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Spin-wave stiffness of the Heisenberg antiferromagnet at zero temperature
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The spin-wave stiKness p, of the Heisenberg antiferromagnet at zero temperature is calculated
in two ways, by spin-wave theory and by series expansion about the Ising limit, extending previous
results. The two methods give values of p, for the isotropic model which are in good agreement,
and which satisfy the hydrodynamic relation.

I. INTRODUCTION

The spin-wave stiffness is a parameter of fundamental
importance in the spin-wave theory of quantum ferro-
magnets and antiferromagnets. Here we shall be par-
ticularly interested in the Heisenberg antiferromagnet.
The isotropic system has a continuous rotational sym-
metry in spin space, which is spontaneously broken in
two or three dimensions, leading to the development of
Goldstone bosons, namely, the spin waves. The mass-
less Goldstone bosons then control the behavior of the
system at low energies or large distances. It has been
shown in recent years that the effects of the Gold-
stone bosons can be described in terms of a simple ef-
fective Lagrangian, specified purely in accordance with
the symmetry properties of the model. Universal for-
mulas can then be given for the finite-size corrections
and low-temperature corrections, ' which in leading or-
der involve just three parameters: These can be chosen
as the spin-wave stiffness p„ the spin-wave velocity v,
and the spontaneous magnetization Z.

There is a relationship

in spin-wave theory to order 1/(2S) 2 (where S is the spin
per site) by Igarashi and Watabes and Igarashi. M They
found that the hydrodynamic relation (1.1) was obeyed
to this order. Another method of calculation was used
by Singh and Huse, who made a series expansion about
the Ising limit. Here we extend both these approaches.
In Sec. II, spin-wave perturbation theory is extended to
third order for the spin-wave stiffness, using the Dyson-
Maleev formalism. Results are also given for the simple
cubic lattice to second order. In Sec. III, the series ex-
pansion results of Singh and Huse for the square lat-
tice are corrected and extended to tenth order in the
anisotropy parameter z. The series is extrapolated to
the isotropic limit z = 1, and the results compared with
spin-wave theory. Our conclusions are summarized in
Sec. IV.

II. SPIN-WAVE EXPANSION

The isotropic Heisenberg antiferromagnet can be de-
scribed by the following Hamiltonian:

2ps=V yi
Hp ——) [SfS' + Stv S" + Sf S' ],

(&~)

(2.1)

between the spin-wave stiffness, the spin-wave velocity,
and the transverse susceptibility y~, which was originally
predicted by the hydrodynamic" theory of Halperin and
Hohenberg, ~ and a microscopic calculation of Tani. s The
hydrodynamic theory is an early version of the effective
Lagrangian theory, in fact, and the same relation indeed
holds in the effective Lagrangian theory: It is expected to
be exact. Equation (1.1) is often used to derive p, from
v and y~, which are somewhat easier to calculate. It
is also important, however, to calculate p, directly, and
verify that Eq. (1.1) is correct, as a consistency check
on the whole theory. That is the purpose of the present
work.

The spin-wave stiffness of the Heisenberg antiferromag-
net on the square lattice has previously been calculated

I

Ep(8)/N = Ep(8 = 0)/N + p8 + O(8 )—1

2
' (2.2)

(A term linear in 8 is forbidden by symmetry considera-
tions. )

After rotation by a relative angle 8 between neighbor-
ing sites along the y axis in spin space, Hp in Eq. (2.1)
becomes

where (lm) denotes a sum over all nearest-neighbor pairs.
The microscopic calculation of the spin-stiffness constant
for this model has been discussed by Singh and Huse. It
involves a rotation of the order parameter by an angle 8
along a given direction such as the y axis, after which we
can define the stiffness constant p, through the increase
of the ground-state energy:

' = ) [St'S +SOS +S&"S"] + (cos8 —1)) (S; S;+„+S;.S;.+„)+ sin8) S;. (S; „—S;+„),
(&~) (i) (i)

(2.3)
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where i r11"s over all lattice sites, and i+y and i —y indicate the nearest neighbors to the ith site in the positive and
negative y directions. Expanding H in powers of 8, and only keeping terms up to order 83, we get

H'=) [s;s. +s,*s*+s,"s
]
—-e') (s,*s,*,„+s,*s;,„)+e) s;. (s,*„-s,*,„)+o(e')

