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Chaotic motion of disuse domain walls in magnetic garnets
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The motion of diffuse domain walls in thin garnet films (i.e., walls with extreme width), which was ob-
served experimentally when an in-plane magnetic field was applied, is analyzed numerically using a spa-
tiotemporal diagram technique and analysis of the time evolution of pattern entropy. It is found that the
motion of such walls is chaotic and experimental observations of diffuse domain walls may be treated as
a direct observation of chaotic motion in a magnetic system.

I. INTRODUCTION

One of the most interesting spatially extended magnet-
ic systems is domain walls in thin magnetic films. They
were investigated extensively for years because of their
interesting physical properties as well as because of appli-
cations in magnetic recording and computer memories.
A large number of experimental and theoretical works
was devoted to the dynamic properties of such walls (see,
for example, Ref. 1 and references therein). In particular,
it was found theoretically that, depending on the values
of external field and material parameters, domain-wall
motion may be chaotic. On the other hand, experi-
mental observations of domain wall dynamics analyzing
it from the point of view of chaotic wall motion were
made rather for the case of a periodic drive field.

An interesting phenomenon was found by Zimmer,
Morris, Vural, and Humphrey in the experimental obser-
vation of the motion of domain walls in a thin garnet film
with a properly oriented in-plane magnetic field (H ).
Such a wall became extremely wide in comparison with
its static width and was called a "diffuse wall. " It was
suggested that this phenomenon results from the complex
internal structure of the wall: horizontal Bloch lines of
very large angular span appear in the wall and its surface
is significantly de6ected from the initial orientation of
wall plane and direction of observation. ' The internal
structure of the diffuse walls was confirmed by numerical
simulations of wall motion based on solution of the equa-
tions of motion. " The average width of the wall 5 as a
function of time obtained in these computations agrees
very well with the experimental observations of h(t). "

In the present paper it is shown, using numerical
analysis of domain-wall dynamics, that the appearance of
a diffuse domain wall is a result of chaotic motion. The
spatiotemporal diagram technique and time evolution of
pattern entropy S(t) were applied for quantitative inves-
tigations of wall motion. ' '

II. NUMERICAL ANALYSIS

Gilbert damping term included. ' After a number of sim-
plifying assumptions (for details, see Ref. 1) the equa-
tions of wall motion have the form proposed by
Sion czewski
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Here, A is the exchange constant, y is the gyromagnetic
ratio, M is the saturation magnetization, a is the Gilbert
damping constant, ho=&A /E is the wall width param-
eter (E is the uniaxial perpendicular anisotropy con-
stant), and H, is the constant drive field applied to the
film. In Eqs. (1) and (2), q(z, t) describes the local posi-
tion of the wall and the azimuthal angle ttt(z, t} describes
the direction of the local magnetic inoment of the wall
with respect to the +Ox axis (Fig. 1}. A dot over a sym-
bol denotes the time derivative and the subscript zz the
second derivative with respect to the z coordinate. H,
denotes the stray field due to the surfaces of the filin and
is calculated here according to the model proposed by
Hagedom. '

A twisted domain wall in uniaxial magnetic bubble gar-
net is considered (Fig. 1). The motion of such a wall is
described by a pair of partial, nonlinear differential equa-
tions derived from the Landau-Lifshitz equation with a

FIG. 1. Domain wall in thin film of thickness h. M is the
magnetization, H, is the stray field, 6 is the wall width, P is the
azimuthal angle of magnetization, and q denotes the wall posi-
tion.
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FIG. 2. Phase trajectory P(q) for in-plane perpendicular field

H~ =200 Oe. H, = 135 Oe, H„=O Oe, and 15 & t & 600 nsec.

The equations of motion (1) and (2) were solved by
means of a full implicit numerical scheme with a grid of
X =52 numerical points spaced uniformly along the film
thickness h (details are described in Ref. 17). Force-free
boundary conditions were applied. ' The initial conditions
were q(z, O)=0, g(z, O)=g, (z), where l', (z) is the static
distribution for the twisted wall.

For preliminary control of the type of wall motion the
character of the phase trajectory g(q } in a chosen phase
subspace of the wall was observed. Here, the tilde
denotes that the values of q and g, averaged over the film

thickness, were subtracted from the instantaneous values
of q;d and g-;d of the middle grid point of the wall, re-

spectively. Such a phase trajectory g(g} is shown in Fig.
2 and its character will be discussed later.

