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Spin-spin correlations in a finite-sized spherical model under twisted boundary conditions
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Finite-size effects in the correlation function G(R, T;L) of a spherical-model ferromagnet, confined to
geometry L " X 00 (2&d (4,d ~2) and subjected to twisted boundary conditions, are analyzed.

Focusing our attention on the region of first-order phase transition ( T & T, ), we examine the influence of
the twist parameter ~ on the function G(R, T;L) in different regimes of the distance parameter s
( =R/L). We find that the functional dependence of the function G on the parameter s is highly aniso-

tropic, in that it depends very differently on the components, s& and s~~, of s pertaining to the finite and

the infinite directions, respectively. While the long-range order in the direction of aj is significantly al-

tered by the parameter ~, it is curtailed very seriously in the direction of s~~. In fact, for c~~ &&1, the quali-

tative features of the correlation function acquire characteristics of a d'-dimensional bulk system,

though the correlation length g appearing therein still pertains to the actual, finite-sized system. The net

result is that long-range order in the direction of Ri persists only to distances small in comparison with g
which, for d' &2, is known to be OI L (L/a}'d 2'~'2 d 'I, a being the lattice constant.

I. INTRODUCI rON

In recent years considerable attention has been paid to
the study of phase transitions in finite-sized systems with
a view to examining the manner in which the various
physical quantities pertaining to the system are
influenced by the finiteness of the space to which it is
confined and to determining the extent to which the pre-
dicted behavior of the system conforms to the dictates of
the finite-size scaling theory; for an overview of these
matters, see review articles by Barber' and Privman.
While studies along these lines have covered certain as-
pects of the problem with relative thoroughness —in that
they have looked at 0 (n) models with continuous (n ~ 2)
as well as discrete (n =1) symmetry, models confined to a
general geometry L X ao (with difFerent regimes of
the parameters d and d'), models undergoing a first-order
phase transition (T & T, } as well as those undergoing a
second-order phase transition (T=T, ), etc.—an aspect
that has not been so well covered is the one relating to
the nature of the boundary conditions imposed on the
system. Frequently, for reasons of simplicity (if nothing
else}, one employs periodic boundary conditions (PBC's)
and hopes that the results so obtained reflect the reality
of the situation under study. On occasion, one employs
nonperiodic boundary conditions and obtains results
significantly different from the ones following from
PBC's, leading to the inference that the correct choice of
the boundary conditions for any given situation is, in all
likelihood, a nontrivial matter. Several instances of this
have appeared in the literature and are recorded in the
review articles cited above.

A specific instance of this type arose in the study of
magnetic susceptibility, both local y(r, T;L ) and overall
g(T;L), of a finite-sized spherical model confined to
geometry L " X ao" (with 2 & d & 4 and d' & 2) and sub-
jected to antiperiodic boundary conditions (APBC's). '

The results obtained in that study differed radically from

the ones pertaining to PBC's (Ref. 5) and, in turn, threw
new light on the physics underlying that problem. In
particular, we learned something about the role played by
the "antiferromagnetic seams" introduced by the
APBC's,

s(r +L )= s(r ) (—j=l, . . . , d', d'=d —d'),

at the points r =L of the lattice. Although these inter-
facial seams appear to have no local effect on the free-
energy density f" of the system in a strictly zero mag-
netic field, the application of a nonzero field converts
them into local inhomogeneities in the lattice, for spins
on either side of an interface are, in efFect, coupled to the
field in opposite senses (relative to their preferred local
alignment). This led to a somewhat unexpected result for
y revealing a broken translational invariance more in line
with systems under free boundary conditions, and yet
APBC's appear to be more akin to PBC's, since in both
cases the excited states of the system can be decomposed
into plane waves; of course, the isotropic interactions
among nearest-neighbor spins are not in any way altered
by the interfaces imposed through APBC's. We suspect
that the presence of these seams would have a major
influence on the spin-spin correlation function G(R, T;L)
as well, for the latter determines y directly through the
fluctuation-response theorem —without the necessity of
applying an external field at any point in the calculation.
As far as we know, this influence has not been explored
to any significant extent so far.

