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A method for analyzing neutron-scattering data at intermediate and high-momentum transfer in

liquids and solids is proposed. The aim is to separate the observed dynamic structure factor, $(Q, co),

into its impulse-approximation (IA) and final-state (FS) parts. When the separation is made, both the IA
and FS effects can be determined from the data. The method is based on a cumulant expansion of the in-

termediate scattering function, S(Q, t), in powers of t. The expansion parameters are determined by
fitting the corresponding S (Q, to) to the data. Using the parameters, the IA and FS function are recon-
structed. Variants of the method suitable for systems in which momentum distribution is (1) close to a
Gaussian and (2) differs markedly from a Gaussian are proposed. The first variant is applied to recent
data of Andersen et al. in normal He at saturated vapor pressure and T =2.5 K and the kinetic energy,
momentum distribution, and the FS broadening function are determined. In the second variant a model
momentum distribution is introduced. This is applied to superfluid He using a model n (k) having a
condensate. The model parameters are determined and bounds on the condensate fraction
(no =0.10+0.03) are set. The method can be applied to any liquid, solid, or mixture. Full results for the
momentum distribution and FS effects in normal and superfluid He are presented in a forthcoming pa-
per.

I. INTRODUCTION

The aim of neutron-scattering measurements at high-
momentum transfer is to determine single-particle prop-
erties such as the momentum distribution and atomic
kinetic energies in fluids and solids. Measurements at
high Q were originally proposed' to observe the conden-
sate fraction, no, in superfluid He. Since that time there
have been many measurements and theoretical pa-
pers ' on liquid He and other systems. Full reference
to a growing literature appears in several review arti-
cles 31—33

Extracting the momentum distribution from the ob-
served coherent dynamic structure factor, S(Q, co), how-

ever, is complicated by the interaction of the struck sin-

gle particle with remainder of system; the final-state (FS)
interactions. Recently, this problem has been addressed
by going to higher-momentum transfer, where S(Q,co)
more nearly approaches the impulse-approximation (IA)
and FS contributions are small. In this way and using
calculated values of the FS broadening function the
condensate fraction, no, has been recently measured'
in superfluid He and atomic kinetic energies have been
determined' ' ' in several quantum solids and fluids.
The main features of the FS broadening function in liquid
He at high-momentum transfer (titQ) have also been

determined from experiment. '

In this paper, we propose a general method for analyz-
ing neutron-scattering data at intermediate- and high-
momentum transfer. The aim is to separate explicitly the
IA from the FS contributions to S(Q, co) and to deter-
mine both. The method also provides a functional forro
of S(Q, co), which has a sound physical basis that can be
6tted to observed data. In this way other properties of

S(Q, co} such as the peak position and full width at half
maximum can be readily displayed. Rather than going to
the highest reasonable Q values the method is intended
for use at intermediate Q, where Fs effects are not small
and can therefore be identified in S ( Q, co }.

The method is based on expanding the intermediate
scattering function, S(Q, t), in a power series in t High.
Q is a short scattering time limit. Terms up to t are re-
tained in the examples presented here. The coefficients in
the expansion can be related to the central moments of
S(Q, to), as discussed, for example, by Rahman, Singwi,
and Sjolander and Sears. In the proposed method, the
coeScients are treated as parameters to be determined by
fitting the Fourier transform, S(Q, co), to experiment.
The IA and the FS function contribute to S ( Q, t) at
different powers of t and with coefficients, which have a
difFerent Q dependence. The coefficients belonging to
each can be identified and the S,A(Q, t) [and therefore the
one-body density matrix and n(k)] and FS function,
R (Q, co), can be constructed. For systems in which n (k)
differs markedly from a Gaussian, a model n (k) should
be introduced. In this case parameters in the model n (k)
and in R (Q, co) are determined by fitting to experiment
The method holds in both the coherent and incoherent
regimes and applies to any solid or liquid.

%'e begin by illustrating the procedure in the simpler
incoherent limit in Sec. II. The full method for the
coherent and incoherent cases is set out in Sec. III. The
character of the moments of the incoherent function,
S;(Q, to), and of R (Q, co) are set out in Sec. IV, which tells
us what form to expect for the expansion coefficients. In
Sec. V, the method is illustrated for normal liquid He,
where n(k) is expected to be approximately Gaussian.
Application for a systein in which n (k) has distinct non-
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Gaussian character, superfluid He, is discussed in Sec.
VI. Full results for S(Q,co), n (k), and R (Q, co} obtained
using the method in normal and superfluid He are
presented in a forthcoming paper.

S,A(Q, t) =exp( —icot(t)

Xexp ——at +—at ——at +.1 p 1 4 1

2 2 41 4 61

(4)II. ILLUSTRATION IN THE INCOHERENT LIMIT
where a„=q"a„are cumulants of k&,

a,=q'a, =q'(kg ),
a,=q'a, =q'[& k,') —3& k,')'],
a6=q a6=q [(k& ) —15(k& ) ( k& ) +30(k& ) ] .

In this section we illustrate the fitting method for the
incoherent limit, where the static structure factor
S(Q) = 1 and the expansion in powers of t is simpler. We
begin by expanding the impulse approximation.

The IA is defined in terms of the atomic momentum
distribution n (k) by,

The odd cumulants vanish because (k&) =0 for odd n

The even ones can be readily related to central moments
of the IA,

I„=fa~(~ ~ )"s, (g, ~)=q "&kJ ) . (6)

S«(g, co)—= f dkn(k)S co —cog—

=&a —,-qk, )), (2)

where cot(=fig /2M is the free-atom recoil frequency,

q =kg/M is the free-atom recoil velocity and
haik&

is the
atomic momentum variable projected along Q, k&=
(k Q)/Q. The expectation value in (2) is the usual
thermal average, but, since only the momentum appears,
it reduces to an average over n (k). From (2), the inter-
mediate function in the IA is

s«(g, t)= f" a~e'"'s«(g, ~)

coe' ' co —co+ —
q &

—io)R i& iqktiq
)
— i to(( i&

—
ikus )—

Equation (4) is the power series in t desired. S,A(g, t)
may be viewed as a Gaussian (term in t ) plus corrections
to a Gaussian (terms in t, t, . . . ). Using the Gaussian
term we may introduce a scattering time r =2/a2=2/
q2(k& ), which is defined as the time over which S,A(g, t)
decays to zero. During the scattering time, the struck
atom travels a distance s =q~=(/2/(k&)', which is
short (i.e., (k& ) '~ —1.0 A ' in liquid He) and indepen-
dent of Q. Using s, and (3) we see that the convergence
of (4) is independent of Q and depends only on the cumu-
lants of k&. For a Gaussian, a„=0 for n &2. Thus (4)
provides an approximate description of S«(g, t) and

n (k).
We define the final-state broadening function R (Q, t)

(3) by

where s =(fig/M)t. S(Q, t) may be viewed as the evolu-
tion of the scattering event in the fluid beginning at t =0.
The k&=k&(0) is the initial momentum of the struck
atom. The neutron transfers a velocity Ag/M to the
atom, which we use as a reduced wave vector, q =fig/M
We also use q as the unit to go between "scaled" and uns-
caled variables. The "y" scaling variable is, for example,

y =(M/A'Q)(co cox ) =(co—co„—)/q .

Assuming the struck atom is free and fig/M»U&
=(}'tk~ /M, the struck atom travels a distance
s =(Rg/M)t =qt after time t The s is th. e scaled length
conjugate to y.

To express S,A(g, t) as a power series in t, we expand
(3) in cumulants, [see Eq. (A12)]

S(g, t)=s«(g, t)R(g, t) .