(im) (i) (i)

+ Hdia+ Hpara+ g(83) (2.4)

where H ' and Hi' ' are defined by

H' = ——8 ) (S, S,*.+„+S;S;+„),
(i)

Hpara 8) ~ Sz(sz Sx

(i)

(2.5)

(2.6)

Thus, there are two kinds of contribution to the 82 part of the ground-state energy: One is the "diamagnetic" term
H ', and the other is the "para, magnetic" term H

In order to compare the results with those of the series expansion, we introduce an anisotropy parameter x to Hp
as

Hp ——) [S('S' + z(S(*s* + S("S")] .
(lm)

(2 7)

The third-order spin-wave expansion for Ho (obtained &om a Maleev-Dyson transformation) has been discussed in
our previous paper, and is summarized again in the Appendix. The Hamiltonian Hp can be expressed as

(2.8)

where n&, P&, a", P" are spin-wave creation and destruction operators defined in Ref. 12, and Eo, A&, and A& are(~) (p)

H=EO+) (Ag S+Ag )((1g(Xg+PyPg)+) V~ ((1kPk+Cl&Pg) ) hi+3, $+4[V1 (P1P3P3P4+~3~4~1~2)
k k k.

—2V3 (n3P4Ctl&2+ A4P1P3P3) —2V3 (Ct3Ck4&2P1+~1P3P3P4)(o) t t t (o) t t t t

+2V4 (CX3CklP3P4+~4~2P1P3)+V5 (~3~4P1P3+~1~2P3P4)])

zS 1(3 1 —z2
EO ————S —~1+ —

I
~1 + (~-1 —~1)'

I2 4S~ ' z'

Ak
——zqk,(~)

&g"= --h"~1+ (1 —z')&l&~'(~ 1
—~1)]-k

' =(1-*'')'"

(2.9a)

(2.9b)

(2.9c)

(2.9(l)

Expressions for the two- and four-particle vertex factors V, and other quantities are given in the Appendix.

A. Diamagnetic part

The contribution to the 8 part of the ground-state energy from the diamagnetic term can be calculated by con-
sidering the Hamiltonian

0=Hp+H ' (2.10)

As before, we first introduce boson operators via a Dyson-Maleev transformation, then perform a Fourier trans-
formation, and finally we introduce a Bogoliubov transformation giving

g 2E~+ Q„g+ g ~ ~k+ „k + Qp $'+ Qp ~k k+ nk
k k

) 62+2,344V3 (t12t14P1P2+~1~2P3P4)+''') (2.11)
k.

where we have ignored the terms which do not contribute to the order considered here, and E& is the diagonal p»t
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of Hd', Vp~ l(k), Vp (k) are two-particle vertices, and Vz (1,2, 3, 4) are four-particle vertices, defined by

S ——2x —1 C i+Cd + 1—x+z C y+ 2:—2 CyC y+Cy

-~Pl (2 —2:)C 1
—2C1 1 (22: —1)C 1 + C1

2x2 q&
' —qs-

2xqs

Vp" (k) = [y1, —2/(*Ps)]/m + 2m/(*V~)

V, (k) = 1 —— C, —C, +[(»—1)C 1+C1)(p) x q&
' —qa

xqg 2z
- (o) (1 2 3 4) —

p1 481c28sc4 + p2 4c182ssc4 + f1 881c2css4 + Y2—3c182c$84
1——(+3C1C2C384 + f4C1C 238C4 + 73 81 8238 4C+ +48182 384)
2

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

cos ~(k + kz),
cos k„a,

square lattice,
simple cubic lattice.

(2.12g)

Here we want to calculate the contribution to the 82 term of the ground-state energy from the o8'-diagonal part of
H. This can be done by using Rayleigh-Schrodinger perturbation theory: We treat the terms containing V in H as
perturbation terms, and up to order 8, there are five groups of perturbation diagrams which contribute, as shown
in Fig. 1. Denoting the contribution from Fig. 1(a) as E&, etc. , we get

V,&'~ -e'0&'~S I 2-e'0» /2 v, "'-e'v, "'is V(o)
5

V~ ~ —e V~'~S/2-8 V~ ~/2
v,&e- e'v, &'& (2

(c)

V, FIG. 1. The perturbation diagrams that
contribute to the 8 part of the ground-state
energy from the diamagnetic term, up to or-
der 8 . The dots represent the interaction
vertices as indicated; the lines represent bo-
son excitations in the intermediate states. To
save space, we have not differentiated be-
tween the n and P bosons and possible time
orderings of the vertices in the diagrams.

