
superQuid transition temperature actually turns off' as the
instability is approached since the energy scale of the
paramagnon (proportional to 1 —Iyo) is going to zero

10

f
2

0

-5

0 0.2
(1lev)

FIG. 6. Effective interaction (JJ) in eV for J=4,2,0 versus

yo for a U ion. Same parameters and notation as in Fig. 5.
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(that is, the T, maximum is near but not at the instabili-
ty). Because of this, pairing is possible for cerium alloys
but much less likely than in the uranium case, where one
finds a larger range of yo where there is attraction. An
alternate view is that a pair wave function with two f
quasiparticles has much less overlap with the bare f-ion
wave function in the cerium case since the f component
in cerium is much smaller than in uranium. This is in ac-
cord with experimental observations discussed in the
second section.

We now discuss the issue of orbital and momentum
dependence of the susceptibility bubble. In heavy-
fermion uranium alloys, there is not much evidence for
crystal-field effects. This indicates that all the j=

—,
' orbit-

als are strongly mixed, as predicted by band theory (as
discussed for Kondo lattice models by Zwicknagl, if the
Kondo temperature is larger than the crystal-field split-

TABLE III. f energies in the JJ scheme (Ref. 43}. Note
that the Ek parameters are diferent from those defined in the
I.S scheme.

-20

0.05
{1/eV)

0.15

Term

J=4
J=2
J=O

Energy

Eo —5E2
Eo+9E2
ED+ 3El

FIG. 7. ES'ective interaction (JJ) in eV for J =4,2,0 versus

yo for parameters appropriate to a Ce ion (Eo=6000 meV,
E& =484.5 meV, E2=2.293 meV, E,=47.67 meV; note these
are I.S Ek ). The zero of energy is the dashed line.
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TABLE IV. Summary of anisotropic I for J=4 using pa-
rameters of Fig. 6. n is the type of bubble used [defined in Eq.
(14}],yo is the value (eV '}at which the divergence occurs, and
M signifies which MJ state is the most attractive (with other at-
tractive MJ states listed in parentheses). Note there is no attrac-
tion for n =5. For J=2, attraction is found for M&=0 in the
n =3,4 cases, but weaker than for J=4. For J=0, no attrac-
tion is found.

XO

0.365
0.365
0.420
0.420
0.420
0.420

4(3)
0(1,2)
0(2)
1

0

tings, then all f-orbital energies get renormalized to the
Fermi energy and are intermixed; this appears to be the
case in UPt3). Because of this, one would expect the or-
bital and momentum dependence of yo to be rather weak.
There are intersite interactions, though, which give the
full susceptibility, g, momentum dependence. An argu-
ment against the importance of this effect for the pairing
has been given by Anderson where he emphasizes the
dominance of the on-site interaction, given the large ratio
of T, to Ez. The issue of intersite pairing will be dis-

cussed in the last section. On the other hand, the suscep-
tibility in metals like UPt3 is strongly dependent on field

direction. Whether this is a consequence of crystal-field
efFects or simply due to intersite correlations is an un-

resolved matter although neutron scattering data in

UPt3 point to the latter. If this is a crystal-field effect, it
can be represented by yo. If y is maximal for fields along
the c axis (as in URu2Si2), this indicates that the longitu-
dinal bubbles are dominant. If one redoes Fig. 6 with just
longitudinal bubbles, then the J multiplets are split into
various MJ terms (actually, those MJ combinations
which have the appropriate crystal symmetry) with the
maximum M& configuration having the most attractive
instability. On the other hand, if y is maximal for fields

in the basal plane (like in UPt3) then transverse bubbles

with n =1 are dominant [n as defined in Eqs. (13} and
(14)]. This in turn leads to the minimum Mz
configuration being preferred. Higher values of n would
indicate the importance of quadrupolar (n =2) effects,
etc. These terms play an important role in certain
theories. ' ' These observations are summarized in

Table IV (where it should be noted that a J =4 state is al-

ways preferred). In this paper, these effects will be fur-
ther ignored, although they are relatively easy to incorpo-
rate if they can be accurately determined (and if they are
indeed due to yo itself). An argument that these effects
cannot be too strong is that an MJ =0 pair state is not
consistent with experimental data in UPt3, since it is a
single-dimensional group representation, although similar
anisotropic spin-fluctuation work in a spin-only approxi-
mation gave an analogous Ms=0 pair state, ' which is
consistent with observations of anisotropy in the upper
critical field. These issues will be discussed further in

the next section. As also discussed in the next section,
projection of the vertex on the Fermi surface will also
lead to lifting of the degeneracy of the J manifold (analo-
gous to the lifting of L degeneracy in He). It is that
effect we concentrate on in this paper.

