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Finite-size scaling of the frustrated Heisenberg model on a hexagonal lattice
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We investigate through Monte Carlo simulations the critical behavior of the antiferromagnetic
Heisenberg model on a hexagonal lattice. Critical exponents associated with both magnetic and chiral
orderings were estimated. The transition temperatures of these two kinds of order were found to be the
same within error margins, in agreement with previous results. The calculation of the Binder parameter
also demonstrates that the transition is most likely continuous. The exponents obtained agree, for the
most part, with those of Kawamura and thus provide further support for the existence of a new univer-
sality class.

I. INTRODUCTION

Discussion concerning the existence or not of a new
chiral universality class for frustrated spin systems on the
stacked triangular lattice still exists. ' It was Kawamu-
ra ' who proposed, based on symmetry arguments and
Monte Carlo results, that the critical behavior of the
geometrically frustrated antiferromagnetic XY and
Heisenberg models on a hexagonal lattice should be de-
scribed by new universality classes characterized by the
following sets of exponents for the n =3 case (Heisen-
berg):3 a=0.24(8), P=0.30(2), y=1.17(7), v=0. 59(2),
p„=0.55(4), y, =0.72(8), v„=0.60(3) (where the sub-

script tc refers to the chirality). Kawamura also made
some renormalization-group @=4—d studies which re-
vealed that chirality was a relevant operator and that a
new chiral fixed point was associated with it. On the oth-
er hand Azaria, Delamotte, and Jolicoeur performed a
2+a renormalization-group calculation and found that
the critical behavior of the frustrated Heisenberg antifer-
romagnet could be described by one of the three follow-
ing possibilities: either the transition is first order or, if it
is continuous, it belongs to the O(4) or mean-field tricriti-
cal universality classes. Recently, a few groups have
done more sophisticated Monte Carlo simulations in or-
der to test the variety of predictions. Bhattacharya
et al. reported values for the magnetic exponents which
are in close agreement with those of Kawamura. They
obtained P/v=0. 495(10), y/v=2. 011(14),v=0. 585(9).
Loison and Diep also obtained results in agreement with
Kawamura. However, none of these groups considered
the chiral order parameter. One of the big issues associ-
ated with this problem concerns the simultaneous order-
ing of the chiral and magnetic order parameters. The re-
sults of Kawamura seem to support this possibility but
there is no a priori reason for these two transitions to
occur at the same temperature in zero field. The same
question arises also in the case of the fully frustrated lat-
tices (generalized Villain model), where simulation results
seem to indicate identical transition temperatures. It is
only recently, however, that new Monte Carlo techniques
(as used here) have provided a means by which to very

accurately, and independently, determine transition tem-
peratures.

Both the magnetic and chiral order parameters were
considered in our histogram Monte Carlo simulations.
This enables us to estimate the magnetic and chiral tran-
sition temperatures and the sets of exponents associated
with these orderings by finite-size scaling. In Sec. II we
present briefly the model and the method we used. The
results are presented in Sec. III and our conclusion in
Sec. IV.

II. MODEL AND METHOD

We considered the Heisenberg model on a stacked tri-
angular lattice. The Hamiltonian is given by

g [S, XS, ]
2

3 &~i&

(2)

where we take nearest-neighbor (NN) ferromagnetic in-
terplane interactions J~~ (0 and NN antiferromagnetic in-

traplane interactions J~i) 0, with ~J~~~ =~J&~ =1 (all the
energies henceforth are expressed in units of

~ Ji ~
). The

spins are thus frustrated on each plaquette of the triangu-
lar lattice and we have the well-known 120' structure in
the ground state.