V (o)
4

V8)

(d)

Vo)
0

(e)
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1 . [Vo (k) —8 Vo( (k)S/2 —8 V( )(k)/2]2

A„S+ A~ —82Ag S/2 —82Ag /2

= E;(8 = 0)+ aE„"+~E„' '/s+ o(s-') + o(e4),
zN f 2 ) ) [Vs (1,2,3,4) ——Vs (1,2,3,4)][Vs (3,4,1,2) ——Vs (3,4,1,2)]

= E„'(8 = 0) + AE,' + O(8'),
N82 ( 2 l ) Vs (1,2, 1, 2)[VO (l)Vo (2) + Vo (2)Vo (1)]
8zs (N) qi(qi+q2)

Ne (C i —Ci)(1—z ) ( 2 l ) Vs (1,2,1,2)[&2&i + +1+2 —4z+i+2]
&N) „qiq2(qi+ q2)

N82 f' 2 ) ).Vo (1)Vo (2)[V4 (1 2 2 1) + V4 (2 1 1 2)]
16zS (,N) qiq2

t

N8 (C i —Ci)(1 —z ) ( 2 l )- [V4 (1,2, 2, 1) + V4 (2, 1,1,2)][p2(pi —2zpi)]
32xS

(2.13a)

(2.13b)

(2.13c)

(C- —C )(1 —z')(2z —1)[(C-.—C- )'(*' —1) —C' ],
N82 / 2 r Vo (1)[V2 (3,4,1,2)Vs (1,2,3,4)+Vs (2,1,3,4) Vs (3,4,1,2)].4+a,s+4

(,N j „
'

qi(qi + q2 + qs + q4)

where AE~, AEd, and AEd are

{o) 0 Vo Vo
(o) - (i)

2 A(')
A:

%82

Sxs, (1 —z') (C i —Ci) (C i —C s) (2z —1),

(2.13d)

(2.13e)

(2.14a)

(V(o) )
2A(i)

( y ) 0 Vo Vo AI Vo o
(o) (o) (o) (o) V(z)

(A( ))2

%82

32+5 (C i —Ci) (1 —z )[C i(3 —8z+ z )
—2C s(3 —7z —z + 3z ) + 3C s(1 —z )(1 —2z)],

(2.14b)

Ne' /'

16S (,N) ) hi+2 s+4 Vs (1,2, 3, 4) Vs (3, 4, 1, 2)

—4Vs (3,4, 1, 2) ) q; qi + q2+ qs+ q4
-() - —2

4

) -„-(i)

(2.14c)

Up to order S, the total 8 part of the ground-state energy is

Ed ——0 E„+AEz + AE„
+DE~ + E~ + Ed + Eq . (2.15)

At the isotropic limit x = 1, Vo is zero, and so

AEq /N = b, Eq( /N = Eq/N = Eq/N = 0 . (2.16)

The integrations for b,E&/N and E&/N are carried out in the following way: We first evaluate their values for a finite
lattice, that is, sum numerically over a 6nite number of points distributed over the erst Brillouin zone, then extrapolate
the results to the infinite lattice by least-squares fitting the results to the form E + a/L+ b/L + c/L + . For
the square lattice, the results of integration at x = 1 are
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hEq/N= —0.059 59(2)8 /(16S),
Eq/N = 0.005532(1)8 /(8S) .

