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We have studied the effect of quantum lattice fluctuations on the dimerized ground state of the half-

filled Su-Schriefer-Heeger (SSH) model. Our results show that, at least in the weak-coupling limit,

quantum lattice fluctuations change the functional dependence of the gap 4(0) on the coupling constant
even if the ratio u /4t is small (but finite). In the spin-2 cas our result is the same as that predicted by

Fradkin and Hirsch. But in the spinless case we still predict a long-range dimerization order even if the
coupling is weak and co /4t is finite. We have shown by numerical calculations that our variational ap-
proach gives a good description of the continuous variation of the gap 6{0)in the fermionic spectrum as
a function of the coupling constant v or the phonon frequency co . By using the same input parameters
as those of SSH we get a 12%%uo reduction of the gap 6(0}compared with the adiabatic value. The calcu-
lated electron density of states does not have the inverse-square-root singularity but does have a peak
around h(0). There is a significant tail below the peak. These are consistent with the observed optical
absorption coeScient in undoped trans-polyacetylene.

I. INTRODUc-LION

In the last decade or so the physics of one-dimensional
electron-phonon systems has attracted the considerable
attention of both theoretists and experimentalists. ' In the
studies of properties of a quasi-one-dimensional system
such as polyacetylene, Su, Schrieffer, and Heeger (SSH)
proposed a model Hamiltonian in which the phonons in-
teract with the electrons by modifying the electron hop-
ping matrix elements,

H= g t(C~ zen+1 tr+Cq+l, ocv v )
n, o

—ga(u„—u„+t)(c„c„+, +c„+, c„)
n, o

1 2 E
n

The notations in it are as usual. ' Within the adiabatic
approximation, that is, treating the phonon degrees of
freedom classically, SSH have used this Hamiltonian to
uncover a wealth of interesting physics. In the half-
filled-band case, the system undergoes a Peierls instability
and the ground state is dimerized with an energy gap
2b, (0). The optical absorption coefficient of the perfectly
dimerized lattice has an inverse-square-root edge singu-
larity at to=26, (0) and there is no absorption inside the
gap. However, the observed optical absorption is quite
different. The singularity is absent, and there is a
significant tail below the maximum. This indicates
that there exist tails of electron density of states (DOS)
extending into the gap.

Attempts have been made to explain the discrepancy
between theory and experiment in terms of three-
dimensional interactions (they cannot account for the
large tail), disorder (this is not consistent with the fact

5(0)-exp
2(n —1)u

(2)

where u =a /Kt is the coupling constant. This should be
compared with the adiabatic result

that the tail structure is observed clearly in very good
samples), direct photoproduction of soliton-antisoliton
pairs, '3 and the quantum lattice fluctuations (as a
source of disorder) described by a random potential with
Gaussian correlations. ' In this work we show that an
electron DOS consistent with the observed optical ab-
sorption coefficient can be obtained for the original SSH
model by taking into account the effect of quantum lat-
tice fluctuations, without assuming the virtual soliton-
antisoliton pairs production or the phenomenological
random potential connected with the fluctuations.

The theoretical analysis becomes much more difficult
when the quantum lattice fluctuations are taken into ac-
count. Scalapino and Sugar' raised the question whether
the dimerization could survive the quantum lattice fluc-
tuations if the ionic mass is lower than some cri'tical
value. Su, ' Fradkin and Hirsch, ' and Takahashi' have
calculated the electronic and lattice structure of the half-
filled SSH model by the adiabatic or the nonadiabatic
Monte Carlo simulations, and concluded that the Peierls
dimerization can survive the quantum lattice fluctuations
but with a reduction [20% in Ref. 16, 15% in Ref. 17,
and 7% in Ref. 13 by using the same input parameters as
those of SSH (Ref. 2)] of the order parameter compared
with the adiabatic value. In the work of Fradkin and
Hirsch, ' they found that the low-energy behavior of the
system of finite ionic mass is governed by the zero-mass
limit of the theory, an n-component Gross-Neveu mod-
el' where n is the number of spin states. They pointed
out that for weak coupling the gap in the fermionic spec-
trum behaves like
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6, (0)-exp 2' U
(3)

b,(0)-exp
2U

(4)

So Fradkin and Hirsch' concluded that for spinless elec-
trons quantum lattice Guctuations destroy the Peierls di-
merization for small coupling constant if the ionic mass is
finite. Su, Wang and Yu' studied the same problem by
using the Green's-function technique and found a 8%
reduction of the gap function compared with the adiabat-
ic value. Caron and Bourbonnais calculated the T =0
K phase diagram of the continuous version of SSH model
by using the renormalization procedure but their method
is limited to the weak-coupling limit. McKenzie and Wil-
kins' proposed to mimic the effect of quantum lattice
fiuctuations by means of a random potential with Gauss-
ian correlations; but this approach is mainly phenomeno-
logical and also limited to the continuous version of SSH
model.