This is the definition introduced by Gersch and Rodri-

guez. 2~ R(g, t) is the difference between the observed

coherent S(g, t} and the IA in a simple product form.
This leads to a convolution for S (Q, co),

S(g,co}=fdco'S«(g, co')R (Q, co co'), —

where

R(g, te)= 1 dte' 'R(Qt) . ,

If the IA held exactly, clearly R (Q, t)=1 and R (Q, co)

=5(co).
To illustrate the method in the incoherent limit, we fol-

low Rahman, Singwi, and Sjolander and Sears and

write S;( Q, t) as (see Appendix A),

S (g t) —( —ig r(t) iQr(o)).
l

(10)

exp( fetet)(T, exp =—iq I d—t'kq(t')
0

In (11) T, is the time ordering operator and the expectation value is the usual thermal average. As in the IA, we expand

S;(Q, t) as,
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S, (Q, t)=exp( i—co„t)exp — p—2, t + —pi, t + . — —
p6, t6+ (12)

To obtain this power series in t, we use a cumulant expansion of the expectation value in (11) [see Eq. (A15)] and expand
k~(t) as k&(t)=k&+k&t+ in each cumulant. The coefficients p„; can be readily determined in this way. Howe-
er, it is easier to obtain the coefficients by noting that the p„; are related to the central moments of S;(Q, t),

M„, = Jdco(co —con )"S;(Q,co)

=i "lim [e " S, (Q, t)], (13)

p2=M2, p3 3y p4 4 3M» p5=M5 —10M3M2, p6 —M6 —15M4M2 —10M3+30M2 . (14)

The general structural relationship (14) between the p, „and the moments M„can be demonstrated by substituting (12)
into (13) and carrying out the differentiation indicated. The subscript has been dropped in (14) because (14) holds for
any function S(Q, t) expanded as in (12). Indeed, (13) provides a method for generating the usual expression for the
cumulants in terms of the moments. Equation (4} is a special case of (12) for k&(t') =k&(0) at all t '

Using the definition (7) and comparing the expansions of S,~(Q, t) and S, (Q, t) in (4) and (12},respectively, we obtain
R ( Q, t } in the incoherent limit as

(15)

in which the coefficients are p„;=p,„, (n odd) and

P„;=p„,—a„(n even).

An important feature is that t appears in an exponential
in (15) so that R (Q, t) can be Fourier transformed to ob-

tain R (Q, co}. This R (Q, co} can then be used in the con-
volution form (8).

The method consists of fitting S;(Q, t) given by (12) to

experiment at several Q values with the p, „,(Q) regarded

as adjustable parameters. This yields empirical values of
the p„, , and the aim is to determine a„and P„separately.
This can be done because (1}P2; =0 so that pi, =a2, (2)

the a„=o for odd n so that P„;=p„, for odd n, and (3) for

n even (n & 4), p, „;=a„+P„;,and the Q dependence of a„
and P„, differ. For example, the a„ in (5) are independent

of Q, while P„=P„,/q" are proportional to Q (n even).

By plotting p„;(Q}versus Q we can determine the contri-

butions from a„and P„,. In the examples that follow, we

determined p„up to p5. Using the a„,SiA(Q, t) and n (k)
is constructed. The P„are used to determine R ( Q, t }.

This procedure can be applied directly to any system in

which n (k) is approximately Gaussian. For systems such

as superAuid He in which the IA is not well described by

(4) (i.e., the one-body density matrix has a long time tail)

it is important to introduce a specific model of n(k) as

discussed in Sec. V below. The method may be regarded

as providing a functional form of S(Q, co) to fit to data
and a means of disentangling R (Q, t) from S«(Q, t).

III. COHERENT CASK

In this section, we derive the method for the coherent
dynamic structure factor, S(Q,co). It is expected to be

useful at Q values high enough that all collective response
of the fluid or solid has disappeared but the incoherent
limit has not been reached. In liquid He this is the range
5 Q 10 A

The coherent intermediate scattering function is

(17)

In Appendix A, we show this may be rearranged as

S(Q, t}=S(Q}exp( icott t)—

X exp —i dt'v;& t'
S

(18}

where the expectation value (0&s is defined as

(o &, = (os(Q) & y(s(Q) & .

Here

S(Q)=g e
1

(20)

is the static structure factor operator, ( & is the usual

thermal expectation value, and S(Q)= (S(Q}& is the
usual static structure factor. In (18), U+ is the velocity of
atom i along Q and, since all atoms are identical, we drop
the subscript i. Clearly (18) reduces to the incoherent re-

sult (11)at high enough Q that S (Q)~1.
The expectation value in (18}is a normalized expecta-

tion value suitable for a cumulant expansion. Making
this expansion [see Appendix A, (A15)], we have
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S(Q, t) =S(Q)exp( —itoa t)exp g, p, „(—it)"
n=1

where p, = [~a /S(Q)][1 —S(Q)] and

p„=p,„—a„. (27)

=S(Q)exp( —iso'ti t)

Xexp ——pt +. . ——pt +1 2 1

2 2 6 (21}

where co& =—co&+p1. It is convenient to introduce the
shifted recoil frequency co+ =coz+p1. The first central
moment of S(Q, c0) centered at coti vanishes. To see this,
note that the usual first coherent central moment is

((cu a)„)—& =f des(a) c—o„)S(Q, ot) =co~ [1—S(Q)],

(22)

where we have used the f-sum rule, (co&=con and

(ton &=tons(Q). Substituting (21) into (13), we may
show from the first derivative of S (Q, t) that,

The p„and a„are defined in (14) and (5},respectively. In
this way the FS resolution function is completely
specified. In the incoherent regime we expect the p„(Q)
to oscillate with Q. These oscillations will disappear at
higher Q when the incoherent limit is reached. In this
limit, the central moments simplify and the Q dependence
of them can be specified. Since the Q dependence of the

a„ is known, the Q dependence of the p„can then be ob-
tained from (27} in this limit. This is done in the next
section.

We conclude by setting out the moments of R (Q, t}.
Equation (14) is a very general relation between the cen-
tral moments M„of the type defined in (24), and the
coefficients p„of the same function expanded in the form
(21). Applying this to R (Q, t) in (26), the moments are
defined as

(23) R„= f dt0[to p, —]"R (Q, co)
1

(28)

I

=i "lim [e "S(Q,t)]/S(Q) .
r~O dt" (24)

By substituting (21) into (24) and carrying out the
differentiation indicated in (24), we may show that M& =0
and the p„are related to the higher moments M„as in
(14). Expressions for the moments may be obtained by
substituting (18) into (24). The first four moments are

MD=1,

M1=0,

M2 =Q ( vp &/S,

M3=[Q (uP&+iQ ( 0&v&X &]/S,

2

M = Q'&u'0&+ Q &(Vu)'S& /S,

(25)

where S:—S(Q). Although written in a somewhat
different form, these moments are the same as those given
by Rahman, Singwi, and Sjolander. These moments os-
cillate with Q and in general are complicated. They are
discussed recently for liquid He by Stringari.

Using the definition (7), and the expansions (4) and (21)
for Si~(Q, t) and S(Q, t), respectively, the FS resolution
function R (Q, t) in the coherent regime is,

R (Q, t) =S(Q, t)/$«(Q, t)

= S ( Q }exp( ip,t)—
T

so that to„'=tun/S(Q). The normalized, central mo-
ments centered about uz are

M„= N N COg S,N S

and the R„may be readily obtained by inverting (14), i.e.,
R v =1,R, =0, and,

R2=

R3=p

R4=pq+3p2,

R 5
=p5+ 10p3p2,

R 6
=p6+ 15p4p2+ 10p3+ 15p2 .

(29)

In the incoherent limit, where S(Q)=1, p, &=0,
M2=I2, we have R2=0 and simplified higher moments
given by (39) below.

M„,. =I„+A„+B„(n~6} . (30)

Here I„=q"(k& & are the inoments (6). The A„originate
from the term proportional to Q in the expansion of (11)
[see (A14)] and A„=O for n &2. The B„originate from
the term proportional to Q in (11), and B„=Ofor n ~ 4.
Clearly Mo,- =1,M„=O, and M2; =I2 are the same as in
the IA (6). DifFerentiating az in (A14), we obtain

IV. INCOHERENT MOMENTS AND R ( Q, t }

The central moments M„; of S;(Q,to) are defined in
(13). Using these moments, the aim is to obtain simple
results for the expansion coefficients p„, in (12) and the
p„, in (15), particularly their Q dependence.

