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Spin-- Heisenberg antiferromagnet on the kagome Lattice: High-temperature
expansion and exact-diagonalization studies
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For the spin- — Heisenberg antiferromagnet on the kagome lattice we calculate the high-
temperature series for the specific heat and the structure factor. A comparison of the series with
exact-diagonalization studies shows that the specific heat has further structure at lower temperature
in addition to a high-temperature peak at T 3. At T = 0.25 the structure factor agrees quite well

with results for the ground state of a finite cluster with 36 sites. At this temperature the structure
factor is less than two times its T = oo value and depends only weakly on the wave vector q, indi-
cating the absence of magnetic order and a correlation length of less than one lattice spacing. The
uniform susceptibility has a maximum at T 6 and vanishes exponentially for lower temperatures.

I. INTRODUCTION

For a long time it has been speculated that low-
dimensional quantum spin antiferromagnets may have
magnetically disordered ground states. Most attention
has been focused on the spin-2 Heisenberg antiferromag-
net (HAFM) on the square lattice due to the close rela-
tion of this model with the problem of high-temperature
superconductivity. However, it is now well established
that the HAFM on this particular lattice has an ordered
ground state. i The first system for which a disordered
ground state was proposed is the HAFM on the trian-
gular lattice. In recent years this model has been the
subject of intensive numerical investigations. Although
most results indicate that the system remains ordered at
T = 0, it seems that the sublattice magnetization and the
spin stiffness are significantly smaller than for the square
lattice. ' 6

So far the best candidate for a magnetically disordered
system is the kcgome structure: a triangular lattice with
a triangular basis. The vectors of the underlying trian-
gular Bravais lattice are

6 for the triangular lattice). Even more important may
be another difFerence: While the ground state on the
triangular lattice is degenerate only with respect to global
rotations in spin space, the classical ground states on
the kagome lattice have a local degeneracy, which results
in a finite ground state entropy. Fluctuations around
magnetically ordered states have a dispersionless zero-
energy mode.

Numerical studies using series expansions and exact-
diagonalization techniquess' have convincingly shown
that the ground state of the spin-2 HAFM on the kagome
lattice has no long range magnetic order. The exact-
diagonalization studiess s find a very rapid decay of the
spin-spin correlations indicating a correlation length (
of only about one lattice spacing and a finite spin gap

0.25J. There exist a number of proposals for a dis-
ordered ground state. Large-N expansions for the
SU(N) and Sp(Nj2) generalizations ' of the HAFM
predict a ground state with spin-Peierls order for SU(N)
or a spin liquid for Sp(N/2). Up to now there exist no
results from numerical calculations that confirm or con-
tradict any of these proposals.

ei ——2(1,0), e2 ——(1,~3),

while basis vectors indicating the coordinates of the three
sites in the triangular imit cell are

bi ——(0, 0), b2 ——(1,0) ) bs ——

(2 2

The units are chosen so that the nearest neighbor dis-
tance equals unity. The structure is shown in Fig. l.
Because the kagome lattice is not a Bravais lattice, but
has three sites per unit cell, the structure factor is a 3 x 3
matrix.

Classical spins on the kayome structure are &ustrated,
as they are on the triangular lattice, but the coordination
nuinber is smaller (4 for the kngome structure instead of
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FIG. 1. The kagome lattice with the finite clusters used in
exact-diagonalization studies of the specific heat.
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Apart from being a theoretical toy model for a dis-
ordered quantum spin system there exists at least one
possible realization of the spin-2 HAFM on the kagome
structure: the second layer of He atoms absorbed onto
graphite at a particular coverage. It is, however, possi-
ble that this is too simple a model and a realistic descrip-
tion should include other spin-exchange interactions.
Experiments on this system found a peak in the specific
heat, but the total change in entropy per site between
T = oo and an extrapolated value for T = 0 accounts for
only one-half of ln(2) the expected value for an S =

2
system. This suggests that there is a large number of low-

lying states, which could contribute to additional struc-
ture, such as a second peak, in the specific heat at very
low temperatures.