In this work, besides getting an electron DOS con-
sistent with the observed optical absorption coefficient,
we shall discuss the functional dependence of gap b, (0) on
the coupling constant u and phonon frequency
co„=2&X/M. In particular, for the input parameters of
SSH (Ref. 2) a 12% reduction of b,(0) will be derived
compared with the adiabatic value. Furthermore, for a
weak-coupling case an analytical formula for b,(0) will be
obtained,

II. THEORY

We start by using the original SSH Hamiltonian Eq.
(1), in which the operators for the lattice modes, u„and
p„, can be expanded by using the phonon creation and
annihilation operators,

u =g Ql/2MNcoz(b q+bq)exp(iqn)
q

p„=i g QMco& /2N (bt b)—exp(iqn) .

N is the total number of cells.
co~ =(4E IM)sin (q/2). Thus, H becomes

H= g t(c„c„+) +c„+) c„)
n, o

++co (btb + —,')
q

Here

+ ~ g g(k+q, k)(b q+b&)ck+~ ~cl, ~ .
N k, q

The coupling function g(k +q, k) is defined as

g (k +q, k) = 2ia—+1/2M'~ [sink —sin(k +q)] .

(8)

In order to determine the thermodynamical properties of
the coupling system we derive the free energy as follows.
Following the Bogoliubov's thermodynamical variational
principle, ' an upper bound of the free energy F ( T) can
be written as

for spin- —, electrons and finite ionic mass. This is the
same as that [Eq. (2)] predicted by Fradkin and Hirsch. '

However, for spinless electrons our result is

F(T) (Fo(T)
1= ——ln Tr[exp( PHD) ]—

+Tr [exp( PHO )(H H—o ) ]IZ +p—N, , (10)

7r6(0)-exp
V

being difFerent from Eq. (2) and predicting that even for
the spinless electrons the Peierls dimerization persists for
an arbitrary coupling constant.

Throughout this paper we put 5= 1 and ks = l.

Z=Tr[exp( —PHO)] and P=1/T. Here H is given by
Eq. (1) and Ho is a trial Hamiltonian. We introduce an
unitary operator exp[ —S ( T) ] to write the trial Hamil-
tonian Ho as

Ho =exp [
—S ( T) ]Ho exp [S( T)],

with the definition of S ( T),

S(T)= —g ' (b b)5(k +q, k)ck—+q ck
1 g(k+q, k)

Here we introduce for Ho the variational function 5(k, k), which is a function of the energies of the incoming and out-

going electrons in the electron-phonon scattering process. The form of 5(k', k) will be defined later. As the operators
under the trace operation can commute with each other, one can rewrite Fo(T) as

Fo(T)= ——ln TrIexp[S(T)]exp( PHo)exp[ —S(T)—]]
l

+Tr t exp[S ( T) ]exp( —PHo )exp[ —S ( T) ]exp [S( T)](H Ho )exp[ —S ( T)] j
—/Z +pN,

= ——ln Tr[exp( PHO ) ]+Tr [exp( —PHO )(H' Ho ) ]IZ—+iJN, , — (13)

where

H'=exp[S(T)]H exp[ —S(T)] . (14)
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The thermodynamical variational principle means that the variational function introduced by the unitary operator
exp[ —S (T)] should be adjusted so that Fo(T) reaches a stable minimum. Note that the variational function 5(k, k) is
only used for Ho, all parameters in H, Eq. (1), remain fixed.

The unitary transformation in Eq. (14) can be done as follows. We divide the Hamiltonian H [Eq. (8)] as
H =H +H', where H contains the first two terms and H' the last term. Then the transformation can be done order
by order,

H'=Ho+H'+ [S,H ]+[S,H']+ ,' [[K—,S],S]+0(a') .