The Metropolis algorithm was used, combined with the
histogram analysis technique. Lattice sizes L XL XL,
with L =12, 15, 18, 21, 24, 27, 30, and 36, and periodic
boundary conditions were considered. In order to local-
ize the transition temperature we performed simu"ations
at different nearby temperatures including ones close to
the estimated infinite-lattice transition temperature T, . '

From 10 Monte Carlo steps (MCS) for the smaller lat-
tices to 2.6X 10 MCS for the larger lattices were used for
each of these simulations. Histograms were generated for
the different magnetic and chiral variables described
below. The magnetic order parameter was defined as in
Ref. 10. The chiral order parameter for a single triangu-
lar plaquette is given by the expression
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The sum is over the three bonds belonging to the pla-
quette p. For the XY model ~ is a scalar but for the
Heisenberg model it is a vector. The value of the chiral
order parameter for a given configuration is then given by

TABLE I. Estimates for the magnetic and chiral transition
temperatures obtained by the extrapolated temperatures at
which the magnetic and chiral fourth-order cumulants for lat-
tice size L, U&, and Uz"' intercept the cumulants for lattice size
L' (see Fig. 1).

Kp (3) Intersection
with lattice size L

Transition temperature T,*

Magnetic Chiral

The chiral order in the ground state is characterized by
alternating chirality on adjacent plaquettes. According-
ly, the sum in (3} is on the plaquettes with up- (or down-)
pointing chirality. The thermal average is given by

12
15

0.957 69(10)
0.957 70(10)

0.957 7(6)
0.957 75(60)

rc=&(a'&

This corresponds to the definition used in Ref. 2.

III. RESULTS

A. Estimation of the transition temperatures

(4) transition temperatures for the different values of L. The
chiral transition T{"'and the magnetic transition T{™for
the infinite lattice are thus estimated as

T{"'=0.9577(6),
r{™=0.9577(2) .

The fourth-order magnetic and chiral cumulants Ut
and Uz'"' were used to estimate the transition temperature
of the magnetic and chiral order parameters, respectively.
This quantity is defined by the following expression:"

Ut =1— (5)

These results are in agreement with those of the work of
Kawamura, ' which reports T{ '=0.958(4) and
T{"'=0.957(3), as well as that of Bhattacharya et al. ,
T{ '=0.9576(2}. From our results we thus conclude
that, within error, the chiral and magnetic transition
temperatures are the same.

(m )r is the thermodynamic average value of the kth
power of the magnetic order parameter for the lattice of
size L. The same type of expression holds for the chiral
order parameter Uz'"'. The "cumulant crossing"
method"' was used to extract the transition tempera-
tures. It is based on the observation that the temperature
T,' at which intersect the various curves of Ut (T) for
difFerent lattice sizes scale as ln '(L'/L ), where L' and
L are two different lattice sizes. The extrapolated values
of the temperature for ln '(L'/L)~0 correspond to
T, (L ~ oo ). Figure 1 presents the curves of T» as a func-
tion of ln '(L'/L) for the magnetic and chiral transi-
tions. Table I presents the extrapolated values for the

B. Order of the transition

Azaria, Delamotte, and Jolicoeur suggest that the
transition in frustrated antiferromagnets could be first or-
der. The only evidence so far of the continuous nature of
this transition is the apparent continuity of thermo-
dynamic quantities and the absence of hysteresis. ' '

Many examples exist, however (see Ref. 13}, where the
weak first-order nature of a transition could not be
detected in this way. A more precise tool we now have to
identify the order of the transition is the Binder cumu-
lant' defined by

0.960

(E'),
(6)

0.958—

TG

0.956—

0.954
~ ,

'

Ln '(b)

FIG. 1. Critical magnetic and chiral transition temperatures
T, obtained by the interception of the fourth-order cumulant
values U~ and U&"' for lattice sizes L and L' as a function of the
inverse logarithm of the scale factor b =L'/L.