Another aspect of the foregoing results is that the
problem is diagonalizable under the APBC's as well, re-
quiring a mere shift in the eigenvalues of the system. In
the absence of an external magnetic field, each spin in the
system is equivalent; consequently, the correlation func-
tion at zero separation is independent of location —as is
the case with PBC's—for the constraint equation
N ' g, (s (r) ) = 1 turns out to be equivalent to the con-
straint (s (r) ) =1 at each site r under both PBC's and
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APBC's. This ensures that a uniform spherical field '
A,

is sufficient to describe the function G(R, T;L) as well as
the local features of the quantity g. Even if we do not as-
sume spin equivalence to begin with and the spherical
field in the original model is space dependent, the present
model, as represented by Eq. (3}, may be termed the
"mean-spherical-field" model.

In this paper we analyze the correlation function of a
finite-sized spherical model under nonperiodic boundary
conditions and examine the characteristic infiuence of
these boundary conditions in different regimes of the pa-
rameters a (=R/L) and T. For generality, we employ
the so-called twisted boundary conditions (TBC's),
defined through a continuously varying parameter r (with
components r„.. . , ~,), of which PBC's (~J =0) and

APBC's (r =
—,') are two extreme cases; the TBC's em-

ployed here are essentially the same as the ones used re-
cently by Chakravarty and by Brezin et al. It is irnpor-
tant to emphasize here that, just as in the case of
APBC s, a uniform spherical field is quite appropriate to
describe all relevant properties of the system under the
entire set of TBC's, provided that a phase factor in the
form of (2} is incorporated into the boundary conditions.
For analysis, we follow the approach of an earlier paper
by Singh and Pathria' (hereafter referred to as 8, which
tackled the same problem under PBC's; however, the sit-
uation with v & 0 can at times be so different from the one
with ~=0 that both physical and mathematical aspects of
the analysis have to be handled with special care. In Sec.
II we establish the basic expressions for the correlation
function G(R, T;L) in three different forms, so that in
different regimes of the parameters involved one may ern-

ploy the form most suited for the occasion. In Sec. III we

examine finite-size effects in the correlation function and
analyze them in detail for different regimes of interest.
Not surprisingly, the effect associated with the com-
ponent R~~ of R (which pertains to directions in which the
system is infinite) turns out to be very different in nature
from the one associated with the component Ri (which

pertains to directions in which the system is finite). The
contrast between the two becomes most dramatic when
one considers the propagation of long-range order in the
system at temperatures below T, over a wide range of
distances. In fact, for R

~~

&)L, the mathematical form of
the correlation function bears no resemblance to the one
for a d-dimensional bulk system; it becomes characteris-
tic of a d'-dimensional bulk system instead. In the pro-
cess, it yields a much-needed expression for the correla-

I

tion length, g(T;L), of the system that is rather tricky to
obtain otherwise. "' At the same time, even the term
representing long-range order in the system (that contin-
ues to govern correlations in the direction of Ri) does not
escape the (adverse) infiuence of the TBC's, which con-
trasts sharply with the case of PBC's that leave this term
unaffected. Finally, in Sec. IV, we make some general re-
marks on the problem studied here.

II. CORRELATION FUNCTION
OF A FINITE-SIZED SPHERICAL MODEL

UNDER TWISTED BOUNDARY CONDITIONS

We consider a spherical-model system based on a sim-

ple hypercubic lattice of dimensions L& X . XLd and
subjected to twisted boundary conditions

s(r +L )=e 's(r~) (j =1, . . . , d),
where v is a vector whose components ~„,vd lie in the
interval (0, —,'). In view of the fact that the zero-field

spin-spin correlation function of the system must be even

in all components of R, we have"
d

g cos(k R )J J

G(R, T;L)=
2N „t"i~ k —2J g cos(k, a)

(3)

where

k =2m(n +~ )/L

n =0, 1, . . . , N, —1, (4)

T 1N= —g2. d
~ "i~ A,

—2J g cos(k, a)

Following the procedure developed in I and choosing
d'

our geometry to be L X ao~, where d'+d'=d &2, we
obtain (for R, L »a)

here A. denotes the uniform "spherical field" pertaining to
the model, J is the nearest-neighbor interaction parame-
ter, while a is the lattice constant. The field A, is deter-
mined by the constraint equation *'