(2.17a)

(2.17b)

Therefore, at x = 1, the total contribution to the spin-stifFness constant from the diamagnetic part is

P
~' = 2ES/(O' N)

S —0.117628 254 4S + 0.060 415 566 2 —0.006 066(3)/S, square lattice,
S —0.029 778 705 699 + 0.012 306 389 0, simple cubic lattice. (2.18)

B. Paramagnetic part

The contribution to the 82 part of the ground-state energy from the paramagnetic term can be calculated by
considering the Harniltonian

H=H +H (2.19)

Performing the same Dyson-Maleev transformation, Fourier transformation, and Bogoliubov transformation as
before, the above Hamiltonian H& ' becomes

) bi+3,2 v (olo'3P2 ~2P1P3) +(
1 t t t

X/2

) bi+3,2&Vi
' (~2PiP3+ ~1~3P2 —o2P1P3 —~1~3P2)

(S) . -(1) ttt
k;

(o2o lo3 o'1+so'2 + P2P1P3 P1P3P2) 2V3 (o'1~2P3 o'2olP3 + o'3P1P2 P3P2P1) jt t t t t (-~ t t t t t t

(1i"'
+Oi ISN)

(2.20)

where we have again ignored the terms which do not contribute to the order considered here. As expected, there is
(-') 1

no diagonal part for Hi' ', and the three-particle vertices V,
' (1,2, 3) and V( 2)(1,2, 3) are defined by

v,"(1,2, 3)

V ' (1,2, 3)

V3("(1,2, s)
v(--:)(1,2, s)

g38$C2C3 + AC] 8283 + /AC] C2S3 + g$8$82C3 )

(7/181csc3 + r/ic18283 + 'gscic283 + g38182c3)/2

AC] C2C3 + f38]8283 + gy Cy S2C3 + g] 8]C283

C g
(7/sc2C381 + 1/lc38182 + 1/1C1C283 + r/SC18283)

2
C g

—Cg+ ( 7/2clC2C3 r/2818283 + g381C2c3 + gl sls2c3 + 7/1Clc283 + gsc18283)
2z

(
—/k Pg lk'Pp )/2

(2.21a)

(2.21b)

(2.21c)

(2.21d)

—isin ~~ (k + k„),
—i sin k&a,

square lattice,
simple cubic lattice.

(2.21e)

Again, we treat the terms containing V in the Hamiltonian Ho + Hr ' as perturbation terms, and use perturbation
theory. Up to order S, there are six groups of perturbation diagrams which contribute, as shown in Fig. 2. The
contribution from each group of diagrams is

2;—,[ '+ &I '/(S. )]
Eo(o) + E~(—1)/S+ O(S

—
2)

82 (2 l ). Vi' (1,5, 2)V2' (3, 5, 4)[vs (1,2, 3,4)+vs (3,4, 1,2)]
(q + q2 + qs + q4)(qi + q2 + qs)

28 ( 2 ) ) . Vi ' (4, 2, 5)V3' (5, 3, 1)[Vs (1,2, 3, 4) + Vs (3,4, 1, 2)]
zS ( N ) ' '

(qi + q2 + q3 + q4)(q2 + q4 + qs)

(2.22a)

(2.22b)

(2.22c)

( 2 l ). Vi ' (1,2, 3)Vi ' (3, 5, 4)[V4 (1,5, 4, 2) +. V4 (4, 2, 1, 5)]
zS 5 N ) ' + '

(qi + q2 + q3)(q3 + q4 + qs)
(2.22d)
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v(»

(a} {b) {c}

FIG. 2. The perturbation diagrams that
contribute to the 8 part of the ground-state
energy from the paramagnetic term, up to
order S

I y(o)
4

(d}

y (o)
0

{e)

V0

28~ {2 5 V, ' (2, 1, 3) V~' (2, 1, $)Vo {1) V~' (2, 1, 3)VO (2))
2~ 5&) „. ' q+q+q,

2(c , —G, )(1—2; )8 {2 l . v, ' (2, 1,8) y, v~
' (2, 1,3) ps'vs ' (2, 1,8)

)1,2+S +2xzS gX) „' qq+ q2+q3 q~ V2
(2.22e)

82 t' 2 5 . V, ' (123)V~ ~)(123).h, x+szS (,N) „' q~+q2+q3
(2.22f)

sphere E& and Ez are de6ned as~(o) ~(—~)

() 8 (2) . [V, '(123)]. 1+32z (N) '
q) +q2+q3

(,)
()) (2) . [V,

' (1,2, 3)] g, A,.
~' (~) „

'
(qi + q2 + q3)'

(2.23a)

(2.23b)

Up to order 8 7 the total 8 part of the groulld-state energy is

E„=E„+E„'+E„+E„"+ E„+Ef .

At the isotropic limit x = 1,

E„'/%=0.