Exact diagonalization of a 12-site cluster on the
kagome lattice and simulations using the decoupled-cell
Monte Carlo technique found such a peak. Simulations
of larger systems using the forced oscillator method
found only one high-temperature peak and an almost lin-
ear T dependance of the specific heat at temperatures
below this single maximum. Based on this observation it
was concluded that the double-peak structure reported
for the 12-site system is due to finite size effects.

Further insight in the behavior of the system can
be gained by calculating finite temperature properties.
However, the most powerful technique, quantum Monte
Carlo simulations, breaks down due to the sign problem
for &ustrated spin systems. In this paper we, therefore,
follow a different approach and present results &om high-
temperature expansions as well as exact-diagonalization
studies.

Section II contains the results for the specific heat, for
which the series has been calculated up to 16th order
in J/kxxT. We analyze the series using the method of
Pade approximations and compare the results with data
&om exact-diagonalizations studies. Based on entropy
arguments we will show that the low-temperature struc-
ture of the specific heat occurring in the finite cluster
calculations cannot be a spurious finite size effect. In
the third section we present results for the spin-spin cor-
relation function, which has been calculated up to 14th
order in J/k~T Extrapo. lations give quantitative results
down to T = 0.25J/kxx. At this temperature the largest
eigenvalue of the structure factor matrix S p(q) is nearly
independent of the wave vector q and is less than a factor
of two larger than at T = oo. Our values for the struc-
ture factor at this temperature are close to exact results
for the ground state of a finite cluster with 36 sites. Our
conclusions are summarized in Sec. IV.

II. SPECIFIC HEAT

TABLE I. For each quantity A we define the coefficients
a~ by & = g„,~ (&4) . The table shows the values of a„
for the specific heat t and the uniform susceptibility y.

N

1
2

3

5
6
7
8
9

10
11
12
13
14
15
16

4C
0
0

48
0

—9792
0

4106880
—5193216

—2927834112
11470159872

3193027983360
—26121748561920

-4944246830899200
70892246893658112

10284867640404983808
—234226245436710912000

-27538523697287477329920

0

—32
192

—384
—1280

—155136
2711184

56705024
-1716811776

—47711784960
2004747075584

55843726884864
-3367208347123712

—88720801213743104
7723917022263705600

series using a linked cluster expansion up to order 16
in 1/T (froxn now on we will set the exchange coupling J
and the Boltzmann factor kxx equal to unity). The series
coefBcients are given in Table I. The series was extrapo-
lated beyond its radius of convergence by the method of
Pade approximants. For a power series F(x) we forxn the
Pade approximants

(4)

where Pl, (z) and QM (z) are polynomials in x of order L
and M respectively. The coeKcients of the two polyno-
mials are determined by the condition that the expansion
of [L/M] has to agree with the series F(z) up to order
O(x™).Asymptotically a [L/M] Pade approximant
has the behavior

lxm [L/M] ~ z' M. -

In case of high-temperature expansions x is the inverse
temperature. Because the specific heat must vanish at
T = 0, we restrict the Pade analysis to approximants
with M ) L.

A number of approximants were obtained this way and
are plotted in Fig. 2. The curves for different approxi-
mants remain consistent with each other down to T = 0.
Furthermore, our findings agree with results from simu-
lation studies on small clusters (of up to 18 sites). In
particular there is only one peak at T —2/3. We calcu-
lated the total change in entropy,

The Hamiltonian of the Heisenberg model is given by
and found

OO

AS = —dT,
0 T (6)

where the sum runs over all pairs of nearest neighbors on
the kagome lattice. We calculated the high-temperature

AS = 0.6 ln(2)

from integration of the Pade approximants for the spe-
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FIG. 2. [L/M] Pade approximants for the specific heat C
obtained from a 16-term high-temperature expansion.

cific heat. The [L/Lj Pade approximants for the entropy,
which by construction go to a finite value at zero temper-
ature, are in agreement with this result. Experiments on
sHe filmsi4 absorbed on graphite reported a total change
in entropy per site of about 2 ln(2). According to Elser, io

one quarter of the spins are essentially noninteracting,
which, by themselves, give a zero-point entropy of 4 ln(2).
The remaining three quarters of the spins form a kagome
lattice, so the experimental results predict a missing en-

tropy of s ln(2) per site of the kagome structure. ir This
is close to our result that the missing entropy is approx-
imately 0.4 ln(2) per site. However, this is not enough
to show that this model is appropriate to describe these
experiments. There exist other proposalsis that give sim-
ilar findings.