'd —2

G(R, T;L)=
4md~2J

where

d*

g cos(2m~/q, )

q(d ) J=i +~q+ai~ +ai

(d —2) /2

(e-2)/2(2y& ~q+ai~'+Ei»

Ri/L, ai =Rii/L

here, R~ is the component of R in the d -dimensional subspace in which the system is finite in extent, while R~~

( =R—Ri) is the corresponding component in the d -dimensional subspace in which the system is infinite. The sum in-

volving modified Bessel functions E„(x)goes over the entire q space in d dimensions, while the parameter y is a scaled
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variable, defined by the relation

1 L
2 a J

and is determined by the constraint equation (5), which takes the form'
d —2

1 1 1 a d —2 d';y (2&d &4),
4 (4—d)/2g

(9)

where

2

Q,(vld', y)= E„(2yq )

y g cos(2~~jqj)
" +—r( —v)

) j=i (yq)"
(10)

note that the primed summation over q(d') appearing here excludes the term with q=0.
Now, since the minimum value of A, under the present boundary conditions, see Eqs. (3) and (4), is

d 4 2g 2d
A, ;„=2Jg cos(2n.a~ /L)=2Jd— (11)

j=1 j=1

the minimum value of y, attainable at T =0 K, is —
m r . As shown elsewhere, ' the function Q„defined in (10), is

regular in y for all y & —
m 2; accordingly, Eq. (9) determines y, as a function of T and L, for all T & 0 K. In the

same vein, we expect that expression (6}for G(R, T;L) is also regular in y for all y & nr . To—see this explicitly, we

apply Poisson's summation formula to the sum in (6},with the result
'd —2

G(R, T;L)=
4m J

' (2—d')/2

It(i d )~2(2s~&y'+~'In+~I')
d

P cosI2msj(n, +r, ) j
) j=i y +'(7

I +nTl

(12)

T cosecfn(d —2)/2j a
8~(d —2)/2J

Expression (12), without any problem, can be continued analytically into the region y & 0—right up to, but excluding,
the po~int y = —n„where the true singularity of the problem lies. In terms of temperature, this expression is mani-
festly valid down to, but excluding, T =0 K.

In view of the fact that our expressions for G(R, T;L) are regular for all y & —
m r, we inay obtain yet another

form, which turns out to be very useful in the region of first-order phase transition ( T & T, ). For 0 &y & —
m 2, which

covers the entire region of the first-order phase transition as well as a part of the region of the second-order phase tran-
sition, we define a new variable u =+—y, so that 0 & u & n r In terms o. f u, Eq. (6) takes the form (see Appendix A)

d —2

X g g cos(2m~ q, )

+lq+ail +s((

' (d —2)/2

J—(d —i)/2(» V'
I q+ a).I'+ s(( ) (13)

where J,(x} is an ordinary Bessel function. The parameter u, as a function of T and L, is determined by the corre-
sponding version of Eq. (9},viz. , the one with

r

n cosec(mv) u J „(2vq)
Q,(vld';v)= g' g cos(2m~, q; ) (14)

q(d ) j=i j j (vq)v

that is,
(d —2) /2'd —2

1 1

T T.
cosectm(d —2)/2j a Vg' g cos(2m', qJ. ) — J (d»~, (2vq) . (15)

8m' ' g L (d~) 1

Note that in the summands of Eqs. {10),(14), and (15}the factor g Jd, cos(2n.~.q ) may be replaced by a better-looking
factor, cos(2m'. q}, for the additional terms so added vanish identically on summation over q(d ). This completes the
derivation of our basic expressions for the function G(R, T;L}.

III. FINI.h-SIZE EFFECTS IN THE CORRELATION FUNCTION

%'e start with the regime T ~ T, for which y &&1. As seen earlier, ' the parameter y and the bulk correlation length
g)i in this regime are connected by a straightforward, r-independent relationship, viz. , g'~ =L/2y =O(a). In view of
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this relationship, Eq. (6) may be written as

T d* 2

G(R, T;L)= „2 g g cos(2nr, q )
2(2m) 'J (d+) 1 =i f&+IqL +R&I +R

(d —2) /2

&(d 2)/2(V IqL+R&I'+R'„ /gs) .

