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We present a selection rule for matrix elements of local spin operators in the S =
~ Haldane-

Shastry model. Based on this rule we extend a recent exact calculation by Haldane and Zirnbauer of
the ground-state dynamical spin correlation function S (n, t) = (OlS (n, t)S (0, 0)l0) and its Fourier
transform S (Q, E) of this model to a finite magnetic field. In zero field, only two spino-n excitations
contribute to the spectral function; in the (positively) partially spin-polarized case, there are two

types of elementary excitations: spinons (ES*= 6 ~) and magnons (ES' = —1). The magnons are
divided into left- or right-moving branches. The only classes of excited states contributing to the
spectral functions are (I) two spinons, (II) two spinons + one magnon, (IIIa) two spinons + two

magnons (moving in opposite directions), and (IIIb) one magnon. The contributions to the various
correlations are S +: (I); S": (I)+(II); S+: (I)+(II)+(III). In the zero-field limit there are no

magnons, while in the fully polarized case, there are no spinons. We discuss the relation of the
spectral functions to correlations of the Calogero-Sutherland model at coupling A = 2.

I. INTRODUCTION

In 1988 Haldane and Shastryi 2 independently intro-
duced a S =

z one-dimensional (1D) spin model on
N sites with an exchange interaction that falls off in-
versely proportional to the distance between the spins.
In the past few years this model has proven to be solvable
to a remarkable extent. s s The simple structure of this
model even allowed the authors of Ref. 6 to compute the
zero-magnetic-field dynamical structure function (DSF)
at zero temperature:

(GSlS (t)S„(t')lGS)= S (m —n, t —t')

(a, 6 = z, y, z). In this paper we extend these results to a
dynamical ground-state correlation function in a nonzero
magnetic field. Although a closed expression is not avail-
able, we are able to identify relevant excitations that con-
tribute to these functions. More specifically, when we ex-
pand the expression (1) for the dynamical structure func-
tions in a basis of eigenstates of the Hamiltonian (lv)),

(GSlS (m, t)S„'(n,t')lGS)

(see Ref. 6), whereas in very strong magnetic fields (such
that all spins are fully polarized in the ground state)
only one magnon participates. The set of intermediate
states is small as a consequence of a new selection rule
for matrix elements of the local spin operators between
eigenstates of this model. We will present it below.

A more traditional playground for 1D spin chains is
the Heisenberg model with nearest neighbor exchange
(NNE). It shares its low energy properties with the
Haldane-Shastry model (HSM). However, for the NNE
model the number of excited states contributing to its dy-
namic structure functions is not bounded; consequently
these functions are still unknown in both zero and
nonzero magnetic field. It seems again that the char-
acterization of the HSM as an "ideal spinon gas" allows
one to push forward our understanding of these 1D spin
chains much further.

For the remaining part of this presentation, we will
continue with a brief reiteration of the relevant prop-
erties of the Haldane-Shastry model (HSM) in Sec. II.
Section III describes the selection rule. We then use this
rule to identify the contributions of intermediate states to
the difFerent DSF's in Secs. IV—VI. Finally in Sec. VII we
conclude with a comparison to earlier DSF calculations
for the NNE rn.odel.

II. VANGIAN SYMMETRIES

the set of intermediate states lv) that contribute to the
sum is finite and contains only states that have very small
numbers of elementary excitation added to the ground
state, viz. , two "spinons" and up to two "magnons. " In
zero magnetic Geld the magnon excitations are absent

The Hamiltonian of the HSM in a magnetic field on W
sites is given by

H = ' ) d (i —j)(P;, —I)+Ii) S;,
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where d(n) = sin( ~ ) and P;~ is the operator that per-
mutes two spins on sites i and j. As described in Refs. 1,
4, and 5, in zero magnetic Geld the spectrum of the HSM
consists of large degenerate multiplets. Responsible for
these degeneracies is a symmetry algebra of (3) identified
in Ref. 4 as the Yangian Y(sl(2)) which is generated by
the following two vector operators:

number of available orbitals M+1 =
2
"+ 1 by 1,

as opposed to 0 for bosons and 2 for fermions. All the
states in a multiplet characterized by a sequence (m;}
have the same energy and momentum given by

M
27'P = ) m; mod N, in units of

N

Jp ——) S;,

Ji ——) ip~S; x S~,
i(j

(4)

where w;~ = "+" and the (z;},i = 1, . . . , N are N
equally spaced points on the unit circle. Both operators
commute with the Hamiltonian. Every degenerate mul-
tiplet forms a representation of this algebra and is char-
acterized by a so-called (Yangian) highest weight state
(YHWS). That state is the only member of that multiplet
which is annihilated by Jo+ and Jz+. The rest of its mul-
tiplet is generated when we act upon the highest weight
state with the other members of the Yangian algebra.
Every Yangian multiplet has an accompanying Drinfeld
polynomial P(u) of order & N in u. The roots of this
polynomial (which can be chosen to be half-integers in
the range 0, . . . , N) correspond to the elementary excita-
tions of this model: spinons. A Drinfeld polynomial can
be represented pictorially as a sequence I' of N —1 zeros
or ones, a generalized occupation number configuration.
We tag on two zeros in positions 0 and ¹ As elucidated
in Ref. 5 two ones have to be separated by at least one
0. The roots of the Drinfeld polynomial are then located
between two consecutive zeros. The locations of the ones,