The M„; can be calculated straightforwardly by ex-
panding the exponential in (11) [see (A13)] and carrying
out the differentiation in (13}.Up to M6; we obtain

Xexp ——p t +—p t + . ——p t
1

2 3 4
dn 2

A„= —i"q lim, kk(tikiiioi),
dt

(31)

(26) of which the lowest two are
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A, =iq (kgb�)=q (V v(r))/6'= —q a, ,

34= —
q (kgkg) =q (Fg)/3A' =q a4,

(32)

where F& =V&U (r) is the force on the struck atom along

the scattering vector Q. The higher terms are more com-
plicated and are written in Appendix B. To display the Q
dependence, we write them as

As =q as2 Bs =q'&s4

A, —
q a62,

2— B6=q b64 .
(33)

The coefficients p„can be obtained from the moments

M„using the general relation (14). Using (14) to relate

p„; to M„; and a„ to I„,we have

p„=q'a, =q'(kg' ),
2—

p3]. =q Q3

p„=q 2a4+ q 4CZ4,

2— 4—
ps; =q as2+q as4,

p6;=q a62+q a64+q a6,
where the a„are defined in (5), and

a i = ( V u (r) ) /6',
a = ( F2 ) /3irt2

a,4
=b,4

—10a3 ( k& ),
a~=b64 —15a4(k& ) —10a3

(34)

(35)

A„=co„(a)"

where

(36)

are independent of q. The coefficients P„;=p,„;—a„are
(34}without the a„=q"a„.

The a2= ( k& ) must be positive, but the a4 and a6 can

be positive or negative. For a solid in which the dynam-
ics can be represented by a density of phonon states g ( & )

(31) can be readily expressed in terms of the moments of
g(~),

(V U(r) )/M represents an average frequency, which is
positive, and (F& ) is positive. A positive p3, =M&, shifts
the peak of S;(Q,co) to lower co (below co„), which ap-
pears to be universally observed. For a classical fluid in
which n(k) is Gaussian (Maxwell-Boltzmann distribu-
tion) and in a solid in which the phonons are statistically
independent and a g (co) can be defined, we find (see also
Appendix B and Sears '),

b,4
= 10a i ( kg ),

b 64
= 15a4 ( kg ) + 10a 3 .

(38)

R„=M„=q'(V'U(r) )/6r,
R =A =q (F )/3%

R si Ms,. —10A3I2 —A s+Bs —10A3I2,

R6,. = A6+B6 —15A4I2 .

Using these moments, we may write the p„, as

p2I' —I
p3i

p4; =R 4;+ (I4 —3I~ ),
ps' =Rs

p6, =R6; —10R i;+ (I6 —15IqIq+30I2 ),

(39)

(40)

which displays their dependence on the moments of the
IA and on FS e6ects.

In this case, as4=a64=0, and the terms in ps, and p6,
proportional to q vanish. The only final-state terms
remaining in p„, are the A„ terms. We have, however,
found that in normal and superfluid He that the term in

p~, proportional to Q dominates so that this is apparent-
ly not a good approximation (i.e., n (k) is not a Gaussian
in a quantum fluid).

The moments of R (Q, co) in (28) from the incoherent
limit, where S(Q)=1 and p, , =0 are Ro, =1,
R &;

=R 2; =0, and

J dcog(co)co"[2nti(co)+1], n odd, —
(co")= '

d co g (co)co", n —even,
(37)

and nti(co) is the Bose function. The moments (37) must

be positive so that the a„are positive. In a Auid

I

V. APPLICATION FOR NEARLY GAUSSIAN n (k):
NORMAL LIQUID He

The fitting procedure outlined above in Sec. III can be

applied directly to any fluid or solid in which the momen-

tum distribution is approximately Gaussian. The S (Q, t)
given by (21), i.e.,

S(Q, t)=S(Q}exp( ice„'t)e p—x— p2t + p3t + —
, p4t —p, t' —p6t———— (41}

is fitted to experiment to obtain the coefficients p„and
the FS resolution function R (Q, t) is constructed from
(26) and (27). S(Q, co) and R(Q, co) are obtained by
Fourier transform. In the incoherent limit, S (Q) = 1 and
co„' =co+ /S(Q)~coii. The expansion (41) and the expan-

sion of Si~(Q, t) in (4} introduce a model for n (k). The
model is a Gaussian, from the t term in (4) plus correc-
tions from higher powers in t. We apply the method to
normal liquid He (T)Tz), where we expect n (k) can be
represented by a Gaussian plus corrections to the Gauss-
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A. Additive approach

In the additive approach, the general expression (41)
for S(Q, t) to be fitted to experiment is expanded as

S (Q, t) =S(Q)e e

X 1+—pt +—pt ——pt-l 3 1 4 l

3! 4! 5!
(42)

In (42), we have expanded the cubic and higher-power
terms in t and retained the terms up to 0 (t~). The corre-
sponding expansion for S,A(Q, t) in (4) is

1 2 1
Siz(Q, t)=exp( ico t)exp ———a t2+ —a t~—

R 2 2 4t 4

ian. We use two variants of the method beginning with
(41}. In the first, the terms in the second exponent
beyond the t in (41) are expanded. The S(Q, t) is then a
Gaussian plus additions, denoted the additive approach
(AA). The second variant is a straightforward applica-
tion of the full function (41) and is denoted the convolu-
tion approach (CA).

the exact IA. An expansion about the exact IA contains
only corrections due to FS terms.

In the additive approach, we fit (45) directly to the data
with the aim of determining p2-p5. The advantage of
(45) is that the largest term, S,~(Q, co },is a Gaussian, and
the corrections to this Gaussian appear as simple analytic
expressions. The parameters p2, p3, p4, and p5 are adjust-
ed to get the best fit. S(Q) and co„'=co+/S(Q) are
known. The disadvantage of (45) is that we cannot recov-
er R (Q, t) in a form suitable for a convolution. As usual,
S(Q, co) must be convoluted with the instrument resolu-
tion function I (co),

0(Q, co) =fdco'S(Q, co')I(co co'), — (47)

and 0 (Q, co) fitted to the observed data. In these fits, we
have used both a numerically computed instrument reso-
lution and a Gaussian approximation, I(t)
=exp( t o z—/2).

A fit of the AA, to data of Andersen and Andersen
et al. at Q=8 A ' in normal He at T=2.5 K is
shown in Fig. 1. The data was obtained using the MARI
instrument at ISIS, Rutherford Appleton Laboratory. In
the fit, only p2, p3, and p4 were retained because includ-

—i co& t —(1/2)a2g ]R e 1+—o. g4—

The Fourier transform,

(43)

I6—

S(Q, co) = f dt e'"'S(Q, t)

of (42) takes a simple, additive analytic form,

S(Q, co) =SiA(Q, co)+Si(Q,co)+Sp(Q, co)+Si(Q,co), (45)

where

( co—co ) /2S,„(Q,co)=S(Q)[2m p, ]
' e

3
C3

CO
CV
C)

~k

I

20
I

60

S, (Q, co) =— 2
p3 e&

(co —co+ ) 1 —
SiA(Q~ co

2p2

co (meV)

4

S2(Q, co }=
z

1 —2cod + fiA(Q, co),
SP2

(46)

p5
S5(Q, co) =

3 (co—coa ) 1—
8P2

2Nd Ny
2 4

+
1

SiA(Q ~»
15

and cojc =cos IS(Q) and cod =(co co+ ) /p2. —
We recall that in the incoherent limit, the coefticients

p„ in (46) are (p„~p„,. ) given by (34). In the incoherent
limit, S,~(Q, co}, is a Gaussian impulse approximation
with p2=az. The S, (Q, co} and S3(Q,co} represent devia-
tions due solely to final-state contributions, p& =P3,
P5 ~5.

The $2(Q, co), with p4=P4+a4, represents a deviation
of n(k) from a Gaussian, due to a4, plus final-state
efFects. Clearly, S, ( Q, co ) and $3(Q, co ) are odd in
(co —co+) and S2(Q, co) is even in (co—co+). In the in-
coherent limit, the expansion (45) is the same as proposed
by Sears except that (45}uses a Gaussian IA rather than

)
4—

3
Q

CV
C)

0

I

20
I

40
co (meV)

I

60

FIG. 1. Upper: Additive approach (AA), (45) and (46), fitted
to data of Andersen et al. (Ref. 40) at Q =& A ' and T =2.5 K.
Lower: Convolution approach (CA) (41), fitted to the same
data. The values of the fitted parameters are listed in Table I.
A numerical instrument resolution function computed by An-
dersen et al. (Ref. 40) was used in (47). The y of the fit were
(AA) y =0.88 and (CA) y =0.96 (see Appendix 0).
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ing p~ did not improve the fit (see Appendix D). Clearly,
it is possible to obtain a good fit. The parameters LMQ p3,
and )Lt4 obtained in the AA fit at Q =8 A ' and Q =14
A ' are listed in Table I.