We do not, however, expect the large ground state de-
generacy corresponding to a T = 0 entropy per site of
0.41n2 implied by Eq. (7). Presumably tunneling re-
moves the high ground state degeneracy which occurs in
the classical model, leading to many low-lying (but split)
states for the quantum case. This would give additional
structure to the specific heat at low temperatures where
the high-T series do not converge and where the experi-
ments have not yet been performed.

We therefore also calculated the complete spectrum for
6nite systems with N = 12, 15, and 18 sites using stan-
dard diagonalization routines. is We chose two different
clusters with 18 sites. The two possibilities, referred to as
18a and 18b, respectively, are shown in Fig. 1. Cluster
18b is the one used in the exact-diagonalization stud-
ies by Zeng and Elser and the simulations performed
by Fukamachi and Nishimori. Because translations are
the only possible symmetry operations of this cluster, we
were not able to reduce the dimension of the Hilbert space
to a size that routines for complete diagonalization could
be used. However, we calculated a large number of the
low-lying eigenvalues by a Lanczos algorithm, which
gives the accurate specific heat at the low temperatures
of interest. Due to the larger symmetry of cluster 18a,
we were able to calculate all eigenvalues of this particular
system as well as for the N = 12 and 15 clusters.

Results for the specific heat are presented in Fig. 3
together with one of the Pade approximants for com-

FIG. 3. The speci6c heat C calculated from ex-
act-diagonalization of finite clusters compared with results
from the Fade analysis of the high-temperature series. For
cluster 18b only the low-lying eigenvalues have been deter-
mined and so the results are only presented for T & 0.4, the
region where they are valid.

parison. The two different methods, high-temperature
expansions in the thermodynamic limit and exact diag-
onalization for finite clusters, are in excellent agreement
with each other down to T —0.3, i.e., below the high-
temperature peak. Thus, results &om the finite cluster
calculations are already in the thermodynamic limit for
T & 0.3.

At lower temperatures, however, the two methods give
completely different results. The finite clusters with an
even number of sites develop a sharp peak in the specific
heat, while the 15-site system has at least a clear shoul-
der. In simulations~s the shoulder for the 15-site system
appeared to be much less significant and no peak was
observed in the 18-site system. This led to the conclu-
sions that the low-temperature peak reported earlierio
was a finite size effect. Here we see that there is addi-
tional structure in the speci6c heat at low temperatures
for larger sizes. We expect that some structure persists
in the thermodynamic limit leading to a vanishing en-
tropy as T ~ 0. The precise form of this structure,
e.g. , broad shoulder or second peak, however, is diffi-
cult to deduce &om our results, because the 6nite size
corrections show a large even-odd asymmetry. Exact-
diagonalization studies of finite clusters 6nd that the
lowest triplet (quadruplet) for finite systems with an even
(odd) number of sites, N, has an excitation energy that
remains finite in the thermodynamic limit resulting in a
spin gap 6 —0.25. The low-lying states that give rise to
the additional structure in the specific heat are singlets
(doublets) for even (odd) N.