{m,},are the so-called rnpidities. There are M =
of them, where N, ~ is the number of spinons. To clarify
this with an example for N = 10 sites, let us consider
the multiplet characterized by the sequence 101000100.
It has three rapidities mi ——1, m2 ——3, ms ——7 and
four spinons causing roots in the Drinfeld polynomial at

Following Ref. 3, a sequence of m + 1 zeros (between
ones) is to be interpreted as a single orbital filled with
m spinons in a symmetric state. Since spinons have spin
1/2, this implies that the orbital has total spin 2 (more
formally, this sequence gives an "m string" of roots of the
Drinfeld polynomial, which, &om the representation the-
ory of the Yangian algebra, constitutes a spin- 2 factor
in the representation). In the case of the above example
multiplet that means that the multiplet has total spin
content 1 t3 1 = 2 1 0 and contains 3 x 3 = 9 states.
With M ones there are therefore M + 1 orbitals —two of
which are empty in our example. Notice that the max-
imum possible S and 8 a state in the multiplet can
have is N,~/2. That state (the YHWS) has all its spinons
polarized up.

These spinons have a semionic character as is evi-
denced by the fact that adding two spinons (and we al-
ways have to add two at a time to avoid getting a se-
quence with consecutive ones) to a sequence reduces the

E=) ~,' ~m, (m, —N).
. (2+v, b(¹)

We can also express these quantities in terms of spinon
variables. If we label the M+ 1 orbitals from right to left
by spinon momenta —kp & k & kp ——& 2 spaced by &,
we get

P = ) kni, + Nkp mod 2vr,

k

E=) ~(k)n&. + —) V(k —k')+ E(M, N), (6)
kyar kk', crcr'

where e(k) = —"'(kp —k ), V(k) = v, (kp —[k~), and ni, is
the number of spinons in the orbital with momentum k
and spin O'. E(M, N) only depends on the total number
of sites and spinons. We also recognize v, as the spinon
velocity

&&
at the zone endpoint, kp, in the ground

Z~(k)

state.
The action of the Yangian algebra within. a multiplet

of states is to rotate the spinons individually [rather
than all of them through the global SU(2) spin opera-
tors]. For this reason Jp+ and Ji+ annihilate a YHWS
since it has all its spinons fully polarized. There-
fore the YHWS's have also been dubbed fully polar-
ized spinon gas statess (FPSG). In a local spin basis

( ~
{ni ) ~ ~ ~

q nM })}where the (n, }are the locations of the
down spins, the wave functions of these FPSG states
4'(ni, . . . , nM) = g(z„,, . . . , z„M) are polynomials in the
(z„,. }of degree &¹ They can be written as y%'p, where
4'0 is the h = 0 ground-state Jastrow wave function, and
y is a polynomial known in the mathematical literature
as a Jack polynomial. Algorithms for their construction
exist. ~0

To get a more physical idea of spinon states consider
the following wave functions in the same basis:

i'(ni, . . . , nMlni, . . . , aiv )

—z„, z,
i

(z„,. —z,. ) . (7)(
i="i '="i j="i

The (a;}are the locations of localized spinons that can
point up or dawn; the (n; }are the positions of dawn spins
(other than those of possible localized spinons pointing
down). Notice that the wave function prevents the (n;}
&om coinciding with the spinon sites. We call the com-
plement of the set of spinon sites the condensate. It is
a singlet under the action of total spin. Furthermore for
N, ~ = 0 Eq. (7) represents the exact ground-state wave
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function for h = 0. The usefulness of these states is lim-

ited by the fact that they are not mutually orthogonal
and, worse, overcomplete. However, based on numerical
evidence for up to 12 spinons, it is clear that the space
spanned by states (7) with a fixed number N, p of localized
spinons contains only eigenstates of the Hamiltonian be-
longing to Yangian multiplets with N, ~ or fewer spinons.

The subspace of states that have a fixed number of N, ~
localized spinons, all polarized, has the pleasant prop-
erty that it only contains eigenstates of H with precisely
N, z spinons. This is clear &om the fact that these local
spinon wavefunctions —although not eigenstates of the
Hamiltonian —are annihilated by both Jo+ and Ji+ (see
Appendix A). This is consistent with the fact that fully
polarized spinon eigenstates are supposed to be of a poly-
nomial form with degree (N in the (z„,j, just like wave
functions (7). In that same article it is also shown that
these fully polarized localized spinon states are complete
as well and span all YHWS's.

In a nonzero magnetic field the term hg, . S; in the
Hamiltonian (3) will give a Zeeman splitting within the
Yangian multiplets, although its members remain eigen-
states of H. As a consequence, for increasing magnetic
field, the ground state will contain more and more (fully
polarized) spinons. In the thermodynamic limit their
number is given by

N, p h

N h, ' '
2

=2' =1 — 1 ——,h, = —v„

where cr denotes the ground-state magnetization. For
h ) h, the ground state is completely ferromagnetic.