This variable has a minimum as a function of tempera-
ture, and, when extrapolated to the thermodynamic limit
L ~ oo, the value of this minimum is (Ut{ ~)m;„=—', for a
continuous transition but is smaller for a first-order tran-
sition. If it is a weak first-order transition, ( Ut{ ');„will
be close to —', . From this we see that the possibility that a
transition is very weakly first order can never be com-
pletely ruled out on the basis of finite-size simulation re-
sults. "

Figure 2 shows the scaling of ( —,'-Ut{ ') as a function of
1/L . By performing such a scaling analysis we assume a
first-order transition. ' ' The extrapolated value we find
is U'„' =0.666 66(1), which is not difFerent from —,

' within
error. Thus we conclude that the transition is likely con-
tinuous.
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0.0016—

0.0012—

TABLE II. Estimates of the magnetic and chiral critical ex-
ponents resulting from the scaling of the maxima of diferent
thermodynamic variables. The quoted susceptibilities are the
ones defined according to Eq. (7). The asterisk indicates that
the fits were done excluding the smallest lattice size L = 12.

' 0.0008—

0.0004—

0.0000
0.0000 0.0002 0.0004

1/L

0.0006

Variable

B[ln(m ) ]/BK
a[in(m') ]/aK
x'
a[in(~) ]/aK
B[ln(x ) ]/M

I
XK

Exponent

y/v
VK

r.».

Value

0.59(1)*

0.59(1)
2.21(3)
0.60(1)*
0.605( 15)
1.36(3)

FIG. 2. Scaling of the energy-cumulant minimum with the
inverse volume. Only the three largest lattice sizes (L =27, 30,
and 36) are used in the fit.

C. Estimation of the critical exponents

We estimated the exponents in two different ways.
First we looked at the scaling of the maxima of some
thermodynamic variables. ' This required that the simu-
lation temperatures be close enough to the maximum to
get reliable results. Since different variables order at
different temperatures for finite-size lattices, simulations
at many temperatures were necessary, especially for the
smaller lattices. The second approach was to consider
the scaling of these variables at the estimated transition
temperature. ' It is important to note, however, that the
values of the exponents obtained from these different
methods are consistent with each other.

1. Estimation of the critical exponents
from the scaling of maxima

The following scaling relations were used for the evalu-
ation of the critical exponents y and v:

(mZ)K,„&m &

[ln((m ) )] = —(E)-L' ",

In addition, the chiral and magnetic susceptibilities
defined by

y=KL'& m'),
q„=KL'&K'),

(9)

were also evaluated. In these expressions, we assume
(m )-0 and (a)-0, which should be the case at T, .
When computing the value of ( m ) in the simulation we
take, in fact, the absolute value of the order parameter. '

We considered the two definitions of the susceptibility,
Eqs. (7) and (9), as in Ref. 12.

The scaling of some thermodynamic functions at T, is

presented in Figs. 3 and 4. Estimated exponent values
are given in Table III. The errors were estimated by tak-

Scaling of the various functions that appear in Eq. (7),
evaluated at T„was performed. We also considered the
scaling of the magnetic and chiral order parameters ( m )
and ( a ) at T = T„which are of the form

&m&, -L,

(K) L K K
—p /v

t), (m'E)M', „(m')[1 (& '&)]

(y'),„=KL [(m ) —(m ) ]-Lr/" .

(7) 4
o

c 3

In these expressions K is the inverse temperature and E is
the internal energy. The maximum of the thermodynam-
ic derivative, (dUL /dX), „, was also considered but the
1arge fluctuations associated with this quantity made the
extraction of reliable estimates of v dificult. The same
functions were used for the calculation of the chiral ex-
ponents in which m is replaced by ~. Table II presents
the values of the exponents obtained from the scaling of
the maxima of these functions.

2. Estimation of the critical exponents from scaling at T,

The transition temperature for both the chiral and the
magnetic transitions was assumed to be T=0.95 77(2).

