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General spin- —Ising model in a honeycomb lattice: Exactly solvable case
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The most general spin-2 Ising model with up-down symmetry is investigated on a honeycomb lattice.

The partition function on a surface in the space spanned by the coupling constants J, K, L, and M was

found exactly. The explicit expression for the quadrupolar order parameter with the inclusion of an
external crystal field of strength 5 is obtained. It is shown that this order parameter exhibits in general a
simple power-law dependence on T-T, near T, .

Spin-1 and spin- —,
' models have been investigated care-

fully in two-dimensional systems. These models have be-
come very attractive because of their simplicity and the
rich fixed-point structure. A spin-1 model was intro-
duced by Blume-Emery-GriSths (BEG).' This model has
been studied mostly under the molecular field' and renor-
malization group approximation. Recently, Hori~uchi,
Wu, Shankar, and Rosengren and Haggkvist have
solved exactly the BEG model for a honeycomb lattice,
when exp(K)coshJ=1, where J and K are dipolar and
quadrupolar interactions constants. The same result was
obtained for the Bethe lattice. Very recently, Kolesik
and Samaj proposed a systematic way for obtaining solv-
able cases of the general spin-1 Ising model on the honey-
comb lattice.

We consider the most general spin- —,
' Ising model with

nearest-neighbor interaction and up-down symmetry,
which is described by the following Hamiltonian

PH = g JS—;S +KS; S +LS; S
(ij )

+ (S;S +SJS; ) —b, +S;
J l

where S;=2—,', +—', is the spin variable at site i and (ij )
indicates summation over the nearest-neighbor pairs of
sites. Here, we will not be concerned about the physical
origin of these couplings (J,K,L and M}; we will treat
them as parameters in the calculations.

The spin- —', BEG model with dipolar (J}and quadrupo-

Z =g exp( pH ), —
IsI

(2)

where P= 1 lka T and the sum is over all sPin
configurations.

We introduce the following identity

lar (K) interactions was introduced to explain phase tran-
sition in DyVO4 and its phase diagram was obtained
within the mean field approximation. Another spin- —',
model was later introduced to study tricritical properties
in ternary 6uid mixture, ' which was also solved in the
mean field approximation. Recently, the complete phase
diagram of this model with L =M =0 has been fully ana-
lyzed with the use of two different approaches: mean
field and Monte-Carlo methods. " Very recently,
Lipowski and Suzuki' have found the conditions under
which the spin- —', Ising model with M =0 on the honey-
comb lattice has the same partition function as the S=—,

'

Ising model. The method which they used is a straight-
forward generalization of the method used by Kolesik
and Samaj. s They transformed the model of Eq. (1) with
M =0 into the three-state vertex model, and then they
found the condition under which the last model is
equivalent to the two-vertex model.

In this paper we derive an exact solution of the general
spin- —', Ising model on a honeycomb lattice on a surface in
the space spanned by the coupling constants J,K,L, and
M. Here we use the method proposed by Wu~ for the
BEG model and developed by the authors' for the spin- —,

'
Ising model without reference to the three-state model.

The partition function for the model given by Eq. (1) is

exp JS,Sz+KSfS2+LS',S2+ (S,S2+SzS', )
2

= ~(81ao—18a,+a2)+ —,', (81Po—18P, +Pz}S&S2+4(ao 2a&+a2)SfSz

+(po 2p 1 +p2 }S,Sz +—,
' ( 9po+ 10p, —p2 }(S,S2 +S2S i ) + —,'6 ( 9ao + 10a i

—a2 )(Sf +S2 ),
where
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ao=exp( —,', K)coshJO, Po=exp( —,', K)sinhJO, Jo= —,'J+ —,', M+ 'L—,

a, =exp( —,', K)coshJ&, P, =—,'exp( —,', K)sinhJ&, J& =
—,'J+

,",M—+"L—,

az=exp( —'„'K)coshJz, Pz= —,'exp( —'„'K)sinhJz, Jz =—',J+—'„'M+ "'L—.

When aoaz =a, and Pgz=P, and after simple algebraic calculations these relations can be represented as2 2

tanh J& =tanhJ2tanhJO,

exp( —4K ) =cosh( Jz —Jo } .