The occupation sequence characterizing the Yangian
multiplet that contains the ground state will have the
spinons "condense" into the left- and rightmost orbital
(in equal numbers), in accordance with the spinon dis-
persion (6) relation which assumes a minimum at kko.
So for a typical magnetic field below the critical value, the
ground state would be the YHWS of a Yangian multiplet
that is described by a sequence like 000010101010000.
For higher fields the 1010101 pattern shrinks as more
spinons go into left and right orbitals. These wave func-
tions happen to be known analytically:

4'(ni, . . . , nM) =
~ h ~i(j

III. STRUCTURE FUNCTIONS
AND THE SELECTION RULE

S(Q, E) of its expansion (2) in a basis of eigenstates (iv))
with energy E„andmomentum p„looks like

S(Q, E) = ) M„b(E—(E —Ep)) h(Q —(p„—pp)),

M„=2' i(vi S (Q) iGS) i (10)

with S (Q) = ~P„i exp( —inQ) S„,and
i
GS ) the

ground state of the model. That is, the support of
S (Q, E) in the (Q, E) plane is zero except when (Q, E)
corresponds to the excitation energy and momentum of
a state contained in S (Q) iGS).

From numerical evidence up to N = 16 sites it has be-
come clear that there is only an unexpectedly small num-

ber of nonzero matrix elements M„.To resolve parity
and other accidental degeneracies between the Yangian
multiplets we split these degeneracies by actually diago-
nalizing H + AHs, where Hs is the second integral of the
motion for this model as presented in Refs. 4 and 12. The
eigenvalues of this operator allowed the Yangian occupa-
tions sequences to be unambiguously identified. States
in the multiplets are partially resolved by fixing S' and
S~ ~. (A unique resolution of states would be obtained

by adding another term pJo Ji to the Hamiltonian.
This would correspond to a basis of states within the
Yangian multiplet obtained through the algebraic Bethe
ansatz. i

)
Now let us denote the eigenstates of this model as

il', p) where I' labels a Yangian multiplet through an oc-
cupation sequence and p labels the state within the mul-

tiplet. Furthermore define M (S, )» —(I'pi S; il'p').
Then the observation made above implies that the matrix

rr'M (S, ) vanishes if the occupation sequences I' and I"
differ "too much" in a sense made precise below. This
situation is analogous to an ideal gas, where if 0 is a
one-body operator, (o. i

0 iP) = 0 if the occupation num-

ber configurations of io. ) and iP) differ on more than one

orbital. E.g. , 0 = p(z) = P&&, e'(" ") ct&ci, can add or
take out a single particle Rom an orbital in an ideal gas,
but in an interacting gas it could add unlimited numbers
of particle-hole pairs.

However, if F and I' do not difFer too much, according
to the rule there will always be a pair of states p and p' in
either multiplet for which the matrix element is nonzero.

Rule 1. If z(I', m, n) ia the total number of ones in
positions m through n in Yangian occupation sequence I',
then M" (S;) g 0 iff. im(1', m, n) —vr(I", m, n)i ( 1 for
any1&m(n&N —1.

The rule is illustrated in Fig. 1. A general consequence

The dynamic structure function S ~(m —n, t
t') = (GSiS (m, t)S (n, t')iGS) with S (m, t)
exp( —itH) S exp(itH) measures the response of the sys-
tem to excitations created by Ripping and/or imposing a
certain spin on a particular site n in state iGS) at time
t' and measuring its effect at time t on site m. Obvi-
ously, since H conserves S, only S +, S', and S+
are nonzero. At zero temperature the Fourier transform

&
r = ioooiooioooo, ~is;[r' = 100010001000,~'& g o

(r = 100010010000,p s; r" = 001 000001000,p ) = 0

FIG. l. According to the selection rule, there will be states
p, in multiplet l that are connected to others p' in I" through
a local spin operator. In I' and I'" there are none, e.g. , since

i
n.(I', 4, 8) —n (I",4, 8) i

= 2 —0 = 2 ) 1



6892 J. C. TALSTRA AND F. D. M. HALDANE 50

of this rule is that when we choose m = 1 and n = N —1,
it follows that the total number of ones in a sequence
cannot change by more than one; i.e. , the total number
of spinons can only change by +2, 0, or —2. It is re-
markable that according to the rule this also holds on

any corresponding subsequences of the occupation num-

ber sequences.
The zero-magnetic-field DSF has been computed in

Ref. 6. The particular structure function computed hap-
pened to be S +(Q, E) (the others are identical because
of rotational invariance). This function is governed by ex-
citations present in S+ ~GS). Since the zero-field ground
state contains no spinons, the rule tells us that we can
only expect excitations with zero or two spinons. As

S, ~GS) has S* = +1 the former is ruled out and in the
states in the multiplets with two spinons, both must be
polarized. This was to be expected since we can expand
S,+. ~GS) in a set of localized spinon wave functions (7)
containing boo polarized spinons:

(ng, . . . , nM g~ S,+ ~GS)

1
2 2

8v, ( (v,' —v~z) (v,' —v,') )
(12)

matrix elements M+, i.e. , the weight of the DSF at a
point (Q, E) on the plot, are the following: Since S,+ ]GS )
only contains states with two fully polarized spinons, it
must be built out of YHWS's. These wave functions are
functionally identical to eigenfunctions of the Calogero-
Sutherland model at coupling A = 2 of particles moving
on a ring. Since both wave functions are of a polynomial
form with degree ( N, the computation of a sum over
sites is identical to taking an integral over the ring in the
continuum model. The action of S,+. in the spin chain
is translated into a particle destruction operator @(z,t)
(S+ removes a down spin). So the S +(Q, E) DSF re-
duces to the Green's function (GS] 4't(z, t)@(0,0) ]GS)
in the Calogero-Sutherland model. It can be computed in
the thermodynamic limit, in which case it can be mapped
unto a Gaussian Hermitian matrix model correlator. The
result is

m=1

So one of the spinons seems to be sitting on the site on
which S+ acted and the other is an even number of sites
removed from it.