(16}

(17a)

(17b)

For T & T„we employ Eq. (13) instead, split the (q=O) term from the rest of the sum and combine the latter with
Eq. (15). This gives

Since L here is much greater than $2), contributions from terms with qAO toward the sum in (16) are exponentially
small. The major contribution coming from the term with q=0, we recover the standard bulk result

' (d —2)/2
T QG(R, T;~ )= +(d —2)/2(R /4 )2(2~)'"J sR

Ta' ' -x/4
(R )4J((d —3)/2(2~R }(d—i)/2 5B

' (d —2)/2

G(R, T;L)= 1 —T + Tcosec[n(d —2}/2I a v J 2uR +G (R, T;L) (0« ), (18)

where

g cos(2~r q).
q(d ) J=~

d 2
T cosecI m(d —2)/2I a

S~"-""J
' (d —2)/2

J—(d —2)/2I »A.(q}t
A, q

' (d —2)/2

A()(q)
J—

( d —2 ) /2 I » Ao( q ) 1 (19)

while

A, (q) =/ I q+ ei I
+ e~~, A()(q) =

q .

For UR «L, we make use of the expansion'

(20)

—XI
2

I'(1 —v)

2 —v
—X1

2

+ (0&v&1, x «1),
I 2 —v

(21)

along with the standard result

7T

r( )r(1— )
'

the middle term in (18) then gives

(22)

T d —2
Sm" J I

'd —2
T d —4 (~2P)ad 2R4 d

+ r
Sm J L 2

+ ~ ~ ~ (23)

One readily sees that the leading terms in Eqs. (18) and (23), together, reproduce the bu1k correlation function for
T & T„while the subsequent terms of (23), along with the function G (R, T;L), determine finite-size effects.

In what follows we focus our attention on the region of first-order phase transition ( T & T, ) and carry out an explicit
study of finite-size effects in the function G(R, T;L) for difFerent regimes of the parameters ei and e)(.

A. Case 1: R &&I.

Expression (19) in this case may be expanded as a power series in the variables ei and c,)~. Assuming, for simplicity,
that ~)= . =~, (=~/')/d*) and retaining only the leading terms of the series, we obtain for the function
G*(R,T;L)

TU a
S~(d —2)/2Jd e

d 2 ~ 2 d28 d;U ei+8~ d;U (d ei d E~~)

where
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J „(2vq)
())',(vld', v)=cosec(mv) g' cos(2nv q)

(„e) (vq)"

The second term, on the other hand, reduces to
'd —2

a
L

1T T~ d
4Jd' ' 2

Now, the first term in (24}may be simplified with the help of Eq. (15), yielding

T 2v p T 217 T

T, d' T, d'

(25)

(26a)

(26b)

where the constant N, (vld') has been defined in Ref. 15. Equations (26), along with the L-dependent term in (23),
determine the leading finite-size efFects in this regime.

B. Case 2: R =0(L)

For this case we go back to the full correlation function G(R, T;L), see Eq. (6), and write
d —2

T a, d —2
G(R, T;L)= (4 +iz

— Q', d';y
4m

—
g L 2

I

where Q', is a generalization of (10):

(27)

2

Q;(vld';y) = I( „(2y+lq+8) I +s)(}g cos(2m' q )

(d ) 1 = ) (y V' lq+ ail'+ski }"
(a)0). (28a)

Equivalently, we may write in terms of v

cosec(n .v) v + + ( }
— q

q(d ) J=) (vV lq+sil +ski)
(28b)

d
Q;(vld';y)=n " g g cosI2ns, (nj+~, )I

n(d ) 1=i &y'+ ~'in+ el'
(28c)

which, when substituted into (27), leads to Eq. (12), as expected.
It is not difficult to see that the functions Q, satisfy the recurrence relation

cf. Eq. (14). A third version, which is most useful in determining the limiting behavior of the function Q, as
y ~—w r, or v ~mr, is obtained by applying Poisson s summation formula to Eq. (28a), with the result

d /2 —v

E (2s((+y +n~ln+rl ),

[H"Q;(vld';y)]= —m '"+"Q;(v+ lid';y) .
I[

Equation (27) may, therefore, be expanded as a power series in s)(.