We conclude this section with a discussion of the gen-
eral vertex. In He, the full vertex can be written in a
form analogous to the bare expression in Eq. (3), that is, a
density piece proportional to the 5 functions and a spin
piece proportional to the scalar product of spin opera-
tors. Given the similarity of Eq. (3) to, say, Eq. (15),
this should also be possible in the f-electron case (as long
as one restricts oneself to states of definite LS or J}. In
particular, there will be a density piece, a quasispin
(seniority) piece, and an orbital piece proportional to the
scalar product of total angular momentum operators.
This justifies some of the phenomenological interactions
used in previous work. ' Further exploitation of these
ideas should give us a more fundamental insight into the
properties of the full vertex for f electrons. We should
note that the screened Slater integrals Fk can be cofi-
sidered as analogues of the Landau F functions of Fermi-
liquid theory.

V. APPLICATION TO UPt3

We now wish to apply the formalism in the previous
section to a real heavy-fermion superconductor. We
choose for this purpose UPt3. There are two good
reasons for this. First, a variety of experimental data ex-
ist on this metal which gives us a fairly good idea about
what the order parameter is. Second, extensive de
Haas —van Alphen data on UPt3 give a Fermi surface in

fairly good agreement with local-density approximation
(LDA) band-structure calculations. This indicates that
the momentum dependence of the LDA wave functions is
fairly trustworthy. The frequency dependence is not, of
course, since the effective mass in the measurements is
about 16 times the LDA band mass. This is due to the
fact that, in heavy fermions, the self-energy has a large
frequency derivative leading to a large mass enhance-
ment. Investigation of transport properties indicates that
the momentum derivative of the self-energy must be rath-
er weak so that the self-energy "rides" with the Fermi en-
ergy. ' That is why the shape of the LDA Fermi surface
is about correct even though the mass is off by a large
factor. These issues are of importance since we want to
convert the formalism of the previous section to apply to
quasiparticle states. We can do this approximately by
taking the four bare external lines of the vertex in Eq. (1}
and multiplying each of them by the wave-function re-
normalization factor Z', where as indicated above
1/Z —16. This represents the effect that only Z of the
bare electron is in the quasiparticle pole.

To proceed further, note that for the interaction con-
sidered here

(16)

where a is a basis function of Jwhich has the appropriate
crystal symmetry. For axial symmetry, this would just be
M. For hexagonal symmetry, they are listed in Table V.
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TABLE V. Hexagonal basis functions for J=4 in terms of
MJ. The forms listed in this table should be symmetrized (+
representation) or antisyrnmetrized ( — representation) with
respect to the site before use. For I'„a, and P are variational
coefficients such that the sum of their squares is equal to 1, and
this representation occurs twice (a,P and P, —a). Note that I,
and I 6 are doublets obtained by replacing IM~ & by I

—MJ &.

These functions in terms of products of single-particle states are
given in Ref. 1.

Representation

r,
I3
r,
I6
r,

Basis

——(IPTk, Tk &+ ik, Pk & ) =dy,

The dependence of I on a occurs if anisotropy is put into
Jp as discussed in the last section. Also, for a multidi-
mensional group representation, I will be the same for
each a in the representation, unless the symmetry is
lowered by some external perturbation. This has
relevance for Ginzburg-Landau models of the phase dia-
gram for UPti and will be discussed later. For now,
though, we assume only a J dependence for I . These are
plotted in Fig. 6. Given this, we can now calculate the
paring interaction on the Fermi surface. We do this by
constructing the product ik, —k& and expanding this in
terms of IJ,a&. The first thing to note is that there are
two degenerate states for each k~(k, PTk where P is the
parity operator and T the time-reversal one) and two for
—k (Pk, Tk}. z The combination —,'(lk, Tk&
—IPTk, Pk&) defines a pseudospin singlet do. The three
combinations