Since we know the spinon dispersion relation, we can
demarcate the support of S +(Q, E) in the (Q, E) plane
in Fig. 2. The main steps of the computation of the

+
Support of S (Q,E) for h=0

5-

4-

FIG. 2. The shaded region shows where S +(Q, E) is

nonzero for 6 = 0. The top boundary corresponds to exci-
tations vrith thoro spinons that have identical momentum; on
the bottom boundary one of the spinons has fixed momentum
+s'. E is given in units of v, /vr.

with Q =- —
z (vq + vz) and E = e(vt) + e(v2). The

DSF matrix element is parametrized by vq, v2, which are
quickly identified with the velocities of the two spinons in
the excited state. The (4't4') Green's function has been
obtained recently at finite N as well.

For h P 0 the three different structure functions
S +(Q, E), S"(Q, E), and S+ (Q, E) will not be equal,
since ~GS) is no longer a singlet. In fact it has S' =
S = 2' = So, where N, ~ = N, z(h) is given by (8).
This difference between the three correlation functions is

also expressed in two additional global SU(2) selection
rules, which rule out certain matrix elements based on
the total spin S and S~ of the final state rM inside the
Yangian multiplet I'.

In the first place there is the Wigner-Eckart theorem
for vector operators such as S;, which tells us that in
order for (I', @[S,. ]GS) to be nonzero the total spin S
of ~I', p, ) must satisfy So —1 & S & So + 1. Second,
for any state in a multiplet with N, p spinons, we have

2' ) S & S', where equality only holds for the YHWS,
which has all its spinons up. Now put this together with
the fact that S,+ raises S' by +1, S,. lowers it by 1, and

S; leaves it the same. Classifying states according to
their S' and St as types (i)—(vi), following Miiller et
al. we find the following contributions:

S+ ~GS) contains states with S = So + 1 and &N, ~ =
+2 [type (iii)].

S;. ~GS) contains states with S = So + 1 and AN, ~ =
+2 [type (i)] or S = So and AN, ~ = +2, 0 [type (ii) ' ].

S, ]GS) contains states with S = So + 1 and AN, p
=

+2 [type (iv)] or S = So and bN, &
——+2, 0 [type (v) ' ],

or S = So —1 and b,N, ~ = +2, 0, —2 [type (vi) ' "].
Since we have an additional quantum number to label

states, N, p, we added Latin superscripts a, b, c to the
Roman numerals. All ten contributions are summarized
in Table I.

We will now investigate all three structure functions
individually following these selection rules.
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TABLE I. List of matrix elements contributing to the DSF. The correlation functions in the last column refer to those in
the Calogero-Sutherland model as they appear in Eqs. (12), (15), (16), (19), (21), and (22). The entries marked with a (t) do
not survive in the thermodynamic limit. For the example occupation sequences we act on a ground state OOOI101010101IOOO,
with the I delimiting the center region. In the column under "Excitation" 8 denotes a spinon and M denotes a magnon.

DSF

(Q @)
(S' = Sp+ 1)

Type Stot

S = Sp+1

ANsp

dN. , =+2

Typical contributing
Yangian multiplet
OOOI100100101IOOO

Excitation Matrix element

S"(Q, E)
(s = sG)

(i)'
(ii)
(ii)

S = Sp+1
S=Sp
S = Sp

AN„=+2
2 N„=+2
AN, p

——0

OOOI100101001IOOO

OOOI100101001IOOO

1001101001001IOOO

(,)
(4' 4')

(Q &)
(S' = Sp —1)

(iv) t

(v)
(vi)
(v)"
(»)'
(vi)'

S= Sp+1
S=SG

S=Sp —1
S = Sp

S=Sp —1
S=Sp —1

AN, p
——+2

AN„=+2
hN„=+2
bN, p

——0
EN,p

——0
AN, p ——-2

0001100100101IOOO

OOOI010010101IOOO

OOOI010010101IOOO

0001100100101I010
1001100101001IOOO
100I100100101I010

28
28
28

28+ W
28+ JH

28+ 2M, JH

(So+1)(2SO+1) ~

IV. S +(Q, E)

Type (iii): AN, z
——+2, AS = +1. For the occupa-

tion sequence of the ground state in a given magnetic
field (e.g. , 000010101010000) let us label the zeros in the
leftmost orbital as the left spinon condensate and the
ones in the rightmost orbital as the right spinon con-
densate. From Table I we learn that action of S,+ on the
ground state only produces states with two more spinons,
i.e., one less 1. This 1 has to come out of the center
. . .10101.. . region. We cannot take more than a single
1 out of the center region —and stow it into the left or
right spinon condensat- since this would imply a viola-
tion of rule 1 applied to the center region. Taking out
a 1 in the center region is equivalent to inserting two
spinons there. A typical nonzero matrix element would
be (0001001001000,y~ S,+ ~0001010101000),with the two
spinons residing in orbitals 2 and 3.