(2.24)

(2.25)

The integrations for other quantities are carried out in the same vray as before, and for the square lattice, the results
are (at x = 1):
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E„/N = (—0.141247 107/z)
i

1 +( Cg't

2S)
E„/N = 0.003875(1)8 /(zS),
E'/N = —0.00938(1)(28 )/(zS),
E„"/N = —0.02987(2)0 /(zS),
E~/N = 0.0394036(10)8 /(zS) .

For the simple cubic lattice, the result for Er, ~ l is

E„~ i/N = —0.0394449(2)8 /z .

Therefore, the total contribution to the spin-stiffness constant f'rom the paramagnetic part is

pP' = 2'/(8 N)

(2.26a)

(2.26b)

(2.26c)

(2.26d)

(2.26e)

(2.27)

—0.070 623 553 5 + 0.002 90(2)/S, square lattice,
—0.013 148 3(1), simple cubic lattice.

Therefore, the spin-stiffness constant is

dia + para

(2.28)

S —0.117628 254 4S —0.010207 987 3 —0.003 16(2)/S, square lattice,
S —0.029 778 705 69S —0.000 841 9(1), simple cubic lattice. (2.29)

These results will be compared with the hydrodynamic
relation (1.1) in Sec. IV.

III. SERIES EXPANSION

In an earlier paper we derived series expansions
for the ground-state energy and other properties of the
Heisenberg antiferromagnet on the square lattice. The
basic approach uses a method due to Nickel, which has
been described in some detail by He et al. ~s The starting
point is a list of all connected clusters (a) up to some
order, and their embedding constants C for the lattice
of interest. The ground-state energy is then expressed as

EN ) gNs (3.1)

where the quantities e are obtained recursively.
The major difference between the present calculation

and our previous work is that the (x, y) symmetry of the
lattice is broken by the imposed twist in the Hamiltonian.
This greatly increases the number of clusters which must
be considered, since realizations which are related by 90
rotations or diagonal rejections are no longer equivalent
and must be distinguished. For the square lattice, for
example, there are 1248 distinct topologies with up to 11
sites but 46924 inequivalent space types.

As discussed in the previous section, the spin-wave
stiffness p, can be computed through the following
Hamiltonian:

B= ) [Sf S' + x(SPS + SfS" )]
(~m)

——) (S; S;~„+S;S;+„)
()

+h2) S;(S; „—S;+„).
(i)

(3.2)

The spin-wave stiffness is then obtained, as a series in x,
&om p, = p, i + pp ', with

2 BED
pe N Bh& ~,=a.=o '

1 B2Ep=
N Bh2 a, =..=o

(3 3)

(3.4)

—„)—) .Sr (Sf+„—Si &) . —
(L)

(3.5)

The unperturbed ground state has all spins "up" and the

By a spin rotation on the odd sublattice m, the Hamil-
tonian can be transformed to

II = —) [Sf S' ——(S,+S++ S, S )]
(&m)

+—) (S;S;+v —,,+„)2
(')

+h2 ) S (S' +y
(m)
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TABLE I. CoefBcients of series expansions in x for the spin-stifFness constant p, of the spin-2 and spin-1 Heisenberg

antiferromagnets on a square lattice.

Order S= —'
2

0
1
2

3
4
5

6
7
8
9

10

1/4
8.333333333333x 10

—9.722222222222 x 10
—1.481481481481x 10
—3.285751028807x 10 '

1.273797276112x 10
—5.636489572877 x 10
—2.379164748374x 10
—4.262931924240x10 '
—3.113622337613x 10
—2.317964076705x 10

1
1.428571428571 x 10

—1.551020408163x 10
2.114823951559x 10

—4.316225020525 x 10
7.497565665159x 10

—2.107081657979x 10
4.488596116436x10 '

—1.353720806360x 10
3.002732498636 x 10

—9.571728250082 x 10

operator proportional to z is treated as a perturbation
which Hips both spins on a bond {tm).