We can rewrite Eq. (3) in the following form

(4)

(5)

exp JS,S,+KS,Sz+LS',Sz+ (S,Sz+SzS', ) =aoexp[R(S&+Sz —
—,
' )] 1+4 S,Szexp[RO(Sf +Sz —

—,
' )]

ao

where exp(2R)=(coshJ, /coshJO)exp(K/2) and exp(2RO) =tanhJ, /3tanhJO.
Then the partition function defined by the Hamiltonian in Eq. (1) can be written as

Z =(aoe "/ )~g g ( 1+4tanhJoS S exp[RO(S; +SJ —
—,
' )]]g exp( DOS; ), —

l

(7)

where E is the total number of edges, ho=6, yR and y i—s the coordination number of a lattice.
Thus, we obtain the subspace of exchange interactions in Eq. (5) where the partition function is written in the form

of Eq. (7). We remark that this result is valid for any arbitrary lattice. For a honeycomb lattice y =3 and E =3N/2,
where N is the total number of sites. Equation (5) is the analogy of the condition exp(K}coshJ =1 obtained for the
S =1 model by Horiguchi. z Note, that if M =0 then the condition in Eq. (5) coincides with the result obtained by
I.ipowski and Suzuki. '

We expand the first product over neighboring pairs in Eq. (7) and represent each term in the expansion by a graph
drawn on the lattice. Draw a line on the edge between sites i and j if from corresponding factors one selects the term
4tanhJOS;S exp[RO(S, +S —

—,')]. Draw no line if one takes the term 1. This gives a one-to-one correspondence be-

tween terms in the expansion and line configurations on the edges of the lattice. For each term in the expansion, carry
out the summations gs —+]/z +3/z for all sites. For the honeycomb lattice this can be accomplished with the use of the

identity:

bo
S;"exp[(nRo —ho)S; ]=2 exp — [1+exp( —2bo)], n =0

S,.=+1/2, k3/2

=
—,exp—1

2R o
—6o

[1+9exp(4RO —2bo}], n =2

=0, n=1, 3 .

Here n is the number of lines with site i as an end point. It can take on values 0, 1, 2, and 3, only for the honeycomb
lattice.

According to Wu' this fact together with Eq. (8) enable us to rewrite Eq. (7) as the partition function of a spin- —,
' Is-

ing model. Introducing Ising spins o; =+1, we can rewrite Eq. (7) as

1+9 exp(4R o
—2bo)Z=B~ g g 1+o,o, tanhJo (9)

where

B=aoz/ [ 1+exp( —
2ho ) ]exp

3R +ho
(10)

Now the right-hand side of Eq. (9}gives precisely the high-temperature expansion of a spin —,Ising partition funct&on

Z„;„(K,) whose nearest-neighbor interaction is KI with

1+9 exp(4R o
—24o)

tanhKI= tanhJO . (11)
1+exp —2b,o
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Thus, we obtain the exact equivalence

Z =B (coshK ) Z»;„(Kr ),
where Z»;„s(Kz) is the partition function of a spin- —, Ising model on the honeycomb lattice
In other words, the spin- —,

' Ising model is a special case of the spin- —', Ising model. The free
model on the honeycomb lattice in the limit of an infinite lattice is well known, ' and after
the large N limit, the free energy for the spin- —,

' Ising model

(12)

with interaction —k~ TE~.
energy for the spin- —,

' Ising
some algebra we obtain, in

Pf—=ln2B+ f d8 f dyln[1+3u —2u (1 u—)I cos8+cosy+cos(8+y)]],
16M

(13)

tanh Jo+ tanh J2exP( —2ho)

1+exp( —2ho) V 3
(14)

where bo=h —3R and R is a function of Jo and J2 in
subspace of Eq. (5):

with u =tanhKr. B and Kr are given by Eqs. (10) and
(11),respectively.

That is, we have solved the spin- —,
' Ising model exactly

on the surface represented by Eq. (5) in the four-
dimensional space spanned by the coupling constants
Jp J] J2 and K. For arbitrary values of Jp and J2, Eq.
(5) determines a unique set of values of K and J, for
which the model can be solved exactly.

Now, we consider the critical behavior of our model.
Since the second derivative of the free energy in Eq. (13)
diverges logarithmically at u =u, = I/3/3, the spin- —,

' Is-

ing model will exhibit a first-order transition if u )u„a
second-order transition if u =u, and no transition at all
u & u, . The important thermodynamic properties of this
model are summarized as follows. A second-order phase
transition occurs at a temperature T, determined by

We have solved the model exactly for arbitrary values
of Jo and J2, the A,-surface of critical points in Eq. (14),
defined only in the two regions on the (Jo,J2) plane:

(i} 0&tanhJo I/3/3 and I/V3&tanhJ2&1,

(ii) 0&tanhJ2&1/3/3 and 1/3/3&tanhJ &1 .