Using data at low Q, 5 5 Q 5 10 A ', Andersen et al. '

fitted the AA to many g values. These fits led to values
of pz(g), )Lt3(g), and )tt4(g) that oscillated with Q. An-
dersen et al. ' also displayed their results as oscillations
in the peak position and width of S(g,co) along the lines
discussed previously by Martel et al. and Stirling
et al. ' For Q R 10-12 A ', the oscillations cease and
the incoherent regime is apparently reached. For
Q&10—12 A ', pz(g)/Q, ps(g)/Q, and )Lt„(g)/Q
reached constant values. ' From (34) (the incoherent lim-
it) )Lti; =az=q (k& ), which gives u2 directly. With
u 3 0, P& =p &, From. (34), p 4,

=P4; +a4 with u4 propor-
tional to Q and P4; ~ Q . A plot of p~(g)/g reaches a
constant for Q ~ 10 A ' and shows that p4 is dominated

by a4 with no apparent contribution from P4; (Refs. 40
and 41). In this way uz and as were determined from the
high Q values of pz;(Q) and p4, (Q) and are listed in Table
II. Throughout, we use )M„ in energy units (meV). The
corresponding mean-square momentum along Q is then

ko —= (k& )z=(fi /M) (az/Q ), the kinetic energy
(& )z =(3/2)(trt /M) '(az/Q ) and the excess
5=a~/a2 (i)t'/M=1. 0443 meVA for He).

B. Momentum distribution

se'Q' e 'Q
27T

(48)

where the z axis is defined along Q. To prove these rela-
tions, we can introduce a 5 function into n (k&) and use

the exponential representation of it,

One of the goals of the fitting procedure is to determine—Ik s
the momentum distribution, n(k). The factor (e ~ )
in the IA in (3) is the one-body density matrix (OBDM)
for displacements s =(A'Q/M)t =qt of the struck atom—&k s
along Q, n 'p, (sQ, O)=(e ~ ), where Q is a unit vec-
tor. The momentum distribution n(k) is the Fourier
transform of the OBDM, n 'pi(r, 0}=(e '"').
Specifically, the longitudinal momentum distribution
n (k&), n(k) projected along Q, is the Fourier transform

of (e

n(kg)= f dk„ f dk n(k„,k, k, )

n(k~)= fdk'n(k')5(k~ —k )

f ds e
' ~ fdk'n (k')e'"''

2m

se Q lks
2n. (49)

so that n 'p, (sg, O) = ( e
' &') as noted—ik s

In (3) and (43), we expanded (e ~ ) in powers of
s =qt and retained terms up to t . This corresponds to
selecting a model for p, (sg, O) of

—1
~ (1/2)kos ] 4n pi(sQ, O) =e ' 1+—5k&p

4I
(50)

5 k k
X 1+—S —10 +

0' 3k 40

(51)

For isotropic fiuids, once n(k&) is determined, n (k) can
be found with no loss of information.

Expansions such as (4} are expansions of the OBDM
valid for small s. They imply a model for n (k&), which
can be obtained directly by Fourier transform. We ex-
pect this model and method to work well in those materi-
als where the OBDM is short ranged, where n(k) is
indeed nearly Gaussian. For example, we do not expect

this method to be useful in superfiuid He where p, (sQ, O)

has tails extending to large s due to the condensate.
In Fig. 2, we compare the present n (k) in (51) using

the parameters listed in Table II with the path-integral
Monte Carlo (PIMC) evaluations of Ceperley and Pol-
lock. Since the observed and PIMC kinetic energies in
Table II agree well, the Gaussian component of the ob-
served and calculated n (k) agree well. The PIMC n (k)
lies above the extracted n (k) at low k but not outside the
combined error of kc and 5. As dashed lines in Fig. 2, we
show (51) for 5=0 (pure Gaussian) and 5=1.0. These
comparisons show that n (k) differs significantly from a
Gaussian in normal liquid He and that n(k), when
represented by (51), must have a large positive excess.
The n (k) at low k is clearly sensitive to 5.

where kc=(k&) and 5=[(k&)—3(k&) ]/kc is the ex-
cess of the distribution and, using the Fourier transform
(48), we obtain n (k& ) and the three-dimensional n (k) as

—k /2k
n(k)=(2nkc) ~ e

TABLE I. The parameters pz to )u6 for normal He at T =2.5 K obtained by fittin the additive ap-

proach (AA) (45) and the convolution approach (CA) (21) to data at Q =8 aud 14 A '. In the AA,
terms out to Sz(Q, co) only in (45) were retained so that only pi, )u„and tu4 are determined.

(A ')

8
8

14
14

(K)

2.5
2.5
2.5
2.5

AA
CA
AA
CA

) ~/Q.
'

(meV/A)

0.85
0.89
0.97
0.97

t 3/Q.
'

(meV A )

3.2
2.8
3.0
3.2

v4/Q'
(meV A)

0.30
0.28
0.52
0.54

v~/Q'
(meV A )

3.1

5.0

u6/Q'
(mev A)

0.6

0.6
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TABLE II. Parameters (from Ref. 41) for the momentum distribution n (k) in (51) for normal 4He

obtained from a2 and a~; ko=(k&) =(R /M) (a2/Q }, 5=[(k&)—3(k&) ]/(ktI} =a4/a2, and

(R /M) =1.0442 meV A2= 12.12 K A~ for ~He. The corresponding kinetic energy (K }and (K ) calcu-

lated by Ceperley and Pollock (PIMC) (Ref. 43) are also listed.

a~/Q
(meV A)

0.94+0.03

ko
(A )

0.86

a /Q
(meV A)

0.56+0.06 0.63

&K)
(K)

15.7+0.5

(K} (PIMC)
(K)

16.0

Our purpose here has been illustrative. When applied
systematically, we believe this technique offers a straight-
forward method to extract n (k). This is the topic of a
future paper.

C. Convolution approach

To obtain FS effects in the form of a FS broadening
function, R (Q, ro) we follow the method of Secs. III and
IV directly. That is, we fit (41) directly to the observed
data, properly convoluted as in (47), with the p, „ treated
as free parameters. Since P4 will be positive, it is neces-
sary to keep terms up to ps in (41) so that the R (Q, t) can
be Fourier transformed. We found ps could be deter-
mined within a factor of 2. The p& affects R (Q, co) chiefly
at high cu. We assumed that as=0 and assigned the
whole of ps to Ps. The chief role of ps is to ensure con-
vergence of the Fourier transforms, and, since p6 could
not be well determined, we simply kept ps at a small

value (ps=50 Q meV ).
In the lower half of Fig. 1 we show a fit of (41) to the

—1.observed scattering intensity at Q =8 A ' in normal He
at T=2.5 K. The parameters p„up to n =5 were re-
tained, and the fitted values are listed in Table I. Clearly,
it is again possible to get a good fit. Also the parameters
obtained using the CA (21) and the AA (45) are con-
sistent. In Fig. 3 we show a CA fit at Q =14 A '. The
values for p„at Q =14 A ' represent the incoherent lim-
it well, although the p& obtained at Q =14.0 A ' is
somewhat higher than the average (compare Tables I and
III). Fit statistics are discussed in Appendix C. If we
make again the approximation (43) for S,a (to obtain a
convergent Fourier transform), it is clear that the CA
method above will yield the same n (k) as the AA of Sec.
VA.