III. STRUCTURE FACTOR
AND UNIFORM SUSCEPTIBILITY

In addition to the specific heat we also calculated the
high-temperature series for the spin-spin correlations.
Only 14 terms were determined for this series, because
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many more clusters contribute to this expansion than for
the specific heat. From the series for the correlations in
real space we calculated the structure factor. As already
mentioned in the Introduction the kagome structure is
not a Bravais lattice, and so the structure factor is a
3 x 3 matrix, given by

S p(q) = ) exp[ —iq (R+ bp —b )]

x(S'(b ) S'(R+ bp)),
0.5

where R is summed over Bravais lat tice vectors
formed &om ei and e2 in Eq. (1) and the

b, a = 1, 2, or 3 are given by Eq. (2). Harris et al. ~

showed that up to sixth order in 1/T the largest eigen-

value of this matrix is independent of the wave vector

q. This effect is due to the geometrical properties of the
lattice. This degeneracy is broken in seventh order for

quantum spins and in eighth order for the classical case.
For certain values of the wave vector with high symmetry
the eigenvectors are independent of T, and so the eigen-

values can be obtained as series in 1/T The r.esults for

the largest eigenvalue at q = 0, q = s (1,0) (corner of
the Brillouin zone) and q = —(0, 1) (center of an edge

of the Brillouin zone) are given in Table II. It is remark-

able that the values for the difFerent wave vectors differ

by only about 5'Fp indicating only weak dispersion. The

q value with the largest coefBcient in the structure factor
series changes at each order of the expansion; see Table
II. This questions the conclusion in the classical limit, "
for which a tendency towards selection of Q = s (1, 0)
was reported based on an eight-term series. The next

order of the expansion may already change that.
For wave vectors not at high symmetry points in the

Brillouin zone we 6rst calculated the Pade approximants
for all nine matrix elements of S p(q), evaluated them

at a 6xed temperature, and then diagonalized the ma-

trix. In Fig. 4 we present results of a scan through
the Brillouin zone at temperature T = 0.25. For these

0+
0

I

K
+
0

FIG. 4. The eigenvalues of the structure factor matrix at
T = 0.25. The Pade analysis was done in the new variable
u = tanh(f/2T) where f = 0.125. The asterisk marks the
eigenvalues of the structure factor for the ground state of a
6nite cluster with 36 sites. The data were obtained using the
results for the spin-spin correlations of this cluster given in

Ref. 12.

4S „(q,T = 0.25) = 1.72 + 0.04,

and any dispersion is smaller than the error bars. For
comparison, the corresponding result at T = oo is

4S .„=S.

data we erst made a transformation to the new variable
u = tanh(f/2T) where f = 1/8 and performed the Pade
analysis in the series for this variable. We found that
the transformed series behaved better than the original
one. Figure 4 shows that the largest eigenvalue is nearly
independent of q. Although the different [L/M] Pade
approximants have a weak dispersion, there is no clear
tendency towards selection of a particular q value. We

estimate that the largest eigenvalue of S p(q) is given

by

TABLE II. For each quantity A we define the coeflicients a„by A = g P (~~) . The table

shows the values of a for the largest eigenvalue S „(q) of the structure factor matrix at wave

vectors q = (0, 0), q = ~(0, 1), and q = s (1,0).

N
0
1
2

4
5
6
7
8
9

10
11
12
13
14

48 „(q=0)
1
2

4
—?2

—448
11872

122368
—4503872

—61508608
3088187904

48686666752
—3348876193792

—54711166472192
5268689812606976

80271299635928064

4S--[q= —,(0 1)]
1
2

4
—72

—448
11872

122368
—4494912

—61640704
3072426496

49120629760
—3321064779776

—55953620766?20
5210400086315008

84156994384281600

4S .„[q=—', (1,0)]
1
2

4
—72

—448
11872

122368
—4493120

—61?49760
3066299904

49365544960
—3305454742528

—56467096948736
5168484556144640

85379333782306816
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In order to check whether our results give a correct
picture of the low-temperature magnetic properties we
calculated the structure factor for the ground state of
a finite cluster with 36 sites. The ground state of this
cluster has wave vector q = 0. The correlations in real
space are given in Ref. 12. For the 36-site system the
allowed wave vectors are g = (0, 0), s(1,0), s (1,0),—(0, 1), and others related by symmetry to these. The

results are plotted in Fig. 4. The agreement between
the results obtained from the series analysis at T = 0.25
and the ground state of the 36-site cluster is remarkable.
It indicates that the results of the series analysis remain
qualitatively unchanged down to T = 0; i.e., there is no
divergence of the structure factor which would indicate
magnetic order. The structure factor at T = 0 is roughly
a factor of 2 larger than at T = oo and has only moderate
dispersion, indicating a correlation length of less than one
lattice spacing.