We have carried out the calculation for the square lat-
tice only, which involves a total of 46924 linked clusters,
as mentioned above. The resulting series for both spin-2
and spin-1 models are listed in Table I. The only pre-
vious expansion of which we are aware is that of Singh

I

and Huseii for S = 2. Our series coefficients differ from
theirs already at order x, although the difference between
the two series appears to be proportional to (1 —z), so
that they give similar results at the isotropic point x = l.
As a check on our results, one can perform a series ex-

pansion of the spin-wave predictions at first and second
order, for S = —:

p,
' = 0.25+ 0.0625x —0.0625x + 0.017578125z —0.0263671875x + 0.0091552z +

p
""=0.25+ 0.078125z —0.08854167x + 0.01171875x —0.024726x + 0.0031484x + .

(3.6a)

(3.6b)

These appear to be converging towards the series given in
Table I, for at least the first three terms. We also obtain
three more terms than Singh and Huse for the S =

2

case, and present new series for S = 1.
Now a series in x has already been calculated for the

transverse susceptibility y~ in a previous paper. No
such series exists for the spin-wave velocity v, and the
hydrodynamic relation (1.1) only holds when z = 1. Nev-

ertheless, we can get a better estimate of v by generating
a new series for the quantity A(z) defined as

P, (z) = Po+ Pi(1 —z)' '+ P2(l —z) + (3.8a)

XJ (z) Xo + Xi{1 z) + X2(1 z) + ' '
~ (3 gb)

while A(z) should behave as

for A(z) are listed in Table II.
According to spin-wave theory, the asymptotic expan-

sion near x = 1 for both the spin-wave stiffness p, and
transverse susceptibility y~ should have the form

A(z) = p (z)&i'(z) (3.7)

such that as z + 1, A(z) -+ v2. The series coefficients

A(z) = A, + A, (1 —z) + A, (1 —z)' '

+As(1 —z) (3.9)

TABLE II. CoeKcients of series expansions in z for A(z) = p, (z)/y~(z) of the spin-2 and spin-1 Heisenberg antiferronisgnets

on a square lattice.

Order S= —'
2

Q

1
2

3
4
5
6
7
8
9

10

1
5/3

4.166666666667x 10
—3.462962962963 x 10
—6.837397119342x 10

5.305307172252 x 10
1.758096625782 x 10
2.714959220121x 10
7.836572054946 x 10

—2.164866993509x 10
—4.109975940784x 10

4
36/7

6.285714285714x 10
—3.507512895268x 10

4.560329228719x 10
—5.820911372281x 10

6.868291686964x 10
—1.450772495242 x 10

4.578594070967x 10
—7.482126592187x 10

2.626020853309x 10



50 SPIN-WAVE STIFFNESS OF THE HEISENBERG. . . 6885

Note that in order for the (1 —z) ~ term in (3.9) to
vanish, the ratios yi/yp and pi/pp must be equal, by Eq.
(3.7). This also follows from the hypothesis of universal
amplitude ratios discussed by Singh and Huse. ii

The analysis of these series proceeded as follows. After
promoting the singular term in (1—x) to leading order by
diEerentiating the series, a standard Dlog Pade analysis
showed that the singular point indeed lies near x = 1,
with a critical index which is by and large consistent
with the spin-wave predictions, although the estimate is
not very accurate.

To estimate the leading order coefficient in the asymp-
totic expansion (such as pp OI' Ap) we first transform
to a new variable 6 = 1 —(1 —x) ~, so that according
to spin-wave theory, the function should be analytic in
h. Next, the series is extrapolated to the point b = 1 (or
x = 1) by using an integrated first-order inhomogeneous
difFerential approximant.

To estimate the next-to-leading coefficient (such as pi,
Ai, and A2), we have trivially derived series for the fol-

lowing quantities, with the expected asymptotic behavior
as listed:

—2(1 —z)'/'
dz
dA

4 i(2d2A
3

'
d$2

= pi + 2p2(1 —z) + 3ps(1 —*)+

= Ai + 3A2(l —z)' /2+ 2A3(1 —z) + ~ ~ ~,

= A, + 8As(1 —z)'~'/3+ ".

(3.10a)

(3.iob)

(3.1Oc)

The method of analysis is the same as above.
The resulting estimates for the spin-wave sti8'ness p, are

0.182(5) + 0.14(2)(1 —z)i~ +, S = 2,
0.872(4) +0.364(10)(1—z) i2+ . , S = 1,

0.182(5)[1+0.54(7)(1 —z2)i~2+ .], S = 2,
0.872(4)[1+0.297(8)(1 —z2)i~ + .], S = 1.,

(3.ii)

and for A(z)

2.74(4) —1.99(10)(1 —z) + 1.2(4) (1 —z) ~ +, S = 2,
9.398(4) —4.8(2)(1 —z) —1.2(3)(1 —z) i2+, S = 1.