—,'( IPTk, Tk &
—ik, Pk & ) =d„,

particular total J(J=0,2,4) is

w=P . maltaJ~j ~ ~pj ave
Pvl

(18)

where j represents the pseudospin combination (0 for
singlet, x,y, z for triplet) and P is a projection operator
which takes that part of the sum which has the form of
one of the basis functions with the appropriate pseudo-
spin combination discussed above. Because of antisym-
metry, A changes sign from one site to the other site in
the unit cell for pseudospin triplets, and does not for
pseudospin singlets (for one f atom per cell, only pseudo-
spin singlets exist ). Summarizing, the particle-particle
vertex is

Jajj'
(19)

Since Eq. (19) is separable in k and k', this allows us to
write down the BCS coupling constant

where b, is the order parameter.
In Table VI, coupling constants for UPt3 are shown

x,.=Nr, z'y ( I
A'„.ii'& (20)

J

where N is the density of states, ( &i, is an average
over a narrow energy shell about the Fermi energy, and j
runs over 0 for even parity, x,y, z for odd parity. For
UPt3, this average was done on a regular grid of 561 k
points in the irreducible wedge ( —„}of the Brillouin zone,
keeping those n k states within 1 mRy of the Fermi ener-

gy (182 states total). Those points that are in symmetry
planes of the zone are plotted in Fig. 8. The number 1

mRy was chosen so as to have enough points to give a
good representation of the Fermi surface with this size
grid. Note that in this model

(21)

and

2(ik Tk&+ IPTk, pk&)=d,

define a pseudospin triplet, known as the d vector. In the
current approximation, only the part of ik, —k & on the
same site is involved in Eq. (16). (Note that although the
pair interaction is only attractive for particles on the
same site, the pairs are correlated out to a distance of the
coherence length, much like the problem of bound states
of a potential well where the particles spend most of their
time outside the well. ) Now, the part of ik& involving

j =
—,
' states is

Ik & =g a„","lp&;,

where p runs from ——', to —'„ i is the f-atom site index (1,2
for UPt3), and n is the band index (five bands are predict-
ed to cross the Fermi energy in UPt3). Thus the
coefficient of ik, —k& involving j=

—,
' states on the same

site with the correct group-representation structure for a

FIG. 8. Plot of the k points used in the calculations on UPt3
in symmetry planes of the Brillouin zone constructed from a
uniform grid within an energy cutoff of 1 mRy of the Fermi en-
ergy. Lines represent the Fermi surface.
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TABLE VI. Coupling constants for UPt3. These should be multiplied by the quantity NI 4Z to
convert to real coupling constants.

Representation

I q

r,
I3
r,
r,
rl

J=4(+)
0.069
0.029
0.024
0.013
0.018
0.076

J=4( —)

0.073
0.101
0.064
0.120
0.125

0.114

J=2(+ )

0.049

0.035
0.065

J =2( —)

0.071

0.106
0.099

J=0(+)

0.495

J=0( —)

0.057

modulo NI JZ with the largest occurring for J =O, I &+.

This is just the nodeless Balian-Werthamer (BW) state
with spin-orbit coupling, with a coupling constant pro-
portional to the square of the ratio of the j=—', f density
of states to the total density of states. From Fig. 6,
though, the A, 2 and A,o coupling constants are repulsive
and so do not play a role. For the attractive J =4 case,
the largest coupling constants are for odd-parity states.
This is because three pseudospin triplet terms contribute
to Eq. (20) in this case as opposed to one pseudospin
singlet for even-parity states. The importance of this is
that pseudospin triplets only exist because of the two f
atoms per unit cell, which, as illustrated in Table I, all
heavy-fermion superconductors have. This is a property
of an on-site pairing theory, and has no relevance in
near-neighbor pairing models. The largest coupling con-
stant occurs for I'6 (E2„) symmetry, although several
other states have comparable sized coupling constants
(I', , I 4 ). Note that this is an odd-parity two-

dimensional group representation.
Let us discuss this state. For the odd-parity case, the

order parameter is a vector. At a general k, all three
components are involved because of the relativistic na-
ture of the wave-function coefficients. For two-
dimensional group representations, this means that the
state will be nonunitary (d Xd*%0). A discussion of the
case of nonunitary d vectors can be found in Ref. 57; they
play a major role in a recent phenomenological theory of
UPt3. In the nonunitary case, there are two gaps for
each k,

variety of experimental data in UPt3, including specific
heat, ' transverse ultrasound, penetration depth,
thermal conductivity, u NMR65 and tunneling data.
Note that, despite the small value of the second gap in