In Fig. 4, we show R (Q, ro) obtained from (26) and (27)
using the CA parameters listed in Table I and
az/Q =0.965 meV A and a4/Q =0.53 (meVA) from
Table II. That is, Fig. 4 is the Fourier transform of

R (Q, t)=exp ——(p, —a, )t'+ p,t—'

0.15

Normal 4He

T=2.5K

+
~) (p4 a4)t @st @st

(52)

component

0
Although Q =8 A is not quite in the incoherent limit,
S(Q)=1.0 accurately so that (37) reduces to (52}. In the
incoherent limit, p2=a2. The peak position of R (Q, to) is

~ I
) I I I I I

I I I I

Q.Q5

0.00
2

k (A')

FIG. 2. Momentum distribution n(k) in normal He at
T=2.5 K. Solid line is n(k) extracted by fitting the additive
approach (45) and the full function (41) to the data of Andersen
et al. (Ref. 40} at several Q values. The extracted n (k} is given

by (53) with k0=0.86 A ', 5=0.63 (see Table II). (The corre-
sponding kinetic energy is (K }=15.7+0.4 K}. The dotted and
dashed line is (53) with the same (K }but 5=0 and 5=1.0, re-
spectively. The solid dots are the PIMC n(k) calculated at
T =2.5 K by Ceperley aud Pollock (Ref. 43} ( (K ) = 16.0 K}.

8

Co

V

(1)

I I I t » t I I I I I I I I

50 100 150

to (meV)

FIG. 3. Convolution approach (CA) (41) fitted to data of An-
dersen (Ref. 39}at Q=14A ' and T=2.5 K. The instrument
resolution was represented by a Gaussian with ul =3.4
meV, and the resulting fitting parameters, p2;-p6;, are listed
in Table I.
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TABLE III. Average values of the parameters p2; to IM6; in the incoherent limit found by Stting the
AA and the CA methods to data at several Q values in normal He at T =2.5 K. The parameters a2
and a4 appearing in the IA (43) are obtained as a2= p&; and a4= p4; using these averages. As noted in
the text, p6 was fixed at p6/Q =50 (meV A ) .

(meV A)
P3; /Q'

(meV'A )

/q4
(meV A)

vs;/Q'
{meV A )

t 6, /.Q',
(meV A )

0.94+0.03 2.5+0.5 0.56+0.06 2.7+0.5 50

determined chiefly by p3. There is some cancellation be-
tween the effects of ps and )M5. A large )us unbalanced by
p5 leads to large amplitude oscillations in R (Q, co) at low

A large )M5 unbalanced by p3 leads to oscillations in
R (Q, co) at high ro. Some oscillation is clearly needed to
fulfill the moment relations (39). The properties of
R ( Q, to) will be discussed further in a future paper.

As noted above, we had difficulty determining the FS
contribution P4 to p4. The p4 was dominated by the IA
term a4. To estimate P4=)u4 —a4, we expanded the IA in

the form (43) and used this expanded form of S(Q, t) in
(21) to give

I

S(g, t)=S(g)e 1+—a t
41 4

Xexp — pit—+ p&t —+ (p4 —a4)t—

(53)

15
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0
0)
E

3 5 -""
Q
tX
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O

0

-5
-60

4—I
E

3
3
O 2—
K

1O

-40 -20 0

(o (meV)

:Q =BAi
:T =25K

20 40

Q =14A'
T=2.5K

60

The u4 was not further adjusted, which corresponds to
keeping n(k) fixed. The )uz to ps were then found by
fitting to experiment and R (Q, t) is obtained directly
from (15) or (26). At Q =8 A ' we found similar param-
eters to those in Table I with (p4 —a&)/Q =0.28
(meV A) . Thus, P&=)M4; —a, the final-state contribution
to p4, , is small, and this procedure provides some esti-
mate of it.

VI. APPLICATIONS FOR NON-GAUSSIAN n (k):
SUPERFLUID He

Si~(g, ru) = Idkn (k)5(ro —co~ —
qkg) . (54)

The model n(k) may contain parameters to be deter-
mined by fitting to experiment, or it could be a calculated
n (k) that we wish to test. The S,~(g, co) is then convo-
luted with the R (Q, ro) given by (9) and (26) to give

S(g, co) as

In Sec. V, we fitted the functions (41) and (45) to data

in normal He and found the momentum distribution

n (k) given by (51). As discussed in Sec. VB, this corre-

sponds to selecting a particular model for n (k) in which

n (k) is represented by its second and fourth moments:

ko and 5=a4/az.
To apply the method to a system in which n (k) is not

well represented by its second and fourth moments alone,

we may introduce an appropriate model n(k). The IA
for this model n (k) is then calculated from the standard

expression (1),

-2
-100

i I I I I I l I

-80 -60 -40 -20 0 20 40 60 80 100

S(g, ro) = Idry'SiA(g, ro')R (Q, co —co') (55)

u) (meV)

FIG. 4. Final-state broadening function, R l Q, co), obtained at
0

Q =g and 14 A ' in normal He at T=2.5 K. R (Q, co) is ob-
tained from (52) and (9) using the parameters listed in Tables I
and II.

in the usual way. The S(g, ro) now depends on the pa-
rameters in n (k) and the p2 to p6 in R (g, ro). There will
be consistency relations that will reduce the number of
free parameters to be determined by fitting to experiment
as discussed below. The resulting S(g, co) can be fitted
with the aim of testing n (k) or determining adjustable
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parameters in n (k), or n (k) can be taken as given and
the parameters P„ in R (Q, t) can be refined. This method
can be applied to any fiuid or solid. To illustrate, we ap-

ply the procedure to superfiuid He.

A. Convolution approach in super8uid He

+1+3 k.

4

r '2
n'(k)=(2irkio) '/ie ' 1+—5—

8 3 ko

(59)
Andersen et al. ' have measured the coherent S(Q, to)

in superfluid He at T =1.42 K in the range 5 & Q 510
A '. They also fitted the additive approach (AA) to this
data as noted above for normal He. We have fitted the
convolution approach (CA) to Andersen's data at several

Q values. The fits were good and the CA (41) therefore
represents the data well. The resulting parameters p, „(Q)
oscillate with Q in the range 5 Q &10 A as in normal
He and the CA can be used to display the oscillations in

the peak position and width of S(Q,co) with Q accurately.
The oscillations continue up to Q =10 A '. Since the
data did not continue past Q =10 A ', we were not able
to get precise values of the incoherent limit of the p,„, [by
averaging the p„;(Q) at several Q values at high Q as
done above for normal He].

The chief change in the CA fit in going from T =2.5 to
1.42 K is a drop in pz/Q by approximately 0.1

(meVA) . This is shown in Fig. 5, where pz/Q at the
two temperatures is compared. In the incoherent limit,
where pz=az, this corresponds to a drop in kinetic ener-

gy of approximately 1.8 K. At T=2.5 and 1.42 K,
Ceperley and Pollock find (K) =16.0 and (E)=14.3
K, respectively, a drop of 1.7 K. Otherwise, the higher-
order parameters pi, p4, and p5 are unchanged within the
precision they are determined. This suggests that the FS
resolution function R (Q, co) (which depends chiefiy on p&
and p5) changes little or not at all in going from normal
to superfluid He. R (Q, co) depends on the interaction
between the atoms, especially at short range, and we ex-
pect these to change little with temperature.

Thus, in going from normal to superfiuid He we find a
clear drop in p2 (the kinetic energy) but the higher p„un-
changed within precision. We now introduce a model
n(k) having a condensate. We essentially attribute the
change in p2 to the appearance of a condensate and there-

by determine the condensate in the model.

0.95

0.90—

085 '-

e 0.80—

0.75—

04

~ 0.70—

0.65—
() , ()

() t)

SUPERFLUID 4He

T=1.42K
CA FIT

0.60

1.2

MomentumTransfer (A ')

()
)

't 0

Here no5(k) is the condensate contribution and

nz[f (k)+ A, f;(k)] is the increase in n(k), chiefiy at
small k, due to the coupling between the single particle
and density response of the superfluid via the condensate.
The term, nof (k), arises from the sharp peak (phonon
peak) in S(Q,co} at low Q =k, the joint-density-single-
particle response (see Appendix C). How this terminates
at higher k is not well known, and we have introduced—k /2k
the cutoff, e '. The term nof, .(k), due to the in
coherent, broad response at higher k, is not well known,

8. Model momentum distribution

To describe the momentum distribution n (k) in
superBuid He, we introduce the following model:

n(k)=n 5o( k}+n[of( k) +A;f;(k)]+A, n*(k), (56)

where

OI

0.9 —
c&

E

~ 08—

407—

0.6—

0.5

NORMAL 4He

T=Z.5K
CA FIT

noMc —k 2/'2k 2

nof (k)= 3 [2nii(ck—)+ 1]e
(2ir) 2Rn

f.(k) =(2irk. ) e

(57}

(58)

MomentumTransfer (A ')

FIG. 5. Values of p2/gi at T =2.5 and 1.42 K obtained by
6tting the CA {41)to data of Andersen {Ref.39) using a Gauss-
ian instrument resolution function with or = 1.27 meV.
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and we represent this by a Gaussian. The n*(k) is the
momentum distribution over states above the condensate,
which we assume is the same as in normal He. Thus we
use (51) for n*(k) and take ko and 5 as determined above
in Sec. V for normal He at 2.5 K (see Table II). The k;

0

we take arbitrarily as k;=2 A ', a long wave vector.
The determination of k, is discussed below. With these
choices, there remain three free parameters in n (k): no,
A i, and A, . This choice of n (k) is very much in the
spirit proposed by Woods, Svensson, and co-
workers, ' ' the sum of a condensate-induced contribu-
tion plus n'(k) describing the states above the conden-
sate.