G=, ~,
— g Q,' ——1+1ld';y4nJL '(=()

where

Q.'(vld';y }= [Q:(vld';y) l,
,

=o .

(29)

(30)

(31)

The limiting behavior of the function Q, , as y ~—Hv, is examined in Appendix B.
Now, combining Eq. (30) with (9} and using asymptotic expressions for the functions Q and Q„we obtain (for

T & T, and d' & 2) to leading order in a /L
T 'd —2d T QG(R, T;L )= 1 — g cos(2m~ s)+. 2 cf 2d' —g o (2 )L, d'

2

d 2
( vr"')'—

EE
(32)
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note that the last group of terms, which represents finite-size effects primarily due to the component all, is relevant only
if d &0. Equation (32) contains leading corrections, arising from both el and at(, to the correlation function of the sys-
tem.

It is instructive to see how the results of Sec. III A follow from Eq. (32). For this, we assume that ~, =
(=~/V d*) and write

de

g cos(2 E )=1—2 g r s =1—2 ( /d')c,
j=1 j=1

~ D '(v r—~d') — 1 — s D (v r~d—") .2~'2 2

d*/2 p t j.
277 r =0

co r 27T2&d /2 —2v+2rl
( )

—2v+2r+ '
D ( r ~d

e )e2
de/2 rt

V 7' Ei
2' r =0

Next, we use Eqs. (B3b) and (B7), along with their counterparts from Ref. 15, to write

J =1

(33)

(34)

—cosec(~v)
2 P'E,

y

The first term in (34) is precisely equal to
V

J „(2~re~), (35)

while the second and third terms, together, reduce to

2 +1 2772—1 nD(v r. + lid' )e =— (v+1 ——'d" )N (v+ 1 id' )e
d /2 rt t. dg Y Eg .

2' r =0
(36)

A similar operation on the last set of terms in (32) yields

( ns(( }—2 2 I
7.

g N, ' ——1+l~d', =—cosec(mv) g2 I! 2

V+I
(

2 2)l
J „ t(2nrs, ) n'N, ——d'

s~ . (37)

Combining (35) and (37},we obtain
V

cosec( n—v) .J(2n,rs ) m—N, —d2 d . 2

ATE
(38)

where a=+Et+a((. Substituting (33), (36), and (38) into
(32), and remembering that v here is equal to (d —2)/2,
we recover precisely the results of Sec. III A.

C. Case3: R&=O(L), Rll ++L

G(R, T;L)=g, — g cos(2, s, )
j=1

' (2 —d')/2

2(2~)d'/2 J a 2

For this case we employ Eq. (12) instead and observe
that, for e((»1 and y = —m 2, only those terms, of the
sum over n(d'), for which ~(n, +r ~(=r make dominant.
contribution toward the function G(R, T;L), with the re-
sult

g=L/2V y +n 2 . (40)

rC (x)=—r(p, ) —x1 1

P 2
+r( —

( ) —x1

2

Here, g, denotes the multiplicity of the terms making
dominant contribution to the expression for G; in general,

g, =2", where r ( & d') is the number of components z of
r that equal —,

' —for each of these components, two terms

(with n =0 and —1) contribute equally toward the sum.

Clearly, the correlation function in this case splits into
two factors —highlighting the fact that, while the decay
of correlations in the direction of R~ is determined solely

by the "twist parameter" ~, that in the direction of Rll is

determined by a (correlation} function pertaining in form
to a d'-dimensional bulk system, cf. Eq. (17a), but scaled

by a (correlation) length g pertaining to the actual system

in geometry l. X ~ and not to the d'-dimensional
bulk system (which would have nothing to do with L).
The consequences of expression (40} for g have been stud-

ied at length in Ref. 12.
~e note that, in the regime L «R

t(
« g, Eq. (39), with

the help of the formula

where

XE(2 d )/2(R t
/g) 7 (39)

gives (for 0 & d' & 2)
(Q &p ( 1, x (( 1 ), (41)
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a T 2—d'
G(R, T;L)=g, — P cos(2nw s.), I

L . , 4(2m)

(2—d')/2
2/2

Q
2

d' —2

2

g 2
' (2—d')/2 .