Fig. 10, no "normal" component is seen in the density of
states of Fig. 11. Thus, this nonunitary state differs from
the one considered by Machida and co-workers where
one of the gap components vanishes identically for all k
so that there is a normal component with half the value
of the normal state (in the theory of Coleman, Miranda,
and Tsvelik, ' a similar normal component occurs). It
should be remarked that, although earlier specific heat
data ' indicated a sizable normal component, this is prob-
ably due to impurity effects since newer data do not show
this component. As for the two-dimensional nature of
the group representation, our current understanding of
the field-temperature-pressure phase diagram of UPt3 is
in strong support of such a state. ' ' ' In particular,
weak magnetism is present which lowers the symmetry to
orthorhombic. This acts to split the superconducting
transition into two transitions. Pressure acts to eliminate
both the magnetism and the splitting, thus giving strong
support for a two-dimensional group representation, as
opposed to two nearly degenerate single-dimensional
group representations. The main problem with this
scenario is the presence of a term in the gradient part of
the free energy which tends to mix the two components

&.(k)'= Id(k) I'+~ Id(k) X d'(k) I', (22)

where o is k. Plots of this for the I 6 state are shown in
Figs. 9 and 10 with the total density of states shown in
Fig. 11. No attempt has been made to fit these gaps to
simple functions because the complex momentum
dependence of the wave functions would prohibit this.
Instead, some general properties can be inferred. For in-
stance, the d, component vanishes for k, =0 as expected
from earlier work. A surprise, though, is that all three
d vector components vanish on the zone face k, =m. /c.
Thus, this state has a line node gap function, and pro-
vides a counter argument to earlier statements that line
node gap functions are not possible for odd-parity
states. Moreover, all d vector components vanish along
the axis k =0, k„=0 which gives rise to point nodes. A
gap function of this sort (line nodes perpendicular to the
c axis, point nodes along the c axis) is consistent with a

FIG. 9. Plots of ~6 (kl~ with o =+ for I 6 state on the grid
of points of Fig. 8. Size of the dots represents the magnitude of
the gap. Where no dots appear, the gap is zero or very small.
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FIG. 10. Same as Fig. 9, but with 0 = —.

of the representation except for certain field directions.
This is in contradiction to experiment, which shows a
fairly isotropic phase diagram with respect to field direc-
tion (this was the main motivation for the nearly degen-
erate model ' ). Sauls, though, has shown that for an
axially symmetric Fermi surface and axially symmetric
basis functions, this mixing term is zero for the E2 repre-
sentation. ' In the general case, it is not, but its mixing
term is smaller than that of the E, representation. This
work will be discussed in another paper, but it suffices
to say here that, for the current theory, the mixing term
for our I 6 (E2„)state is small enough so as to be promis-
ing in regards to explaining the phase diagram. Alternate
theories based on two nearly degenerate representa-
tions ' are also consistent with the current theory,
given the closeness of the coupling constants for I 6, I &,
and I 4 (the last state having the same line node structure
as I, ).

0.5

0.4 0.8 1.6

FIG. 11. Smoothed fit to the density of states (normalized to
the normal-state value) constructed from the gaps plotted in

Figs. 9 and 10. Energy units are normalized to the value of the
largest gap.