(16)

(17)

Note, that for each set of values of Jo and J2, Eq. (14)
determines a unique value of b„except the intersect point
of two regions (i) and (ii), for which b, is an arbitrary.
Thus, the A, surface in Eq. (14) contained the nontrivial A,

line of critical points given by

Jo =J2=arctanh(1/3/3) and 5—arbitrary, (18)

in which, as it is shown below, the model exhibits the
critical behavior different from the critical behavior else-
where on the A, surface. Also, we must remark, that for
M =0 we recover the previously reported exactly solv-
able case, ' which is located in the region (i) given by Eq.
(16).

This model has an order parameter (quadrupolar mo-
ment) p defined by

coshJo 3/4exp( —4R ) = cosh (J2 —Jo ) .
cosh J2

(15)
N

p= —g (S; )=Z 'QS;exp( PH) . —
i=1 (s)

(19)

The critical condition given by Eqs. (14) and (15) gives
us the A,-surface Ising-type transition (logarithmic specific
heat singularity) in spin- —, model in the space spanned by
the 6, Jo, and J2.

This order parameter can also be defined by the varia-
tion of the free energy with h. It is now straightforward,
although tedious, to compute the quadrupolar moment p
through direct difFerentiation of Eq. (13). We found that

1 —exP( —2b,o) exP( —2ho) tanh J2 —tanh Jop= —— +
4 1+exP( —2bo) 1+exP( —2bo) tanhJo+tanhJ2exP( —2ho)

1 2u

1 —u
(20)

with K(q)= f (1—
q sin 8) '/ d8 .

0
(22)

(3u —1)(1+u ) K(q) ifu )—,',
4u (3u —1)(1+u } K(qo)

( 1 u 2)3/2( 1 +3u 2) 1/2 2n
ifu &3

(21)

That is, we have been able to exactly evaluate the order
parameter p on the subspace Eq. (5). The phase transi-
tion occurs at q=1 or u =u, =l/3/3. While K(q)
diverges as lnIT —T, I when q~l, it can be seen from
Eqs. (20) and (21) that

Hereq =(1—u ) (1+3u )/16u and qqo=l.
Furthermore K(q} is the complete elliptic integral

defined by

p ~p2+ I
& &, I» I

&— (23)

Hence, p is continuous at T, and Bp/BT diverges loga-
rithmically near T, .
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Using Eq. (23) together with Eqs. (20) and (14) we
found pz as functions of Jo and Jz,

tanh Jz + tanh Jo+&3(tanh Jztanh Jo —1)
ps=

4 2(tanh Jz —tanh Jo )

5 1 —exp( —2b, )

4 1+exp( —2b, }
(25}

Thus, we see that in the A, line given in Eq. (18) the phase
transition is not marked with the logarithmic divergence
in the order parameter pz. Really the phase transition is
associated with the logarithmic divergence in the speci6c
heat.

(24}

This is the A, surface of Ising-type phase transition at T,
in three-dimensional space spanned by p&, JO, and Jz.

Note, that critical behavior of the order parameter p&
given by Eqs. (23) and (24) is valid everywhere, except of
the A, line of critical points given in Eq. (18), where as it
is easy to see from Eqs. (6) and (11), Kl =Jo and hence
u = tanhKI do not depend on A. Therefore, the variation
of the free energy given in Eq. (13) with b„does not con-
tain the divergence part. This leads to the simple expres-
sion for the order parameter p& given by

In summary, we have used the method proposed by
%'u and developed by the authors' for obtaining the ex-
act solution for spin- —', Ising model in the honeycomb lat-
tice. In particular, we have developed the analytical ex-
pressions for the free energy per spin, the quadrupolar
moment and the A, surface of Ising-type phase transition
in the parameter space of our model. In principle, this
method can also be used for the description of Ising mod-
els with higher values of spin on lattice sites with larger
values of the coordination number in a lattice. In partic-
ular, our results suggest that the equivalence of the most
general spin- —', Ising model with a spin- —,

' Ising model can
be extended to the square lattice, for which very few ex-
act results are available. Note that this result cannot be
obtained for the special (M=0) spin- —', Ising model on

the square lattice. Details will be reported elsewhere.
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