Results for the uniform susceptibility are plotted in
Fig. 5 using the series for the susceptibility in Table I. We
show only results for finite cluster with an even number
of sites, N. As already mentioned at the end of the pre-
vious section the lowest states for a finite system with an
odd number of sites are doublets which results in a strong
6nite size effect for the susceptibility: limp ~0 g =

4& ~.
Results from the high-temperature expansion and &om
finite cluster calculations again agree down to T 0.3.
Above this temperature the susceptibility is significantly
smaller than the Curie-Weiss susceptibility. At low tem-
peratures the susceptibility appears to vanish exponen-
tially, because the low-lying states are all singlets. As
mentioned earlier the spin gap 6 is estimated to be

0.25. Because the S' = +1 components of the
lowest triplet give identical contributions to the suscepti-
bility, one expects the maximum in y to occur at temper-
ature T 6/[1+ ln(2)j. This can be verified for the
finite clusters with N sites by taking the finite size value
b, (N) The inaximum for the susceptibility is given by

=0.14—0.15 with only a rather weak N dependance.
Experiments on He 6lms absorbed on graphite find

a cusp in the susceptibility near 1 mK. Unfor-
tunately our data do not allow us to give quantitative
estimates for the position and peak value of the suscepti-
bility at such low temperatures, because the series expan-
sion is no longer reliable and the finite cluster calculation
suffers from finite size effects. It is very likely that in
this temperature regime, T (( 1, the spin-2 HAFM is no
longer an appropriate model for He films and additional
interactions have to be taken into account.

IV. CONCLUSIONS

We have presented results &om high-temperature ex-
pansions and exact-diagonalization studies for the spe-
cific heat and the structure factor of the Heisenberg
antiferromagnet on the kagome lattice. Our main re-
sult is that the specific heat has additional structure
a second peak or possibly a shoulder at very low tem-
peratures in addition to a peak at higher temperature
(T 2/3). This had been conjectured earlier but sub-
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FIG. 5. Uniform susceptibility y from finite clusters and
a Pade analysis of the high-temperature series. The Fade
analysis was performed for Tin(Ty). The data shown were
obtained from the [7/5] Pade approximant. The Curie-Weiss
susceptibility 4ycw = 1/(T —e) with e = —1 is shown
for comparison. The first two terms in the high-temperature
series expansions for y and y&w are equal, and so y
at sufBciently high T.
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sequent simulations had seemed to contradict it. Our
conclusions that this unusual low-temperature behav-
ior exists comes &om the following observations: High-
temperature series expansions, which do not find a second
peak, obviously cannot account for a significant amount
of entropy. At temperatures T ( 0.25 finite cluster calcu-
lations show much more structures (a peak for even num-
ber of sites, N, a significant shoulder for N odd) in the
specific heat. For T ) 1/4 the results of both methods
agree, showing that in this regime the finite cluster cal-
culations give the correct results in the thermodynamic
limit. Therefore, the speci6c heat below T & 0.25 has
to be much larger than previously reported to get the
entropy right, i.e., zero as T -+ 0. Thus, what is seen
in the finite cluster calculations is not a spurious finite
size effect. It would be interesting to measure the speci6c
heat at somewhat lower temperature to see if additional
structure appears.

The series expansions for the structure factor at T =
0.25 give results that are very similar to the results for
the ground state in exact-diagonalization studies. @ Both
indicate that correlations fall off rapidly with distance.
The structure factor is less than a factor of 2 larger the
infinite temperature value even at T = 0.25. Any pos-
sible dispersion is too weak to be clearly identi6ed. All
this indicates that the Heisenberg antiferromagnet on the
kagome lattice has no long range magnetic order.

For the susceptibility we find a maximum around T =
6 and an exponential drop at lower temperatures.
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