The n(k) should be normalized and the moments
( k& ) calculated with n (k) should be consistent with the
observed moments, a„, in the superfiuid. Up to (k&)
this gives,

1 dkn(k)=1, (60a)

1 «g)s «)s
Jdkn(k}k&= =( )

=—R. (60b}

We have divided (60b) by the second moment in the nor-
mal fiuid (k& )z so that the result can be written as the
ratio of the kinetic energies in the superfluid and normal
phases (see Table IV). Higher-moment relations can also
be used.

Substituting n (k) from (56) into (60) and carrying out
the integrations indicated, we obtain (k 0

=—( k& )z ),

no[1+ID+ A;]+ A i =1,
noI2+ 2;(k; Iko) + 3 i =R,

(61a}

(61b)

where I„=jdk f (k)k& and I2 =I2Iko. The I„depend
on k„but otherwise can be calculated directly. Equa-
tions (61) provides two relations to eliminate two of the
three free parameters, no, Ai, and 3;, in n(k). In the
present application, we have determined R from the ratio
of the kinetic energies; (K)&=16.0 and (K)&=14.3 K
as calculated by Ceperley and Pollock, which gives
R =0.893. Preferably we should use a (K ) determined
from S(Q,co) itself in the incoherent limit. This will be
done in subsequent work using new data at higher Q
values in the superfluid, which have become available.
We now implement this method to determine no begin-

ning with a simpli6ed version obtained by taking A; =0.

C. The condensate

1. Simple model

We now determine the condensate no(T) by substitut-
ing the model n (k) of (56) into the IA (54) and fitting the

resulting S(Q, co) to observed data at Q =8 A '. We be-
gin with a simple model obtained by setting A;=0.
Equations (61) then reduce to

no[1+Io]+ 3,=1,
noI2+ A ) =R .

(62a)

(62b)

noR (Q, co coR } (63)

which clearly contributes chiefiy at co =coR, where
R (Q, ~—coR ) peaks. The nof (k) is also sufficiently nar-
row compared to R (Q, co) that it contributes in the same
way as np5(k). Thus, the discrepancy in the peak region
in the upper part of Fig. 6 suggests no =0.08 is too small.
To test this we have arbitrarily increased no to no =0.10
and 0.12, while keeping all other parameters constant ex-
cept A „which was adjusted to maintain normalization
of n (k} in (56). The corresponding fits are shown in the
middle and lower frames of Fig. 6. The value no=0. 10
fits best in the peak region.

There is a second interesting e5'ect when no is in-
creased. In the wings of S (Q, co), e.g. , 40 & co & 60 meV,

These can be solved immediately to get no in terms of
R, no=(1 R)—I[1+ID I2—], independently of any fit

(see Table V). This solution is essentially the method pro-
posed by Sears to obtain no(T) from the kinetic energy,
here from the ratio R =(K)s/(K)~=0. 893. In this
application we have included f (k) so that no depends
upon f (k), and particularly on the cut off k, as well as
on R. In Table VI we list Io and Iz for 0.3&k, &0.7
A ' and the corresponding no obtained by solving (62).
We see that no varies between no=0. 09 and 0.07 between
these limits. A very reasonable choice of k, is k, =0.5

A . The f (k) in (57) is obtained assuming linear pho-
non dispersion co=ck in the phonon-roton excitations.
Linearity is observed to cease at k =0.7 A '. Thus, we
should cut off f (k) at least by k =0.7 A ', which will be
the case if k, =0.5 A '. Certainly k, must lie within the
range shown in Table I. We take k, =0.5 giving the re-
sult n =00.08+0.01. For k =0, no=0 11 w.hich is the
result that would be obtained by the Sears method with
the present (K ) values.

With no=0. 08 and A& determined by normalization,
n(k) in (56} is completely fixed. We fit the resulting
S ( Q, co) to experiment by adjusting the parameters p2 to
p5, with JM6 set at @6=50/Q . The fit at Q =8 A ' and
T = 1.42 K is shown in the upper part of Fig. 6. We see
that the fit is good. The chief discrepancy is that the
fitted S(Q, co) is too low in the peak region, which sug-
gests that no is somewhat too small. That is, if we substi-
tute n05(k) into (54) and (55), we obtain a contribution to
S(Q,co) of

TABLE IV. Parameters used in n (k) in (56) and (60) for superAuid He at T = 1.42 K.

N/g 2

(meVA)'

0.94

ko
(A )

0.86

N/g4

(meV A)

0.56 0.63

~S/g2
(meV A. )'

0.85

S/g4
(meV A)

0.56

k,
(A-')

0.5

k;
(A ')

2.0
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TABLE V. Parameters p2 to p6 obtained by fitting S(Q, co) in (55) with the model n (k) of (56) in the

impulse approximation to data at Q =8 A ' in superfluid He at T=1.42 K. In the model n(k),

A; =0 [simple model (SM)]. In SM(1), all IM„are adjusted to fit the data (upper part of Fig. 6). In SM(2)

p& is fixed at p&=a2 to simulate the incoherent limit (see Fig. 8). A Gaussian instrument resolution

function was used with o I= 1.27 meV.

Model

n(k)
n(k)

SM(1)
SM(2)

1.42 K
1.42 K

0.897
0.858

2.95
2.94

0.697
0.642

3.23
3.31

50
50

the fitted line oscillates around the observed data. These
oscillations originate from the oscillations in R (Q, ui) at
larger co (see Fig. 7) and enter S(Q,c0) through the term
(63). Thus the contribution from no can be seen away
from the peak region due to R (Q, co). A refitting would
result in a reduction in p& and ps, which would reduce
the oscillations. They are clearly not in the data. How-
ever, a refitting does not remove the oscillations entirely,
as can be seen in the fitted no =0.08 case; there is a com-
petition between fitting in the peak and in the wings,
which leaves some oscillation in the fitted function. Fi-
nally, a value no =0.10 and the simple model is just com-
patible with the ratio of the kinetic energies
R =14.3/16. 0 if we assign an error of 20.03 to each
kinetic energy.

When a condensate is inserted, there is some trade off
between the value of pz, p4, and no To il.lustrate this, we
show a fit of S(Q, co) at Q =8 A ' with p, z arbitrarily
fixed at p2=a2, the incoherent limit, in Fig. 8. We expect
this to be a lower limit of the pz, given there is a conden-
sate added. In this case no=0. 08 gives a good fit in the
peak region. Similarly, if we arbitrarily adjust p4 down-
ward to the incoherent limit, no =0.12 gives the best fit.

20 40
I

60

signature of the condensate at these Q values. However,
the fit requires a large drop in the kinetic energy, which is
inconsistent with the temperature-independent (E) in
normal He unless there is some unusual feature, i.e., a
condensate. This point is discussed more fully by Sears.
If we ascribe the drop in kinetic energy to movement of
atoms into the condensate, which is the basis of the mod-
el n(k} in (56), then an n&=0 10+. 0.03 is obtained for

2. Full model

We have implemented the full model by treating A; as
a parameter and calculating no and A, using (61). The
best fit gives A; =0.03 and no =0.11. The fit is compara-
ble to the upper part of Fig. 6 but fits better in the peak
region. The broad component is clearly small and no is
consistent with the determinations above.