II

20
(42)

Substituting for g(T;L) from Ref. 12, the first term in

(42) reduces to

T d
1 — g cos(2mrjsj),

c j=1
L

(43)

while the second may be written as

d
0 g cos(2ir~, sj. )

j=l

T d 2

8 d'/2g

d' —2

(44)

Expressions (43) and (44) may be compared with the lead-

ing terms of Eqs. (32) and (23), respectively.

IV. CONCLUDING REMARKS

In this paper we have analyzed finite-size effects in the
correlation function G(R, T;L) of a spherical model
confined to geometry L d X ao (2&d (4, d'&2) and
subjected to twisted boundary conditions (2}. These
boundary conditions are defined through a continuously
varying parameter r(d'), with components r such that
0 & r &

—,'; this generalizes the concept of boundary condi-
tions from the extreme case of PBC's on the one hand to
that of APBC's on the other. The parameter ~ modifies
the collective-mode eigenenergies of the system, as shown
in Eq. (4), which leads to a host of characteristic finite-
size effects in the various properties of the system. These
effects, in the case of the magnetic susceptibility y (under
APBC's) and the correlation length g (under TBC's), have
been studied earlier; "' in each of these cases, the
effects arise essentially through the correlation function
of the system, which itself had not been analyzed in any
significant detail so far. It is hoped that the present in-
vestigation fills that gap in the literature.

In the preceding section we have exainined the func-
tion G(R, T;L}in different regiines of the parameters in-
volved and in each case finite-size effects, which are now
v dependent, have been isolated. We have focussed our
attention primarily on the region of first-order phase
transition (T(T, }, where several important features are
encountered. One of these relates to the long-range order
in the system, which is significantly altered by the fact
that the ground-state spin-wave vector is now "pinned"
at the value k&=2m~/L. This leads to a twist in the
order-parameter field, given by the factor

, cos(2n.~ R /L ), which goes with the conventional
(bulk} term Mo(T); see Eq. (32) or (43). In the short dis-
tance limit (a «R «L ), the correlation function takes
on the characteristics of a (d-dimensional} bulk system,

which include the long-range term just described plus an
isotropic term singular in e=Qsi+ei, see Eq. (23). On
the other hand, when L «R =R

i «g, the parameter d'
alters the scene by providing a correction to the long-
range term, which is analogous to the bulk isotropic
term, except that now R is replaced by R

i
and d by d',

see Eq. (44). The leading Ri dependence of G maintains
its coherent form for all R »a in the region of first-order
phase transition, and yet when RII ))L, the dependence
of G on Ri becomes characteristic of a d'-dimensional
bulk system —bearing no resemblance to the correlation
function of a d-dimensional bulk system; see Eqs. (17a)
and (39). These features throw some light on how the
choice of boundary conditions affects the physical
behavior of the given system.

Another interpretation of the parameter ~ worth men-
tioning is that it may be regarded as a measure of the
"geometry-dependent doping level of magnetic impuri-
ties" in the lattice that restricts the structure of the
ground state, thus providing a basis for the energy ex-
pended in applying a twist to the order-parameter field.
In this interpretation, the case ~—+0 would correspond to
a clean, undoped system, whereas the other extreme
(xi= —,') would imply saturation (in which case all avail-

able impurity states of the systein are filled). In this
sense, the impurity states appear as fermionic in nature.

In our analysis of the correlation function we have
been concerned with static aspects alone, and yet the
mathematics here is very similar to the one employed by
Henkel and Weston" for a system in geometry L X 00',
where time constitutes the infinite (Euclidean) subspace
of diinension one. In our analysis there is no need to
time-evolve the order parameter or to invoke time-
ordered product of spins in defining the correlation func-
tion G(R). Clearly, more work is needed to unravel the
connection between these two approaches.