A final issue concerns the question of parity. No
change below T, for UPt3 has been seen in the Knight
shift or induced-moment form factor, indicating no
change in the magnetic susceptibility below T, . This is in

support of an odd-parity state, although one could argue
that, in the heavy fermions, the quasiparticle (intraband)
part of the susceptibility is small compared to the Van
Vleck (interband) part, so this conclusion is not definitive.
Choi and Sauls have also shown that the observed low-

temperature directional anisotropy of the upper critical
field is most easily explained with an odd-parity pair
state with Ms =0 (note, the quantization axis is assumed
to be along e). Such a state came out of earlier nonrela-
tivistic spin-fiuctuation calculations which took into ac-
count the directional anisotropy of the susceptibility. '

In the current case, though, spin and orbital components
are mixed and so a pure M& =0 state is not possible. On
the other hand, the state found here, ~M&~ =1, has the
largest projection of J on the basal plane of any two-
dimensional group representation (M@=0 has the largest
projection, but is one dimensional), so is promising in

that regard. To test this quantitatively would require a
detailed calculation of the upper critical field with both
spin and orbital degrees of freedom taken into account.
Certainly, if the current predicted state is correct, the H, 2

anisotropy cannot just be a spin effect as envisioned by
Choi and Sauls. This can be seen as follows. A direct
translation of their idea to the current state would be to
have a state of pure d, character in pseudospin space.
This can be tested by rotating in pseudospin space at each
k so that the state ~k) has maximal J, along the chosen
quantization axis. This was done for quantization axes
along the a, b, and c axes of the hexagonal crystal (for the
a and b case, this lowers the system to orthorhombic
symmetry). In all cases, the averages (~d, ~ )i, were
within 20—30% of each other, i.e., there is no dominant

d, component. This is consistent with the highly nonuni-

tary nature of this state seen in Figs. 9 and 10. As indi-

cated above, then, orbital eff'ects in the upper critical field

must be playing an important role. This would require a
theory for calculating H, z for a nonunitary multicom-

ponent d vector in the strong spin-orbit coupling limit.
We finally turn to a discussion of T, . We should note

that the density of states already contains the renormal-
ization factor 1/Z (i.e., N =No/Z where No is the bare
density of states). This means that the prefactor NI zZ
in Eq. (20) is analogous to the form A,z/(1+A, z) found in

strong-coupling theories, since NOI J would be the pair-

ing coupling constant A,~, and 1/Z —1 would be the mass
coupling constant A,z. This is consistent with the fact
that renormalization of the external lines of the vertex is
a strong-coupling effect. On the other hand, the frequen-

cy dependence of the bubble has not been kept, so one
has to simulate this by providing an energy cutoff of or-
der of the renormalized Fermi energy. We note that the
size of the specific heat coefficient and the neutron
scattering linewidth are consistent with a renormalized
energy scale for UPt3 of order 5 meV. This is also con-
sistent with estimating a band-structure Fermi energy
and multiplying this by Z. The last thing to be deter-
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mined is I J. This is made difBcult by the fact that yp is
being treated as a number in this paper, whereas in reali-
ty it is a highly complicated function of momentum, fre-
quency, and band and orbital indices. Given the strong
dependence of I z on yo (and also the question of the en-

ergy zero), the exponential dependence of T, on coupling
constant, and the uncertainties mentioned in the above
approximations, the most illustrative approach is just to
see what value of yo is needed to obtain the observed T, .
With a T, of 0.5 K and a cutoff of 5 meV, this gives a
value for A, of 0.205. Since A, =NI &Z2c where c from
Table VI for J =4, I 6 is 0.125, this gives a I 4 of —2.1

eV relative to the energy zero. From Fig. 6, this gives a
pp of 0.335, which is 0.92 of the divergence value, giving
a Stoner renormalization of 12, comparable to the mass
renormalization value of 16 assumed from the beginning.
Since spin-fluctuation models based on the observed
heavy-fermion dynamic susceptibility have a mass renor-
malization which goes like the Stoner factor, as opposed
to the logarithm of the Stoner factor which one gets for a
Lindhard function, then there is overall consistency in
these numbers. This can be further demonstrated by es-
timating y, obtained by multiplying yo by the Stoner re-
normalization (12) then by the square of the orbital de-
generacy (36). This gives a value of about 150 states/eV,
comparable to the 180 states/eV given by the specific
heat y of 420 mJ/molK . Moreover, converting y to
proper units (with g =—', and j=—', ) gives 0.0075
emu/mol, comparable to data from susceptibility mea-
surements. To obtain a more reliable estimate of these
parameters would require doing a full strong-coupling
calculation retaining the frequency dependence of the
bubble.