We conclude with the following comments. Firstly, it
is possible to obtain a reasonable fit to the data without
introducing a condensate. In this sense there is no unique

4

3
Q 2

20 60

TABLE VI. Moments I„=fdk f (k)ka of the function f (k)
defined in (57) as a function of the cutoff parameter k„'
I2 =I&/ko. The no is the corresponding condensate fraction ob-
tained by solving (62) ( A; =0) showing the sensitivity of no to
k, .

20
I

40

(o (meV)

60

k,
(A

—I)

0.3
0.4
0.5
0.6
0.7

0.19
0.31
0.47
0.66
0.89

I2
(A )

0.01
0.03
0.07
0.15
0.28

0.01
0.03
0.08
0.16
0.30

no

0.093
0.086
0.078
0.073
0.069

FIG. 6. Fit of S(Q, co) using the model n(k) given by (56)
with A;=0 (simple model) to data of Andersen (Ref. 39) at
Q =8 A ' and T=1.42 K. The upper graph shows results ob-
tained by solving (62) directly, which gives no=0. 08 in the sim-
ple model. The middle and lower graphs show results for no in-
creased to no=0. 10 and no=0. 12, respectively, with all other
parameters held constant.
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(T = 1.42 K
:np ——0.08

=n (y), (64)

scaling variable, y =q '(co —roz), and s =qt discussed
above, where q =fig/M. Indeed, the present method for
obtaining n (k) and R (Q, ro) may be transparently
presented in these variables if the coherent regime is not
needed.

The IA depends only on y rather than Q and ro sepa-
rately. Introducing y into (1), we have

J,„(y)—:qS,~(g, ro) =Idk n (k)5(y —
k& )

-2—
V

-4
-60 -40 -20 0

u) (meV)

}

20
I

40 60

FIG. 7. Final-state (FS) resolution function R (Q, co) obtained
at Q =8 A ' using the model n(k) in (58) with A;=0 and
no=0. 08 in superfluid He at T=1.42 K. The fitted parame-
ters p2 to p6 are listed in Table V as SM(1).

VII. SCALING OF R ( Q, ro)

reasonable values of the kinetic energy and fits to the
data. The uncertainty in the fit and in R(g, co —roz)
leads to an uncertainty in no of approximately +0.02.
The uncertainty in the cut off of f (k) adds an error of
+0.01 to no.

We believe this method can be improved when applied
to several Q values in the incoherent regime. For exam-

ple, using the scaling method discussed in the next sec-
tion an accurate R (Q, ro) obtained from data at several Q
values can be determined. This, combined with accurate
kinetic energies and the model n (k) in (56), can be used
to determine no(T) more reliably and perhaps other char-
acter of n(k). This work is in progress. The unique
signature of the condensate is seen in other measure-
ments, such as the existence of the roton.

J(g,y) =jdy'J«(y —y')R (Q,y') . (66)

The corresponding intermediate scattering function, from
(11), is

d(Qs)=(T, exp —i I ds k()(s )''
s

Using the Fourier transform (9},we have

R(Q,y)= J dte

1
ds e'~'R, s2' (67)

The expansions (4) and (12) are

ikos —
(
—js)"J,A(s)=(e o )=exp g, a
nI

(n even)

whe~e J,„(y)= n (k&) follows by carrying out the integra-
tion dk=dk„dkydk, in (64) as in (48). Jt~(y) is the
longitudinal-momentum-distribution function, and y is
the momentum variable along Q. The corresponding
intermediate-scattering function, from (3) or (48}, is

J&A(s)=(e o ). Although S(g, ro) and R(g, ro) do not
scale as y, it is usual to define similarly scaled functions,

J(g,y) =qS(g, ro), R (Q,y)—:qR (Q, ro —ros ), (65)

so that (8}becomes

In the incoherent limit, the present FS broadening
function R ( Q, ro) obtained in the form (15) at one Q, may
be scaled to any Q. This is readily done using the usual y

with a„defined in (5) and

J(g, s)=(T,exp —i I d k()(s )s'
(68)

E

3

C)

spx

I 1 l

20 40
o) {meV)

I

60 &0

Flax. 8. Fit of S(Q,To) as in Fig 6with pz fix. ed at (M, =a, .
The parameters are listed in Table V as SM(2).

( —is)"=exp g, ig„
z nt

with (M„=p„;/q" given by (34), respectively. Using the
definition J (Q, s) =J,~(s)R (Q,s), we obtain from (68) and
(69),

R (Q, s) =exp g P„
( is)"—

Pl = n!

where P„—:P„—a„and, as noted, P2=0 and a„=O for
odd n.

Using (15) or (70) for R (Q, s), P„=p„,/q" —a„, and
substituting (34) for iM„;, we obtain
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Q3 1 Q4
R(g, s)=exp — s +— s

31 q 41

r' ~52 ~54+
5'f q3 q

s —— + s
4 2

We have proposed functions, (41) and (45), which
represent S(g,co} well at intermediate and high Q and
which have a physical basis. The coeScients p„reach
the incoherent limit at Q =10 A ', a value higher than
anticipated from S(g).

Using (41) and (45), we have extracted the momentum
distribution and final-state broadening function in normal
4He at T =2.5 K. The n (k) deviates significantly from a
Gaussian and agrees quite well with PIMC values. The
Gaussian component of n (k) provides a kinetic energy,
which also agrees with the PIMC value. The R(g, gi)
shows the expected form with oscillations at high co. It is
independent of T between T =2.5 and 1.42 K within the
error of determination, i.e., the R (Q, co) obtained at
T =1.42 K using the CA is the same as that in Fig. 4 ex-
cept for small deviations in the wings. The method can
be generalized to use a model n (k). Introducing a model
n {k } having a condensate we find a value of
n0=0. 10+0.03 in superAuid He at T=1.42 K. This
value can be made more reliable when data in the in-
coherent regime is used, which is the topic of a future pa-
per. A preliminary report of those results has been

(71)

up to 0(s ), where the a are independent of Q. In liquid

He, we found asz/q was negligible and a~/q was

small. Thus, R (Q,s) depends chiefly on a3 and a54. We

were not able to determine P6=a62q +a64q, and we

chose p6 so that the Fourier transform converged, i.e.,
R (Q,s)~0 beyond physically realizable values of s. We

now show that s & 5 A ' in helium, independent of Q.
The Fourier transform of J(g,y} is

1(g,p)= J ds e'"*(e )R (g, s) . (72)2'
2 2lkgS S /g

The Jiz(s)=&e a &=e ' goes to zero when the
struck particle travels a distance s -s,=~2/(k& ) =1.5
A '. Thus s values s »s, contribute little to (72) and

R(g, s) for s»s, is not important. We found that
p6=a64q +a6tq =50Q meV in (71) reduces R (g, s} to
zero for s =4 A and provides a reasonable cut off. Any
reasonable cut off will do in the Q range considered here.
Equations (67) and (71) provide a universal value of
R (Q,y) in any system once the coefficients a„are deter-
mined.

VIII. SUMMARY

made. The method is quite general and can be applied

to any solid, Quid, or mixture.
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S(g,co)=—g e ' geN, .

where e 'Q ""is in the Heisenberg representation,

iHt/A iQ ' —lHt/Ae ' =e' e 'e

=e e e e e;Ht/g
—l Q r;;Ht/g l Q r; —l Q r;

(A 1)

(A2)

We note that e'~' is a translation operator in momen-
tum, i.e.,

e 'q'f (p, r)e'~'= f (p+irtQ, r), (A3)

where f{p,r) is an arbitrary function of p and r. Thus,
iQ.r,.

e ' translates p; in H from p; to p;+fiQ, i.e.,

lQ I' lQ I' 1
e 'He '=H+ [(p, +RQ) —p, ]

and (A2) becomes

=H + +fico
M R (A4)

—i~& t;Ht/~ —i (H/A+ Qv,.& )t —iQ r,.
e e' e e (A5)

where (p, .Q)/M =Qv, &. Using the general result,

exp(i At)exp[ i ( A +B)t—]=T, exp i f dt'B—(t')
0

(A6)

where B(t)=e'"'B(0)e '"' and T, is the time-ordering
operator, we may rewrite (A5) as

APPENDIX A

In this appendix we derive relation (18) for the
coherent dynamic structure factor from the standard ex-
pression (17). The derivation follows closely similar
derivations by Rahman, Singwi, and Sjolander and
Gersch, Rodriguez, and Smith. We also show how (18)
can be expanded in cumulants to obtain the exponential
function relation (21) and (41).