Finally, we would like to mention that an extension of
the present study from diinensionality 2 & d & 4 to d & 4 is
currently in progress; so is the study of the magnetic
susceptibility —both local, y(r), and averaged, g,—under
conditions of general r. The results of these studies will
be reported subsequently.
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APPENDIX A

To render expression (6) into (13), we set y =+iv and
use the formula'
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(+ix) K,(Six)= . IJ „(x)—e*' "J„(x)I,
2 sin(n. v)

(Al)

J„(2ug~q+a2~ +e(()g cos(2m' q ) =0
q(d*) J'=( (V lq+a) I +e(()"

(A2)

{0&r & —'(j = I, . . . , d'), r= ~r(d'}~ &0, 0 & u & nrI .

where v=(d —2)/2, and hence 0&v&1. The resulting
expression for 6 contains sums over q(d'), with sum-
mands involving J,(x) or J,(x). In view of the fact that
the quantity under study is real, the latter sum must van-
ish identically —yielding the remarkable result

It turned out that Eq. (A3) was itself a generalization of
the so-called Schlomilch series, ' which is normally stat-
ed for d' =1 and ~= —,

' only. However, no special case of
our new result (A2), with EXO, has come to our attention
so far.

In passing we observe that Eq. (A2), which has been es-
tablished here for 0&v&1, may in fact hold for all
v) ——'

2

APPENDIX B

In this appendix we examine the limiting behavior of
the functions Q,'(v~d*;y) as y ~—

m r . With e()~0,
Eq. (28c) gives

The remaining sum leads to Eq. (13).
The result embodied in Eq. (A2) constitutes a consider-

able generalization of the one given earlier, ' which per-
tained to the special case e=O. In that case, it seemed
appropriate to split the (q =0)-term from the rest of the
sum and write

g '(v~d'y)= 'md ~ —'r —vT 2 2

g cos{2mej(n, +r, )I

xg '='
(y2+ ~2 n+rl2)d l2 —v

(B1)

J,(2uq )+ g' cos(2nr q) =0 .
q(d*) q"

(A3} Following the procedure of Ref. 15, we obtain in the
desired limit

T(g,~ ~ 'I —v g cos(2me r ) +L,'(vtd') (v & —,'d'),
(y 2+ ~2r2 )d*/2 V

(B2a)

~'i( ~d
«.

)
—,'g, m g cos(2me, r, )ln

j=l

N, '(vied') (v& —,'d'),

+M,'(d') (v= —,'d'),
y +m.

(B2b)

(B2c)

where g, denotes the multiplicity of the terms, in the sum over n (d'), for which ~n+r~ =r; in general, g, =2", where r
( & d «) is the number of components r of r that equal —,

' —for each of these components, ttuo terms (with n =0 and . —1)

contribute equally toward the sum. The constants L, M, and N appearing here can also be analyzed using the pro-
cedure of Ref. 15. To begin with, we get

,L'(
i vd) =, I"

d*/2

g cos {2m.e, (n, +r, ) I

—v
[I + I' —']'" ' (B3a)

d* r ,'d' v+r——
'D,'(v r~d«)r2" —g, g—cos(2m. s, r, )

2' =0 =1 d 2vr=0 g=1
(B3b)

where

a,'(v~d*)= '
2

- n(d )

c s{2'(ne, +r, )
.
I

J —)

~n+r~d
(v& —,'d*) (B4a)

g cos(2~r,.q, )

m" 'I (v) g
(„«) ~q+ e, ~2"

(v&0) .
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The corresponding expression for M,'(d') can be written likewise; in particular, for d' =1,we have

00 r

M,'(1)=, D,'( —,'~1)+g, cos(2neti)ln(m r )+ g 'D,'( —,
' —r~l}, —g,2''" r=1 r!

Similarly,

cos(2n.etr)
(B5)

N, '(v ~d') = oo P

g D,'(v r~d—')
r!

(B6)

Finally, we note that, for e~ && 1 and r, = =~ „Eq.(B4b) yields the approximation

D,'(v~d ) = "I'(v)s "+D,(vld )+ 1 tr D,(v+ I ld )z
—v 2(v+1}

(B7)

the constant D,(v~d ) appearing here has been examined in detail in Ref. 15.
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