The first-order terms in the transformed Hamiltonian H' are

H'+[S,H ]= g(k+q k)(bt q+bq}ck+q ck
k, q, o'

g g(k+q, k)5(k+q, k)(b, +b, )c„+, ck~
k, q, o

+ 1 g(k +q, k}
(Ek Ek+q )5(k +q, k)(b b)ck—+q ~ck (15)

where ek is the bare band function for electrons: ek = 2t c—osk. Now we can choose the functional form of 5(k +q, k)
to make the contribution of these first-order terms as small as possible. It is easy to see that one can choose

5(k+q, k)=1/(1+ ~ek+q
—ek ~/toq), (16)

thus the sum of first-order terms proportional to b ck+ ck is zero when sk (ek+ and that proportional to
bqck+q ck ls zero when ek & a«+q. We note that the ground state

~
6 ) of H, the noninteracting system, is a direct

product of a Fermi sea ~FS ) and a phonon vacuum state ~ph, O):

IG) =IFS) lph, O) . (17)

If we choose 5(k+q, k) as above, the first-order matrix element of H'+[S,H ] between this ground state and the
lower-lying excited states is zero. In this work we will introduce a variational parameter y in 5(k +q, k),

5( k +q, k) = 1/( 1+y i ek + ek i /toq )
—.

When y =1 this definition is the same as that in Eq. (16). We believe that for y & 1 the effect of higher-order terms has
been taken into account partly. Here we would note the following two points: (1) y is the only variational parameter
we introduced in this work; (2} if y is fixed to be 1 [as that in Eq. (16)], all the following results do not change qualita-
tively. The second-order terms are listed in the Appendix.

We choose the trial Hamiltonian Ho as

Ho=exp( —R) +to (b b +—,')++E«ck ck

+ g i4k(ck ck —ck ck exp(R) .
k) O, cr

Here

R = —g ( —I )"uo+Mto /2(bt b„)—
(19)

(2O)

and exp( —R ) is a displacement operator:

exp(R)u„exp{ —R}=(—1}"uo+g+1/2M¹oq(b +b }exp(iqn) .
q

%e note that 5k and Ek in Ho are not variational functions. They are determined by the transformed Hamiltonian H .
We substitute H' and Ho into Eq. (13) and get the free energy Fo( T},

2+k ok O,

[ &ko ko Ck ~—~ « ~~)(—k ~ k~ k. ~~ k ~~)].

Fo{T)=2Eu 0)V[1+2c (c —1 )]+—g ln 2 sinh ——g in[2+ 2 cosh{p Wk )]
2 1 ~~q 1

~k O,.
5(k' qr, k)[2 5(k' qr—, k)]- —(g(k' —~,k) ('

~k —~—k

(22)
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Details of the derivation are shown in the Appendix. Here the fermionic spectrum in the dimerized state is

W„=QE„'+a'„.
The renormalized band function is

(23)

Ek =ok ——g (ok+ok )
' coth 5 (k' —m., k)

~g(k' n. ,—k ) ~'

2

5(k' —vr, k)[2—5(k' —n., k)](ckt ck —cl", ck, „).
k') 0 k' —m. —k

The gap function is

bk =4auosin(k)][c —
—,'5(k, k —n )],

where

pWk
c =1+—g sin(k)5(k —n, k) tanh

4~uo Wk 2

The equation to determine uo is

2 2A1=—g sin(k)[1 —5(k —m., k)] tanh
4auo 8'k 2

(24)

(25)

(26)

(27)

In this paper we deal with the T =0 ground state, thus
tanh(PWk l2) =1 and coth[Ptok k l2] =1 in all above
equations. Equations (26) and (27) are basic equations in
our theory. If 5(k', k)=0 we have c =1 from (26) and
(27} becomes the same as that in the adiabatic
theory. ' ' In our theory 5(k —m, k) has the form [see
Eq. (18}]

5(k —m, k) = 1

I+(4ty/to )icos(k)
~

(28)

This function is shown in Fig. 1 where we use numerical
value to /2t =0.0327. As will be obtained in Sec. IV, for
this value of co and v =0.32 we have y = 1.469.
5(k —n. , k) has a sharp peak at k =+a./2, the Fermi
points in the one-dimensional case. The height of the
peak is 1 and the width of it is 2ko, where kn is deter-
mined by

5(n/2 ko —n, n. /2 ——ko ) = —,
' .

Thus

Cooper pairs via a phonon-induced effective attraction.
We note that, since

(4ty/co )icos(k)i
1 —5(k —

m, k) =
I+(4ty/to )icos(k)~

' (30)

b,(0)=4auoc, (31)

if the ratio co l4ty is small and thus the second term in
the square bracket of Eq. (25) can be omitted.

the logarithmic singularity in the integration of Eq. (27)
in the weak-coupling limit and adiabatic case, 2

f o~ dk/cos(k), is removed by the factor 1 —5(k —n., k)
as long as the ratio to l4ty is finite. However, now the
logarithmic singularity appears in the integration of Eq.
(26). The change of the singularity in these integrations
may result in a change of the analytical form of the gap
b, (0). We shall show this in next section.