For quantitative analysis of the wall motion a spa-
tiotemporal diagram technique was used. It was initially
developed for a rather simple dynamic system. ' ' Next,
it was also applied to complex systems described by par-
tial differential equations of wall motion (see, for in-

stance, Ref. 13). The construction of the spatiotemporal
diagrams was based on the numerical solutions of Eqs. (1)
and (2), where the variable g;(t) at—each numerical

point (i =1, . . . , X)—was used. Its time evolution was
digitized using the following rule: in each nth time step
of the integration procedure hT (b, T=0. 1 nsec) the
value 0 or 1 was assigned to the ith grid point if ~P;~ & ~g~

or ~P, ~~~/~, respectively. g denotes here the spatial
average of g(z} over the film thickness. Thus, each se-

quence of 0's and 1's obtained for a given grid point in-

stead of the sequence of solutions P;(nb T)
(n = 100,200, 300, . . . ) yielded the necessary information
to discern the type of wall motion. Spatiotemporal dia-

grams for the whole segment of the wall were constructed
as sets of the sequences of white (for 0) and black (for 1)
cells of size [bz=h /(N —1), b, t = 1006,Tj for all grid
points (see Fig. 3). As we will see below, such spatiotem-
poral diagrams display clearly the type of wall motion
(however, also other sequences of n like
n =250, 500, 750, . . . may also be chosen). '

For the synthetic characterization of spatiotemporal
diagrams, the pattern entropy S proposed by Kaneko'
and Crutchfield and Kaneko' and calculated for each
spatiotemporal diagram was used. ' It is defined as

FIG. 3. Spatiotemporal diagram for H, =135 Oe, H~ =200
Oe, H„=O. The vertical direction corresponds to the +Oz axis,
and the time axis is parallel to the horizontal direction. One

white or black cell has vertical dimension hz=h/(N —1)
=h/51 and horizontal dimension bt=1006T=10 nsec. The
time interval of wall motion 200(t (700 nsec is shown in this

figure.

S=g—ln —,PJ P)

K E (3)

where pj. is the probability of the occurrence in the pat-
tern of a sequence of 1's (called below "pattern domains")
of length j, calculated in the direction of film thickness
(Oz axis). K is the total number of pattern domains in the
whole pattern. During wall motion, the entropy is calcu-
lated for a sequence of patterns, each constructed accord-
ing to the above recipe, for a chosen time window
t = 100 nsec.

In our computations, the values of external fields as
well as the material parameters were the same as during
experimental observations of wall motion performed by
Vural and Humphrey: exchange constant A = 1.547
X 10 7 erg/cm, saturation magnetization 4m.M=185 6,
gyromagnetic ratio y=1.1X10 sec 'Oe ', Bloch wall
width parameter 50=2.611X10 cm, Gilbert damping
constant a =0.026, and film thickness h =6.8 X 10 cm.

III RESULTS FOR Hy FIELDS

As results from experimental and theoretical investiga-
tions show (see, for example, Ref. 1 and references
therein), the relation between the wall velocity v and the
drive field H, in thin garnet films may be divided into two
main regions. In the first region, when the drive field is
smaller than a certain critical value H, =H,~„;,~, the rela-
tion v(H, ) is linear and depends on the value of the exter-
nal in-plane field. ' In this region all magnetic moments
of the wall deflect uniformly in the direction of the wall

velocity U. In the second region, for H, greater than
H ( t) the wall velocity is a nonlinear function of H, and
often suddenly decreases. "' This is caused by the ap-
pearance of complex internal structures in the wall, based
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FIG. 4. Distribution of the azimuthal angle of magnetization

P(z) for H, = 135 Oe and t =200 nsec. Curve a H» =200 Oe,nsec. urve a, Hy 200 Oe,
H„=O; a horizontal Bloch line with very large a 1
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FIG. 8. Spatiotemporal diagram for in-plane field parallel to
the wall {the values of all fields were the same as in Fig. 7).
Orientation of the pattern as in Fig. 3.

irregular oscillations of entropy prove the chaotic charac-
ter of the motion of the wall.

FIG. 9. Time evolution of the pattern entropy S(t) for paral-
lel in-plane field H„=200 Oe, calculated with the time window
t =100 nsec. (Other values of external fields are the same as inW

Fig. 7).

IV. RESULTS FOR H FIELD

%hen an in-plane field paralle1 to the moving wa11 is
applied the increase of average wall width observed in ex-
periment is much smaller than in the case of the Hy
field (see crosses in Fig. 5). It was observed that numeri-
cal solutions ttt(z, t) oscillate along the film thickness,
which means that a number of horizontal Bloch lines, but
with much smaller angular span than in the case of the
use of H, are present in the moving wall (see curve b in

Fig. 4}. The average wall width b, calculated from q (z, t)
solutions changes only slightly in comparison with its
static value bo. The phase trajectory q(g), calculated for
H, =135 Oe and H =200 Oe (the same as in experi-
ment }, has an open character (Fig. 7). The spatiotem-
poral diagrams have much more complex character than
in the case of H fields (Fig. 8). This is due to the large
number of horizontal Bloch lines, which correspond to
the number of transitions of g(z) through its average
value g (cf. curve b in Fig. 4). The time evolution of the
pattern entropy S(t) for the present case confirms the

chaotic nature of the motion of the wall (Fig. 9). As re-
sults from the comparison of spatiotemporal diagrams for
both H and H„ fields (Figs. 3 and 8), oscillations of the
pattern entropy for H„ field are significantly larger than
in the case of H fields.

V. CONCLUSIONS

It was found that the diffuse domain wall observed ex-
erimentally when an in-plane field perpendicular to the

wall is applied to a garnet film ' is a manifestation of
the chaotic motion of the wall. Thus, the appearance of
diffuse walls may be treated as a direct observation of
chaotic motion a spatially extended magnetic system.
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