The large estimated size of I z of order 2 eV which
must be renormalized downwards by Z might seem
somewhat worrisome. After all, wouldn't one expect
high T, in transition metals where Z is closer to 1. The
question of renormalizing the interaction downwards has
been discussed by Anderson and reviewed by Lee
et al. The main point to emphasize here is that the in-
teraction parameters of this paper are only appropriate
for a system close to an f configuration, and the same
thing that is causing the large value of I J is also causing
a small value for Z. In transition metals, the Ek parame-
ters are largely screened out and play no role. Instead,
one collapses back to standard spin-fluctuation model
with a Stoner interaction parameter I. Estimates based
on this I give extremely low estimates of T„even in pal-
ladium which has a large Stoner renormalization.

VI. FUTURE DIREC.I1ONS

An advantage of the current approach is that the
theory is systematically improvable by removing various
approximations made in this paper. The most severe of
these is treating yp as a number. A proper strong-
coupling calculation would include the frequency depen-
dence of this object. This is not too dificult if the simple
relaxational form is used,

XpI
go(~) = (23)I —Eco

where I' is the neutron scattering linewidth. Work of
this sort has been done in earlier spin-fluctuation mod-
els.s'o Of more interest is the momentum and orbital
dependence of this object. The philosophy of this paper
is similar to that espoused early on by Anderson, that is
the size of the effective interaction is large enough (large
ratio of T, to E~) that the on-site interaction must play
the central role. This is also consistent with the observa-
tion that one of the defining properties of the heavy-
fermion metals is their large f-atom separation, giving
weak intersite interaction efFects. Even neutron scatter-
ing data indicate that part of the susceptibility where the
bulk of the fluctuating moment is has a relatively mild
momentum dependence. On the other hand, these
efFects played a crucial role in earlier spin-fluctuation
models, so it is of interest to see how they would enter the
current formalism. In the real-space approach taken
here, these effects would be simulated by adding a term
yo(R, R') in addition to the term yo(R, R) where R,R'
are site indices with R' a near neighbor of R. Near-
neighbor effects would show up in Eq. (1) at first order in
this bubble. At second order in this bubble, there would
be terms which would also afFect on-site pairing
[go(R,R')go(R', R)]. Assuming Eq. (1) can be solved,
one is left with a vertex which contains on-site terms,
near-neighbor terms, etc. The general properties of this
vertex along with the functional forms of the near-
neighbor and next-near-neighbor pairs are discussed by
Appel and Hertel.

We illustrate these ideas in the following manner. Let
us assume the following form for yo.9

Xo(q)=Xo+Xig&"'" "',
R'

(24)

where R ' is a next near neighbor of R. We consider the
next-near-neighbor case for this part of the argument
since multiband effects do not have to be explicitly in-
voked (for the UPt3 lattice, next near neighbors are
separated by a primitive lattice vector, but near neigh-
bors are separated by a nonprimitive lattice vector, so
multiband effects have to be considered in that case). A
positive y, corresponds to the ferromagnetic case and a
negative one to the antiferromagnetic case. We now
solve Eq. (14) for each q, giving I (q). We then determine
I'(R, R', R,R') by Fourier transforming I'(q). Note that
since the two electrons are not at the same site, odd-J
states are now allowed. What is found is that for the fer-
romagnetic case, the largest attraction occurs for maxi-
mal J (J=5), whereas for the antiferromagnetic case, the
largest attraction occurs for minimal J(J=0). This is
analogous to the single-orbital result of S =1 and 0, re-
spectively, which was discussed at the end of Sec. III. As
expected, the size of this interaction can be comparable
to the on-site component if the q dependence is strong
enough.

For the antiferromagnetic case, we construct pair
states of relative J=0 for both near-neighbor and next-
near-neighbor cases as derived by Appel and Hertel.
For near-neighbor pairs with J=0, only the representa-
tions I,+, I 3+, I 5+, and I 6+ occur. For next-near-
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neighbor pairs, only I,+, I, , I 5+, and I 5 occur. These
multiple representations occur due to summation over
the six neighbors in each case. In Table VIl, the resulting
coupling constants are shown. In both cases, the I,+
coupling constant is by far the largest, similar to earlier
work based on phenomenologica1 interactions. ' Unlike
the on-site case, these I &+ states have nodes, but, as they
are single-component order parameters, they cannot ex-
plain the experimental data in UPt3. This is another
strong argument against the relevance of near-neighbor
pairing for heavy-fermion superconductors.