~

~ ~

~ (3.12)

Therefore the spin-wave velocity v for the isotropic Heisenberg antiferromagnet is

gA( )
1.655(12), S = 2,
3.0656(7), S = 1. (3.13)

Estimates for the transverse susceptibility were obtained previously, 3

0.0659(10) + 0.037(3)(1 —z') '~' +
0.0925(10) + 0.031(6)(1—x ) i +
0.0659(10)[1+0.56(6)(1 —z ) ~ + ]
0.0925(10)[1+0.34(6)(1 —z2) i~2 + ],

S=-,
S=1,
S=2
S = l. (3.14)

These should be compared with the predictions of the spin-wave theory of Sec. II:

first order: p,

second order: p,

third order: p,

0.191186,
0.882 372,

0.180 978,
0.872 164,

0.174 66(4),
0.869 00(2),

S=-'
2S=1-

S=-,
S = 1.

(3.i5)

(3.16)

(3.17)

The agreement between (3.17) and (3.11) is quite reasonable, and the ratios yi/yp and pi/pp are equal within the
range of error.

A comparison of estimates obtained for p, from spin-wave theory and from series extrapolations is shown in Fig. 3,
graphed against the anisotropy parameter b. It can be seen that the third-order spin-wave prediction agrees very well
with the series extrapolation, except perhaps at the isotropic point b = 1. The accuracy of both estimates appears
quite similar at the isotropic point.
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IV. SUMMARY AND CONCLUSIONS

The spin-wave stiffness of the isotropic Heisenberg antiferromagnet has been calculated in spin-wave perturbation
theory as

IQ, = S —0.1176282544S —0.0102079873 —0.00316(2)/S+ O(S ), square lattice,

p, = S —0.02977870569S —0.0008419(1) +. O(S '), simple cubic lattice.
(4.1a)

(4.1b)

The first three terms of (4.la) were determined previously by Igarashi and Watabe and Igarashi. 10 Corresponding
results for the spin-wave velocity are

0.157947 421 + 0.021 52(2) + O (S 3)2S (2S)&

1 + Q.Q97153QQ4 + ( ) + O(S—3)2S {2S)~

square lattice,

simple cubic lattice.

(4.2a)

(4.2b)

The result (4.2a) was obtained by Igarashi, Canali, Girvin, and Wallin, is and Zheng and Hamer. For the transverse
susceptibility, we have

y~ ——1/8 —0.034446 959 42/S + 0.002 040 06(7)/S2 + O(S 3), square lattice,

g~ = 1/12 —0.0105780585/S+ 0.000550005(20)/S2 + O(S ), simple cubic lattice,
(4.3a)

(4.3b)

where (4.3a) was first obtained by Igarashi. A slightly
difFerent result was obtained by Hamer, Zheng, and
Amdt, 12 due to the erroneous use of a perturbed energy
rather than an unperturbed energy in a denominator of
their Eq. (2.57). If the term m( il is removed from this
equation, the result is that given above, and agrees with
that of Igarashi.

It is now easy to verify that the hydrodynamic relation
(1.1) is precisely satisfied by Eqs. (4.1)—(4.3) through
second order in S, for both the square and simple cubic
lattices. This provides strong evidence that the spin-wave
calculations are correct and consistent.

For the square lattice case, we have also calculated a
series expansion about the Ising limit, following Singh
and Huse, and extrapolated to the isotropic limit to
obtain

p s ~»
II II

~
~

I 2

1 2 I
jI

I
~

~
~
~ ~

21

?

10.182(5) + 0.14(2)(1 —z) ii2 +, S = —,
0.872(4) + 0.364(10)(1—z)'i2+, S = 1,

(4.4)

which agrees to within 4% with the spin-wave predic-
tion (4.1). A similar method applied to the transverse
susceptibility gave

0.0659(10) + 0.037(3)(1—x ) i + . , S = —,
0.0925(10) + 0.031(6)(l —T ) i +, S = 1,

0.199(2) for the S =
2 model on a square lattice, to be

compared with our results p, = 0.175(6) (spin wave) and

p, = 0.182(5) (series). Igarashi 0 had already obtained

p, 0.181 from the second-order spin-wave expansion.
It can be seen that the estimate of Makivic and Ding
lies somewhat higher than the series or spin-wave results.