All this means is that we get a simple two-spinon spec-
trum, as in the zero-magnetic-field case. The only differ-
ence is that now the momenta of the spinons can only
vary Rom —kp to kp, where kp = &&(N N, p) decreases—
with increasing magnetic field as N, ~ = N, ~(h) accord-
ing to Eq. (8). The support of S +(q, E) is essentially
a squeezed version of Fig. 2.

As for the weight associated with two-spinon excita-
tions, the calculation for the zero-magnetic-field case (12)
carries over without problems. The reason for this is
twofold. In the first place, the nonzero-magnetic-field
ground-state wave function (9) is of the same Jastrow
form as the zero-field one, with just an extra phase fac-

tor Q, z ',.
™

appended. When we take the matrix el-
ement, the phase factors &om ket and bra parts cancel
each other. Second, the excited states are again of the
YHWS type (S =

2 ) and have to be polynomials. The
mapping onto a Calogero-Sutherland model matrix ele-

ment remains therefore legitimate.
The contribution of just two-spinon YHWS excitations

was to be expected since we can expand any fully po-
larized localized spinon wave function with N, p spinons
acted upon with S+ in terms of a set containing N, p + 2

spinons:

(S+4', )(ni, . . . , nM i)

(13)

Here V is a set of M random sites on the circle excluding
the spinon sites fa;} (see Appendix B). Equation (11)
is a special case of this expansion with V equal to the
sites that are an even number of steps removed from the
site on which the local spin operator acts. We could also
have realized that the number of spinons cannot go up by
more than 2 when we consider that S+ and Ji+ annihilate

S,+ ~GS), indicating that the latter must consist of pure
YHWS's with S = So + 1.

V. S"(Q,E)

For the DSF S"(Q, E) we find similar simple excita-
tions that contribute, although at present not all result-
ing matrix elements can be computed. Prom the com-
bined selection rules we find three types of excitations:
(i), (ii), and (ii)s, in Table I. They all have in common
that AN, p = 0 or +2. This is not surprising: Let us con-
sider the state Ji+ (S; ~GS)). This state is annihilated by
Ji+ and S+, and so it must be a YHWS (see Appendix C).
Therefore, since the first action of J~+ does not change
the number of spinons, S;. IGS) must be a mixture of



6894 J. C. TALSTRA AND F. D. M. HAI.DANE

states that contain not more than 2SO+ 2 spinons, where
2Sp is the number of spinons in the ground state.

We will now discuss the individual types and where
possible compute the values of the matrix elements.

Type (i): AN, ~ = +2, AS = +1. Having identical
selection rules, these states sit in the exact same Yangian
and spin multiplets as the type (iii) states, and therefore
they also contain two additional spinons. However their
S' = S ' —1, and so they are no longer a YHWS like
the type (iii) states. Nevertheless they are related by a
simple application of S

S'" =S, +1l, AN, = +2, S II'),
/2(Sp + 1)

(14)

where II') denotes the YHWS of the multiplet with occu-
pation sequence I' of type (iii). This allows us to reduce
a type (i) matrix element to one that is a multiple of a
type (iii) given in Eq. (12):

Ils+, S;. llGS
2 Sp+1

1
I(l'ls,'IGS) I'

where we used that S+ annihilates the ground state.
Type (ii): hN, ~ = +2, AS = 0. This type of state is

a member of the same kind of Yangian multiplet as types
(iii) and (i)—i.e., with two extra spinons —but it sits in
a spin multiplet that does not contain the YHWS. We

expect the associated matrix element to be proportional
to a type (iii) matrix element as well, but we lack the
necessary operator that would step us from this state to
the YHWS. This operator would have to be some member
of the Yangian algebra.

Type (ii): b,N, ~ = 0, b, S = 0. Since this type
of state has b,N, ~ = 0, the number of ones in its
occupation sequence must be identical to that in the
ground state. As with the previous three types we

can delete just a single 1 from the center, leaving be-
hind two spinons pointing up. This 1 then must go
into either the left or the right spinon condensate.
Therefore a typical nonzero matrix element would be
(0010$1001001$0000 S,*. 0000($010101/0000 ) where

the ( just helps to draw attention to the center region.
Rule 1 rules out any additional ones leaving the center
region. The additional 1 on the left or right can be in-

terpreted as a magnon with S' = —1. The limiting case
where the magnon "fuses" with two spinons at a bound-
ary between a condensate and the center region gives us
the ground state.