~ Chrral (x = &x & )

2.4 2.8
Ln(L)

I

3.2 3.6

FIG. 3. Log-log plot of the logarithmic derivatives of the
chiral and magnetic order parameters as a function of lattice
size L at the estimated transition temperature T, -0.9577. The
resulting values of the critical exponents are v=0. 587(5) and
v„=0.605(6). The resulting St for the magnetic exponent takes
account of all the lattice sizes, whereas the one for the chiral ex-

ponent excludes the smallest lattice size L = 12.
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are in agreement with the one obtained in Ref. 6. The
most striking result from these simulations is the ap-
parent inequality of the exponents v and v„. The hyper-
scaling relations

6—

C
(x=2 vd

(x=2 vg
(10)

2.4 2.8
Ln(L)

I

3.2 3.6

ing account of the uncertainties in the values of the quan-
tities as well as in the critical temperature (i.e., exponents
were estimated also from results at T=0.9575 and
0.9579}. In order to investigate possible corrections to
scaling due to L being too small, fits were also done
without values from the smallest lattice sizes: a
significant effect was found only in the case of v„. As can
be seen, the values are consistent with each other except
for the magnetic susceptibility where we observe large
differences between the estimates obtained from the scal-
ing of y and y'. Such differences were also observed by
Peczak, Ferrenberg, and Landau' for the classical
Heisenberg ferromagnet although they were much less
pronounced in that case. However, no differences were
found between the estimates of y„/v„obtained from the
scaling of y„and g'„. Note that the exponent ratios given
in Table III are consistent with those of Table II. For
our final estimate of y/v, we took the value obtained
from the scaling of y at T, . This definition corresponds
to the one used by Kawamura. The corresponding values

FIG. 4. Log-log plot of the magnetic and chiral susceptibili-
ties [Eq. (9)] as a function of L at the estimated transition tem-
perature T, =0.9577. The fits include all the lattice sizes and
the resulting values of the critical exponents are r/v=2. 033(5)
and r„/v„= 1.354(11).

when applied to the chiral and the magnetic exponents
imply v=v„ if T,' '= T,'"'. The values reported by
Kawamura2 are v=0.59(2) and v„=0.60(3) and thus,
within the error bars, these two values are effectively
equal. The values we finally quote from our simulations
are v=0. 586(8} and v„=0.608(12). These values are in
agreement with those of Kawamura but they are margin-
ally different from each other. In order to obtain these
estimates and the uncertainties associated with them we
assume T,'"'—=T,' '=0.9577(2). However, the error re-
lated to the chiral transition temperature is much larger.
If this uncertainty is used to estimate the error in the
chiral exponent one has vk =0.608(36). But by doing so
we implicitly assume that the two transitions occur at
different temperatures. The reason for this possible in-
equality of the exponents v and vk requires better under-
standing before any clear conclusions can be drawn.
Corrections to scaling are also possible, which biased our
estimates because of the small lattices considered in the
simulations. However, these results do not rule out the
possibility that the two transitions occur at different tem-
peratures so close that we cannot distinguish them within
the precision of these simulations.

In Table III we present no estimate of the a exponent.
This exponent is associated with the scaling of the
specific heat according to the expression

C, -a+bL /" .

The large fluctuations in our results for C, and the small
value of a prevent a direct evaluation of this critical ex-

3.4

TABLE III. Estimates of the magnetic and chiral critical ex-
ponents obtained from the scaling of the thermodynamic vari-
ables at the estimated critical temperature T, =0.9577(2). The
quoted errors take account of the errors in the simulation values
and in the critical temperature. The asterisk indicates that the
fits were done excluding the smallest lattice size L = 12.