I I I
I

I I I
I

I I I
I

I I I
I

I I I

0.26

0.24

Q. 0.22

0.2

second—
(4.5)

which agrees with (4.3) to within 2%. Combining the
series for p, and y~ gives

first —order SW
I I I I I I I I I

0.2 0.4 0.6
I

0.8

1.655(12), S = i,
3.0656(7), S = 1, (4.6)

which agrees with (4.2) to 1%%.

A Monte Carlo estimate of the spin-wave stiR'ness has
been made by Makivic and Ding. They obtained p, =

FIG. 3. Graph of the spin-stiffness constant p, against
6 = 1 —(1 —x) ~ for the spin- — Heisenberg antiferromagnet

on the square lattice. The four curves shown are the series

estimate, and the 6rst-, second-, and third-order spin-wave

predictions corresponding to solid, dotted, short dashed, and

long dashed lines, respectively. The error at x = 1 from the
series estimate is also marked.
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APPENDIX

The spin-wave expansion for Ho is accomplished by the three following transformations. First we introduce boson
operators al and b via the Dyson-Maleev transformation on the two sublattices:

t sublattice: Si* ——S—alai, S&+ ——(2S) ~ ai —(2S) ~ a&aiai, S&
——(2S) a&,

(A1)

m sublattice: S' = bt b S, S—+ = (2S) ~ bt —(2S) ~ bt bt b, S = (2S) ~ b

In terms of the boson operators, the Hamiltonian can be expressed as

He —— NS z—/2+ zS) alai+ zS) bt b +xS ) (aib~+ a&b~ )
l tn (lm)

—) a&ash~ b ——) (a&aiaib +a&b~ bt b ) .' {l-)
(A2)

Then, we can introduce the Bloch-type boson operators al„bI, by a Fourier transformation:

/2) ~ (2)al=/N / ).e ai, 4=(— ) iic rnb— (A3)

where N is the total number of lattice sites. The quadratic part of Hs can be diagonalized by a Bogoliubov transfor-
mation:

a1, = ai, cosh 8i, —P„sinh 81„t

bi, = n& sinh 8—i, + Pg cosh 81„

where tanh 281, = @pi„z is the coordination number of the lattice (i.e., 4 for the square lattice), and pi, is the structure
factor:

Vi = —) e*"'
P

(A5)

After this transformation, the Hamiltonian now has the form given in Eq. (2.8), with the following two- and four-

particle Dyson-Maleev vertex factors V; (1,2, 3, 4) (i = 0, . . . , 5):(o)

z
Vo ———(1 —z )(C 1 —C1)yg(1 —z P~)2x

Vl —P3 2C18283C4 + f3 181C283C4 + Q4 2C182C384 + Q4 181C2C384
(o)

—Z(7381S2C384 + 7481S283C4 + 74C1C2C384 + +3C1C283C4) ~

V2 = P4 2Cl 82C3C4 + f4 18l C2C3C4 + Q3—2C1828384 + f3—181C28384
(o)

—X(738]82C3C4 + 7481828384 + $4C1C2C3C4 + $3C1C28384) )

—P4—1C1C2C3S4+ P3 1C1C2S3C4+ P3 2818283C4+ P4 281S2C384V(o)

X(73C182C384 + 74C18283C4 + $481C2C384 + $381C283C4) )

V4 = P4 2C1C2C3C4 + P3 2C1C2S384 + P4 18182C3C4 + P3 181828384V(o)

X(73S1C2CSC4 + 7481C28384 + 74C] 82C3C4 + 73C182S384),

Q4 —281C2C384 + P4—1C182C384 + Q4 —181C283C4 + Q3—1C18283C4V(o)

X(738]S283C4 + 748] 82C3S4 + 74C1C283C4 + 73C] C2S3C4))

(A6)

where 8; and c; denote sinh8g, and cosh Hg, , respectively, and C„ is de6ned by

(A7)
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