These states must be a YHWS since they have
S = S', like IGS). This fact allows us to calculate
the corresponding matrix elements. Since both ground
state and excited state are a YHWS, a mapping onto
the Calogero-Sutherland (CS) model is valid. In this
case we need a ground-state density-density correlator
(GSI p(z, t)p(z', t') IGS) since S; measures the presence
or absence of a down spin (i.e., a particle in the CS
model). This calculation has been done by Simons et
at. ,

~s in the thermodynamic limit, by studying the re-
pulsion of energy levels in a random matrix model under
a varying perturbation. The energy levels are identified
with the positions of the particles and the strength of
the perturbation corresponds to imaginary time. Their
original expression depends on three parameters (called
A, Aq, and A2), the latter two of which are compact, and
the first one is unbounded. This is precisely what we ex-

pect from our selection rule: two spinons restricted to the
center region with momenta in the range —I|0, . . . , +ko
and a magnon that can go oK all the way to the right or
left (i.e., koo in the thermodynamic limit). In terms of
the velocity v of the magnon —with dispersion relation

(5)—and spinon velocities vq, v2 their result is as follows:

l(v, v„v,
l p(q) IGS) I

(v —v, )(v + v, ) 2=
( ),(

')2 [(v —vg) + (v —v2)] .

For completeness we give the relation between the v's

and the A's:

zz
S (Q,E) at low h

zz
S (Q,E) at high h

0
zz

S 0

FIG. 3. S *(Q,E) for small h

(a = ~~ = 0.05) and large h (o = 0.4) on
N = 14 sites. E is in units of v, /7r.
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ZZ

Support of S (Q,E) for low h
Zz

Support of S (Q,E) for high h

4

2:

0 4' 0
2n—4mcr

FIG. 4. The regions where S"(q, E) is
nonzero for low and high h. The area shaded
dark contains the contributions from the ex-
citations with AN, p = +2 [types (i) and
(ii) ]. The excitations with EN, p

= 0—type
(ii) ~an also occupy the lightly shaded
area.

A=v v„
1 2—

2vs
2

(1 —A', )(1 —A,') =
l

2vs )
(17)

Numerical data for S"(Q, E) can be found in Fig. 3
at values of 6 close to 0 and h, . Figure 4 shows the cor-
responding support of S"(Q, E) in the (Q, E) plane, as
predicted from the selection rule, in the thermodynamic
limit. We notice that for finite-size systems some of the
features near the lower boundary are absent.

vz. s+-(q, z)

S~ t = Sp + 1I', ZN„=+2, S. S' 1p

Finally we discuss the S+ (Q, E) DSF which is gov-
erned by the excitations of types (iv)—(vi)' that are
present in S, lGS).

Type (iv): b,N, ~ = +2, b,S = +1. This type of state
is very similar to types (iii) and (i); as a matter of fact
they all reside in identical Yangian and spin multiplets.
Therefore type (iv) states differ from the ground state
only by two extra spinons in the center region. They are
related to their YHWS lI') [of type (iii)j through

r, sN„=0,s, s
' = ' s-lr), (2o)

/2Sp

and lI') is the type (ii) YHWS of the multiplet with
occupation sequence I'. We can now trivially relate the
matrix elements of types (ii)s and (v)s:

(
S'" =S,r, an„=o,s, s ', ~s,; Os)

=
2s l(rlls' s, jlGs)l'

p

(21)

The last matrix element in this equation has already been
computed for the S +(Q, E) DSF. However, the energy
of the corresponding excited state here is shifted by 2h in
comparison, because of the Zeeman term in the Hamil-
tonian.

Types (v) and (vi): AN, ~ = +2, b,S = 0, —l. States
of types (v) and (vi) contain a two-spinon excitation
as well —like types (iii), (i), and (iv). However, since
they do not reside in the spin multiplet of their YHWS

( 2' ) S), the associated matrix elements are unknown.

Types (v): b N, ~ = 0, b,S = 0. Type (v)s states are
very similar to those of type (ii); they only differ in S*
by —1. Therefore both contain two excited spinous and
a single left- or right-moving magnon. They are related
to each other by

1

Q(4Sp+ 2)(2Sp+ 2)

Analogous to the calculation for type (i) states, a matrix
element of type (iv) can now easily be reduced to one
involving type (iii):

(
Stot;

r, war. , =+2, s, =s', s,*. ~Gs)
*

2
l(rl(s+)'s, IGs&l'

1

(2S + l)(S + 1) (

The last matrix element is listed in Eq. (16).
Type (vi): b,N, ~ = 0, b,S = —1. These states reside

in the same Yangian multiplets as the previous type; how-
ever, they are not in the spin multiplets of the YHWS:

& S = Sp —1. Since we lack the operator that steps
us up to the YHWS, we are not able to compute the
matrix element.

Type (vi): b,N, &
———2, AS = —1. This last class of

states has AN, ~ = —2 and therefore the number of ones
in its occupation sequence goes up by one compared to
the ground state. The selection rule I only allows the
extra 1 to go into the left or right spinon condensate.
As before we are also allowed to take a 1 out of the
center region and bring it into the left or right spinon
condensate. Notice however that the rule forbids both
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XX

Supportof S (Q,E) for low h
XX

Support of S (Q,E) for high h

.Y

$:;;;5

0'
2ncr

'Lg
2%-2K' 2II

10

2h

2m a & 2x-2'

FIG. 5. Nonzero region of 4S* (Q, E)
=S+ (Q, E)+S +(Q, E) in the (Q, E) plane
for low and high h. The contributions of
KN p: +2 [types (iv), (v), and (vi) ]

live in the dark shaded region. These ex-
citations will survive in the limit k ~ 0.
The AN, p = 0, —2 can also occupy the area
shaded light. For h ~ h only the one
magnon contributions survive, as can be seen
in Fig. 6. These high field magnon excita-
tions are indicated by the thick lines.

of the ones to go into the same condensate: One has
to be left moving and the other must be right moving.
The result is an excited state with two magnons and
two spinons. A typical nonzero matrix element would

be (0100110010100110001S, 0000110101010110000).The

1
just helps to guide the eye. Also present are YHWS

of multiplets from the limiting cases where one of the
magnons fuses with the two spinons in the center; this
leaves a multiplet with nothing but one magnon; ex-
ample: ( 0000110101010110010S' 0000110101010110000) .
This single magnon excitation is familiar &om the strong
field regime.