The other issue concerns orbital dependence of the
bubble. Calculations of this sort exist in the literature for
UPt3, ' and are rather tedious, as they involve calculat-
ing matrix elements of relativistic wave functions over a
fine enough grid in k space to get reliable values of go.
As discussed in Sec. IV, one might get around this
difficulty by simulating these effects with some effective
crystal-field model. The most probable picture based on
the temperature dependence of the neutron scattering
data, though, is that this effect enters most prominently
in theyo(R, R') term.

The next issue concerns feedback effects which are im-
portant in the physics of superAuid He. In that case, a11

L =l states are degenerate at T, . Therefore, one would
expect the isotropic state, the BW state, to have the
lowest free energy. On the other hand, the susceptibility
changes below T, which affects the pair interaction and
favors states with maximal anisotropy, giving rise to the
Anderson-Brinkman-Morel (ABM) state. ' In the
current problem, though, (1) this degeneracy is already
broken in the normal state due to the crystal lattice and
(2) there is no experimental evidence for a change in the
susceptibility below T, (based on Knight shift and
induced-moment form factor measurements), although
it should be noted that the interband, or Van Vleck, com-
ponent most likely dominates the susceptibility. ' (Neu-
tron scattering experiments which access the low-
momentum, low-frequency part of the dynamic suscepti-
bility would be helpful in extracting out the quasiparticle
part of the susceptibility and seeing how it changes below

T, .) Because of this, feedback eff'ects probably do not

play an important role in the heavy-fermion problem (the
large ratio of T, to EF would argue against this, though).
A related effect is whether the interaction changes as a
function of field (this could be connected to the H, 2

an-

isotropy discussed in the previous section). Magnetiza-
tion data look very linear in field for all field directions
for the field range of interest which would argue against
this. On the other hand, as T, depends exponentially on
coupling constant, small changes in the quasiparticle
wave functions in an applied field could lead to noticeable
effects, especially given the low effective Fermi energy.
This could be simulated in the current theory by redi-
agonalizing the band-structure wave functions in the
presence of the appropriate field and seeing how the cou-
pling constants listed in Table VI change.

NN J=O NNN J=O

0.134
0.075
0.079
0.066

0.351
0.044
0.178
0.020

A related effect is the observed splitting of T, in UPt3
that was discussed in the previous section. This has been
treated in the past by a phenomenological symmetry-
breaking field thought to be due to the orthorhombic dis-
tortion associated with the weak antiferromagnetism.
This could also be simulated in the current model by ap-
plying a weak staggered field (the new orthorhombic cell
would contain four uranium atoms) and rediagonalizing
the band-structure wave functions, from which the split-
ting of the coupling constants could be determined.

The author would like to conclude by saying that the
physics of heavy-fermion superconductors is complicated
enough (as this paper demonstrates) that the picture
offered here may not be complete. On the other hand, he
feels that the ultimate theory for these materials must
look in some form like what is being proposed here, since
the orbital dependence of the f electrons and the short-
range nature of the interactions should play a crucial
role. It is promising that this model has certain qualita-
tive features reflected in the data (preference for uranium,
importance of two f atoms per unit cell) which are hard
to understand from earlier spin-fluctuation theories.
Also, the predicted pair state for UPt3 has many promis-
ing aspects also missing in earlier theories. Moreover,
there is a conceptual beauty to having a pair state which
has maximal L and maximal S, as this is a direct generali-
zation of the physics of He with which heavy fermions
share many qualitative features. Hopefully, with in-
creased experimental and theoretical effort, we can deter-
mine whether this is indeed the right approach to pursue
for solving this problem.
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TABLE VII. Coupling constants for UPt3 for the case of
near-neighbor (NN) and next-near-neighbor (NNN) pairing
with J=0. These should be multiplied by the quantity XI OZ'
to convert to real coupling constants with I 0 referring to the
J=0 NN or NNN component of the Fourier transform of I (q).
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