3.0-

Variable

B[ln((m ) )]/BK
B[ln((m ) )]/Bit'
x'

&m&

B[ln((r) )]/BIt
B[ln( & 2 & )]/BX

I

XK

Exponent

v
r/v
r/v
P/v

Vx

r„/v„
r.~v.
P„/v„

Value

0.587(9)
0.585(8)
2.23(3)
2.033(19)
0.486(12)
0.605( 12)*
0.611(11)*
1.355(20)
1.35(4)
0.823(20)

2.2
10 20

L
30 40

FIG. 5. Scaling of the specific heat at T, as a function of lat-
tice size L. The difFerent curves are obtained by fitting the data
according to Eq. (11) with an exponent a/v set equal to the ex-
treme values reported by Ref. 2, i.e., a =0.16 (continuous curve)
and a=0.32 (hatched curve). The corresponding values of the
fitting parameters a and b are a = —0.44, b = 1.44 for a=0. 16,
and a =1.19, b =0.31 for a=0.32.
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TABLE IV. Comparison of the critical exponents obtained
from this work with those of Refs. 3, 6, and 7.

Exponent

y

V~

VK

This study

0.285(11)
0.586(8)
1.185(3)
0.50(2)
0.608{12)
0.82(4)

Ref. 3

0.24(8)
0.30(2)
0.59(2)
1.17(7}
0.55(4)
0.60(3)
0.72(8)

Ref. 6

0.289(10)
0.585{9)
1.176(20)

Ref. 7

0.28(2)
0.59(1)
1.25(3)

ponent. If we assume a value of a=0.24(8), as quoted in
Ref. 3, and fit the results of (C„)r z. or of (C„),„[both

C

should scale according to Eq. (11)), the curve obtained is
consistent with our data. If now we set a to the extreme
values that this estimate allows, namely a=0. 16 or
a=0.32, and do the same exercise, the resulting fits are
again quite good. Figure 5 shows the graph obtained for
(C, )z z assuming these extreme values. The only alter-

C

native is the use of scaling relations, but, as we have seen,
the use of the hyperscaling relation to estimate a implies
two different values of this exponent since we have vAv„.
If we apply these hyperscaling relations to the chiral ex-
ponents we get a=0. 18 and for the magnetic exponent
a=0.24. Both values are within the errors of the quoted
value of Kawamura but, as seen on Fig. 5, our specific
heat data cannot discriminate between these possibilities.

Table IV presents the results of our simulations (those
obtained at T, ) compared with those of Refs. 3, 6, and 7.
Our values of the magnetic exponents are in close agree-
ment with those of Ref. 6, which use also a histogram
Monte Carlo technique with scaling at T, . The only oth-
er results on the chiral exponents are those of Kawamu-
ra, who uses the "data collapsing" method. Our values
agree with those of Kawamura within error margins.

Heisenberg model on a hexagonal lattice for which both
magnetic and chiral order parameters were measured.
The transition temperatures of the magnetic and chiral
orderings were determined by the highly accurate "cu-
mulant crossing" method and we find that, within errors,
the two transitions occur at the same temperature
T, =0.9577(2). This is in agreement with less accurate
results reported by Kawamura. The order of the transi-
tion was also studied by considering scaling of the Binder
cumulant and we conclude that the transition is likely
continuous. The sets of exponents obtained from this
analysis (see Table IV) agree with results from previous
works. However, our values may suggest that vWv„.
This surprising result was also observed for the XY model
on a stacked triangular lattice, for which the difference
between these exponents is even greater' and where the
chiral and magnetic transitions also appear to occur at
the same temperature.

Although our results generally support the conjecture
by Kawamura of a new chiral universality class for the
frustrated Heisenberg model, the possibility of a very
weak first-order transition, with a set of effective critical
exponents, ' cannot be excluded from available simula-
tion results. Conclusions regarding the simultaneous or-
dering of both magnetic and chiral degrees of freedom
are complicated by the possibility that these two transi-
tions are "decoupled, " each with its own characteristic
length scale, so that it is not necessary to have v= v . We
know of no physical reason why the two transitions
should occur at the same temperature; indeed, a two-step
process for frustrated spin systems has recently been pro-
posed. ' It appears that further information from simula-
tions on the critical behavior of this system must await
the advent of much improved algorithms for the treat-
ment of frustrated vector spin systems.
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