Since type (vi)' states are YHWS ( z' —— S), as
is the ground state, we can repeat the calculation of
the matrix elements by a mapping onto the Calogero-
Sutherland model. Because S, creates a down spin, it
corresponds to a particle creation operator in the CS
model. The relevant correlation function is therefore

( GS~ 4(z, t)@t(x', t') ~GS ). As in the (@tilI) case for type
(iii) states, a further mapping onto a Gaussian Hermi-
tian matrix model allows one to calculate the Fourier
transform of this correlation function. The result is
parametrized by four variables, two of which are com-
pact, vi, v2, and two are noncompact, v, v'.

GS
V —Vi V —V2 V —

Vg V —V2 V —V V —V
(22)

Energy and momentum in terms of the v's are given by

Q = —[v+ v' —-'(vi+ vz)] and E = [v'+ v" —-'(v +2Vs

v2) —v, ]. It is obvious that the compact parameters
are to be identified with the spinon velocities and the
noncompact ones with the magnon velocities.

Since we now know all possible excitations contributing
to S+ (Q, E), we can draw its support in Fig. 5 for low

and high values of h. Figure 6 shows numerical data on
S+ (Q, E) for those values of h. Table I summarizes
the selection rules and available information on matrix
elements.

VII. COMPARISON
TO THE BETHE ANSATZ MODEL

In 1981 Miiller et al. ii did a similar calculation of
DSF's for the nearest neighbor Heisenberg chain. They
identified certain types of states called spin ivave contin-
uum (SWC) states as carrying the dominant contribution
to the DSF's. These S%'C states can be described in a
Bethe ansatz (BA) rapidity language by occupation se-

quences, just like the Yangian multiplets in the HSM. As
it turns out, these SWC states correspond to exactly th, e

XX
S (Q,E) at low h

XX
S (Q,E) at high h

FIG. 6. S *(Q,E) for low and high
from numerical simulations on a ten-site
chain. E is in units of v, /s.

X
S
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same rapidity sequences that are favored by our selec-
tion rules in the HSM. Although the dispersion relations
for the BA rapidities are different from those in the HSM,
the authors find the support of the DSF's in the nearest
neighbor model to have essentially the same shape as we
do in the the inverse exchange case.

However, in the nearest neighbor Heisenberg chain
there are some "anomalous" states, characterized by a
change of more than +2 spinons, which contribute to a
lesser degree to the structure functions and do not lie

within the bounds found by the authors. In the HSM
these contributions are completely absent and once again
we find this model to have a surprisingly clean structure.
So in this sense the Haldane-Shastry model is an ideal
spinon gas, whereas in the NNE Heisenberg chain the
spinons interact.

Muller et ol. also gave general rules, based on compar-
ing Clebsch-Gordon coeKcients, determining which ma-
trix elements will survive in the thermodynamic limit.
Their conclusion is that the only surviving ones have
S = S'. This means only excitations (iii) for
S +(Q, E), (ii) and (ii)s for S"(Q, E), and (vi), (vi)s,
and (vi)' for S+ (Q, E) remain relevant. (Exceptions are
single excitations with Q = 0, since these correspond to
S+, S', and S which give macroscopic contributions, as
we can see in the figures. ) These contributions are trivial
to compute.

culation would allow a full reconstruction of the h g 0
DFS for the HSM. A more algebraic treatment involving
Yangian operators should provide more insight.
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APPENDIX A

We show that localized spinon wave functions with N p
spinons all pointing up are necessarily linear combina-
tions of YHWS's with exactly N, ~ spinons. This follows

easily from the fact that both S+ and Ji+ annihilate these
states. If we write 4'(ni, . . . , nM) = Q(z„„.. . , z„)
where z„=exp( &") and

M +.
„

VIII. CONCLUSION

Xi
i=lj=1

(ui, —z ) (A1)

We found a remarkably simple selection rule for
nonzero matrix elements of local spin operators between
eigenstates of the Haldane-Shastry model, which is remi-
niscent of the ideal gas single-particle selection rules. One
of the consequences of this rule is that the total number of
spinons can only change by 0, +2. Within the occupation
sequences this holds locally as well.

In the particular case that one of the states in the ma-
trix element is also the ground state in a magnetic field

(i.e., fully polarized spinons, condensed into the left- and
rightmost orbitals in equal amounts), the general selec-
tion rule only allows excitations with no more than two
spinons (the rule applied to the center region) and one
left- and one right-moving magnon (the rule applied to
the condensates on the left and right). This implies that
the structure functions based on the matrix elements in-
volving these states have a finite support in a region dic-
tated by convolving the dispersion relations of these par-
ticles (Figs. 4 and 5). These regions have the same shape
as those for the nearest neighbor Heisenberg chain. The
latter model carries some weight outside these regions
as well. Therefore the HSM has a much cleaner spinon
structure than the BA model.