The standard expression (17) is

r

exp[ —iQ.r(t)]=exp( icoIit)T, exp ig f—dt'v&(t') exp( iQ r—, ). — . .
0

Substituting (A7) into (A 1) then gives

1S(g, es)= —X T, exp —ig f ds ee(i )X exp[ —ig (r;'—'r ))lexp( ieset) . —
l J

(A7)

(A8)
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Defining S(Q)=y. e ' ' as the static structure factor operator so that S(Q)=&S(Q)), we may multiply»d
divide each term in (A8) by S ( Q) to obtain

S(g, t) S=(Q)exP( —iree t)—X(T, exP —ig j dt vp'(t )'S(g)) (S(g)) (A9)

Each term in (A9) is a normalized expectation value suitable for a cumulant expansion. Also, for a fluid of identical

atoms and ignoring surface effects each term is identical and

S(g, t) S=(g)exp( —(tvet)(T, exp —igf dt vp('t )'
s

(A 10)

where the expectation value in (A10) is

&»,=&AS(Q))/&S(Q)) . (A 1 1)

Equation (A10) is the result for S(Q, t) in (18) we wished
to derive. We now show how this can be expanded in cu-
mulants.

The standard expression for the cumulant expansion is

00

ln& e")= g, p„(x),
1n!

(A12)

where p,„(x), the cumulants of x, can be derived by ex-

panding the exponential as

and so on. These cumulants have somewhat different nu-

merical factors due to the time ordering in (A13}and ab-
sence of a factorial in the expansion.

Equation (18) and the expansion (A15} is used to derive
(21) for S(Q, t). The expansion (A15} determines (21)
directly and the coeScients p„. However, once we know

that an expansion of the form (21) exists, the p, „are more

easily obtained in terms of the moments, M„, by substi-

tuting (21) into (24) and determining the iu„ in terms of

M„. This leads directly to (14). The expansion (A13) is
also useful for calculating expressions for the central mo-
ments of S(Q, co) defined in (24).

e"=1+g x "/n!=1+y
n=1

and expanding the logarithm as

ln(1+y)= g ( —1)" 'y "/k .
k=1

where

ai = iQ f dt—'& ug(t') )s,
0

t)
a2= Q f d—ti f d &i2g(vi) rg(v)r)2s

0 0
n —1

(z„=(—iQ) f dt, f dt„& g(ut, ) ug(t„))s t
0 0

(A14)

and secondly expanding the logarithm as indicated above
with y =a, +a2+ . . This gives

OO

ln T, exp —i dt'U~ t' = p„,
0 . S =1

where

(A15)

A similar cumulant expansion of the expectation value in
(A10) can be developed by first expanding the exponential
in (A10) as

T, exp iQ f dt—'v (t')
. s

=1+ai(t)+a&(t}+a&(t}+a4(t}+, (A13}

APPENDIX B

In this appendix we write out the contributions 85 and

86 to the fifth and sixth moments of the incoherent
S;(Q,(v) listed in (30). The incoherent moments are
defined in (13). They can be evaluated straightforwardly
by substituting the expansion (A13) in the incoherent lim-
it into (13). In the incoherent limit only the a„(t) for
even n in (A13) survive. The 8„ terms come from
differentiating a4(t) and

8& =iQ [3& Ugvg ) +2& vgi)g vQ ) + & UQUQUQ ) ],
86= Q [6&UQUQ)+3&VQUQVQ)+&ugvgvg)

+S& ' ~ )+4&' ~ ' ~ )

+3& ugvgugug) ]

(81)

This result, in a somewhat different form, is given by
Sears.

For a solid in which the phonons are statistically in-
dependent and we can define a density of phonon states
g (co }, the 8 ~ and 86 take a simple form

8~
= 10A 3Ii = 10a 3 & kg )q

86 = 15A4I2+10A 3 =(15a4&kg ) +10a3}q

This result (82} also holds in any case that we can ap-
proximate & u (t, )v (tz)v (t3 )u (t4) ) as a product of pairs,

p1=a1,

IMp
=a2 a1

p3 —a3 a2a1 3 a13

p4 =a4 —
—,
' apa2 —a3a1+a2a1 —a1/4,2 4

(A16)

&U&U2V3V4) &Viu2)&U3U4)+&UiV3)&viv4)

+&U, U4)&U, V, ) (83)

where v, =u (t, ). Equation (83) holds in the equal time
limit for a Gaussian velocity distribution —i.e., in the
classical limit. In normal and superfluid He we have
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found that ps, is proportional to Q with the Q term un-

detectable. Apparently the approximation (83) does not
hold well in a quantum Quid. It would be interesting to
see whether it holds in a classical Quid, such as liquid ar-

gon, or in solid helium.

APPENDIX C

In this appendix we indicate the origins of the model
n(k) in (56), particularly f(k) and f, (k). The single-

particle momentum distribution (56) is generally related
to the single-particle spectral function A (k, to) by

k A, co ng co (Cl)

Here nk is normalized to gk nk =N, i e , .nl,. =1 if state k
is occupied, and n(k} in (56) is n(k)=nkl(2m) n. In
superffuid He the single particle and density response are
coupled via the condensate. The two functions have a
common, sharp peak at low k. This peak is observed in

the density response of superfluid He (i.e., it is the pho-
non of the phonon-roton curve}. The single-particle
response function is

—k /2k
A;f;(k)=A;(2nk; .

) e (C4)

0

A; is a parameter, and we select k; =2 A ' so f;(k) con-
tributes up to high k. Finally, there is a large contribu-
tion to A;„,(k, to) independent of no, which leads to
n '(k) describing the atoms above the condensate. We as-
sume that n'(k) in superfiuid He is the same as n (k) in
normal He, i.e., given by (51) with parameters ko and 5
given in Table II. The condensate contribution no5(k} is
not captured by (Cl) and must be added to (56).

APPENDIX D

In this appendix, we discuss fitting procedures. The y
was defined as

(Nt Np+ 1)—,

particle —density-response function, which contribute to

A;„,(k, to). These will be proportional to no. Little is

known about this part of A;„,(k, to), and we denote its
contribution to n (k) by

noMc 1
Zk

2trtn k
(C3)

(Gavoret and Nozieres, and Griffin ). The sharp com-
ponent is expected to dominate at k~0. Substituting
(C3) and (C2) into (Cl), the first term of (C2) leads direct-

—k /2k
ly to f (k) in (57). In (57) we have added e ' to
cutoff f (k) at higher k. For example, zk5(to ck) is vali—d

only at small k, where there is a single sharp peak only
(k & 0.4 A'). At higher k, the response is a sharp peak
plus a broad component. Linear dispersion to=ck is also
assumed. The f(k) in (57) certainly cannot be used
beyond k =0.7 A ', where the phonon region of
phonon-roton curve ceases to be linear.

At higher k (i.e., certainly for k &0.4 A ') there are
broad, incoherent components to the coupled single-

A (k, to)=2nzk[5(to ck) 5(t—o+ck—}]+A;„,(k, to) (C2)

at low k. The first term comes from the sharp phonon
(common-density-single-particle) peak, which has weight

where f, is the fitted function and d, is the data at point i
N; and N are the number of data points and free fitting
parameters in f;, respectively. In S(g, to), typically
N; =75. The y should lie between 0.8 and 1.2, approxi-
mately. A larger value signals a poor fit, a lower value
signals too much error in 0.;.

In the AA we found y =1.02, 0.88, and 0.88 at g =8
A ' and T=2.5 (Fig. 1) using free paraineters p2, p3,
p2 p3 p4 and p2, p3,p4, p5, respectively. This suggested
including p5 did not improve the fit. Also p3 and p5 ap-
peared highly correlated. Thus only p2, ls3, p~ were re-
tained here.

In the CA, y decreased out to and including p, 5. At
Q =8 A ', T =2.5 K (Fig. 1) y =0.96 in the CA includ-
ing p5. We also tested the Q dependence of the p, „(g}.
An erratic variation of p„(g) with Q suggested p,„was
not determined. We found p, 5/Q versus Q was reason-
ably uniform and approximately independent of Q. In
contrast p6(g) varied erratically with Q and was not con-
sidered well determined.
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