Matrix elements that connect a number of the states
in these regions to the ground state through the local
action of a spin operator have been presented. However,
information is lacking on those types that involve states,
not in the spin multiplet of the YHWS. This is partic-
ularly bothersome for types (ii), (vi), and (vi) since
these will survive in the thermodynamic limit. Their cal-

(S+@)(ni, . . . , nM i)
lV N

@(ni ~ ~ ~ nM —i j)=) g(ni . . . nM i e )
j=1 j=1

=@(z. . . . . .z. , o) =o (A2)

(where the P was recognized as the zero mode of a
Fourier expansion). And with ui I, = "+'".

,

(J,+4')(ni, . . . , nM i)

M N
—) ) ui~„;@(ni,. . . )nM i, i), (A3)

2=1 tgnj

N

) m;,.P(z;) = NP(z~) —2z~P'(z~) —NP(0) (A4)

(P' is the derivative of P). Since @ has a double zero
when two of its arguments coincide and it vanishes at
z = 0, we have J1+4 = 0.

where we used the fact that 2S; = 1 —2 g. i b;, , »d
that 4 is a symmetric function which vanishes when two
of its arguments coincide. We now use that when con-
volving a polynomial P(z) of degree less than N (such as
Q) with ui,.i, we have
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APPENDIX B

In this appendix we want to prove Eq. (13). Let us
first introduce the following identity which holds for any
set of distinct complex numbers (io,):

and

M

(2S;. info) (ni, . . . , nM) = 1 —2) b, „,
xiIip (n„.. . , nM) (C2)

M —1

~ 4 ~ ~

j=l

M M

(z, —.) =)
k=1 t(gk)

M

(Z; —ioh).
Q)k ~ h 4 E

i=1
(B1)

(2Ji S,'@o) (nil, nM i)

The right-hand side (RHS) is just the Lagrange interpo-
lation formula applied to the function in z on the LHS.

Say we want to write S, 4~ .
~

as a linear combination
of localized spinon wave functions with two more spinons
than 4~ . ~, and all spinons pointing up. We fix one of
the additional two spinons at i, the site on which S+ acts,
i.e. ,

(S+iIii, ))(ni, . . . , nM, )

M —1 N--):):"-
k=1 lying

@o(ni, , nM —i, t) —2

M —1

x ) 8,„,@p(ni, . . . , nM i, l)
j=1

M —1

—2 ) zo„„;alp(n„.. . , nM i,i).
k=1

(C3)

—@(nl~ ~ ~ ~
~ nM —1~ zlczl~ ~ ~ ~ I czN )

) apiI (ni, . . . , nM ilni, . . . , o.tv„,i, p).
p(~' ( k)

(B2)

Using Eq. (7) we can divide out common factors of (z„„—
z„,), etc. , and we are left with

The first two terms vanish when we apply the convolution
theorem with mk~, as in Appendix A; only the last term
survives. Notice that the (n;), i = 1.. . , M —1, cannot
be equal to i anymore. This state is trivially annihilated
by S+ as it vanishes at z = 0. Furthermore,

(J,+) S;. 4p (ni, . . . , nM 2)

~ ~

z z2 z

p4(' (~~ })
ap z„.—zp.

2

(B3) M —2 N M —2

) ) zU q) zo„*@o(ni nM 2qz)
p=l qadi, np k=1

The result follows when we apply the identity (Bl) to
this equation with z = z, and a„=z, Q&

'" '* where
ZJg Zp

the zk are randomly chosen distinct sites which do not
coincide with the localized spinons.

APPENDIX C

We show that S; l GS ) can only have zero or two more
spinons than lGS) where lGS) is a YHWS ground state
in a nonzero magnetic field with

M —2 N

+ ) ) zo„,qzoq, @p(ni, . . . , nM 2, q, z). (C4)
p=l qadi, np

With the help of the convolution theorem we can set the
first term to zero (we can stick in the extra term with

q = i, which is missing, at no cost since 40 vanishes when

q = i). For the second term we use the identity that lies
at the heart of the integrability of the Haldane-Shastry
type models, m;jm~k + wj khaki + &kiwij 1:

(ni nMI GS) = ep(ni, . . . , nM)

q
—M+1

zn zn zn (Cl)

(J,+) S;4' (ni, . . . , nM 2)

M —2 N

= —) ) (1 + zoi, ns tons, q + izoqi, z~o)n

p=l qadi, np

The proof hinges on the fact that in either of those cases
(AN, ~

= 0 or b,N, ~ = +2) acting on S;. lGS) tzuice with
Jl+ will annihilate that state. Potential AN, &

——4, . . .
contributions should survive as they are at least two lev-
els from the top of their Yangian multiplet. Now

x @(nz, . . .
~ nM 2, q~ z). (C5)

The first term is zero since 4 is a polynomial that van-

ishes at the origin, whereas terms 2 and 3 can also be put
to zero with the help of the convolution theorem.
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