Comparing Eq. (25) with that in the adiabatic case,
b, k =4auosin(k) [the gap b,,(0)=4auo], we have the gap
in the nonadiabatic case,

cos(n/2 ko)=to l. 4ty— 1.0

or

CO CO~

ko =sin
4ty 4ty

(29}
0.5

In the case of Fig. 1, 2ko =0.022, so the peak is very nar-
row. This is to say that only those electrons near the Fer-
mi point vr/2 ( —m/2) can be scattered by those near
—n/2 (m. /2) through the electron-phonon interaction
and contribute to the reduction of the gap b,(0) compared
with the adiabatic value. This fact is similar to that in
the Bardeen-Cooper-Schrieffer theory for superconduc-
tivity, only those electrons near the Fermi surface form

0.0 I

7r/2

k

FICJ. 1. The variational function 5(k —n., k) [Eq. (28)] vs k
relation. U =0.32, co /2t =0.0327, and @=1.469.
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HI. %VEAK-COUPLING LIMIT

First, let us discuss the weak-coupling limit
u =a /Kt~0. In this limit we can put the variational

parameter @=1 [because that, as was mentioned after
Eq. (18), y&1 is used to take into account partly the
efFect of higher-order terms of v] and the renormalization
band function Ek to be the same as the bare one:
Ek =ek T.hus, Eqs. (26) and (27) become

2ur ~/2 . 2 k
c —0.5r/[r+cos(k)] 2k+4 2 . qk 0.5r

c =1+ dk sin k cos k+4vx sin k c-
o r +cos(k) r+cos k

4v ~ndk .
q(k) (k}c —0.5r/[r+cos(k)] 2 2 . 2 0.5r

0 r+cos( ) r+cos k

2 —1/2

' 2 —1/2

(32)

(33)

where r =to /4t is a parameter related to the nonadiaba-
ticity and x is a dimensionless parameter proportional to
uo, x=uu&E/t. It is easy to see that the logarithmic
singularity appears in the integration of Eq. (32) and does
not in that of Eq. (33). As r is a small quantity (r (0.05
throughout this paper), in the following calculations we
shall omit all terms of order r ' and higher. Thus, the gap
1s

The form of the gap when r is finite, Eq. (38}, is the
same as that predicted by Fradkin and Hirsch' for spin-
—, electrons. Their conclusion is that when r is finite the
low-energy behavior of the coupling system is governed
by the zero-mass limit of the theory, an n-component (n
is the number of spin states) Gross-Neveu model, ' and
the gap in the fermionic spectrum behaves like

5(0)/2t =2d =2~vxc . (34) b,(0)-exp
2(n —1)v

(40}

=1+—(2c —1)ln———(2c —1)ln
u 2 u 2
7r d tr r+d ' (35)

The integrations in Eqs. (32) and (33}can be done as fol-
lows:

2ur & +1—x c —0.5r/(r+x)
c =1+ x

7F d X r+x

Thus they also predicted that for spinless electrons quan-
tum lattice fiuctuations destroy the long-range dimeriza-
tion order for the small coupling constant if the ionic
mass is finite. However, if the number of spin states n is
written explicitly in our formulas our result will be

4v & 2c 05r r+x
d r+x

b,(0)-exp
nu

(41)

4vc 2/e
r+d (36)

For r =0 (adiabatic limit), the solution of Eq. (35) is c = 1

and from Eq. (36) we get

for a weak-coupling limit and finite r When n =. 2 these
two equations are the same. But when n =1, the spinless
case, Eq. (41) still predicts that a long-range dimerization
order persists even in the weak-coupling limit. This con-
clusion is the same as that of Ref. 19.

8t6,(0)=—exp
e

7r

4v
(37) IV. GENERAL CASE

b,(0)=—exp
St m

e 2u
(38)

Comparing (38) with (37) one can see that the formula for
gap when r)0 is very different from that when r =0.
The ratio

4(0)/6, (0)=exp
4u

goes to zero when u ~0. This indicates that the quantum
lattice fluctuations have changed the low-energy
behaviors of the coupling system even if the nonadiabatic
parameter r is small.

which is the same as that of the adiabatic solution. ' '
When r &0 is a finite quantity, the solution of these two
equations is

In the general case we have to do the numerical calcu-
lations for determining the variational parameter y and
cannot get the analytical formulas as those in Sec. III.
We list some of our numerical results in Figs. 2—4.

Figure 2 shows the gap h, (0) and the optimum value of
variational parameter y as functions of the coupling con-
stant v in the case of co /2t =0.0327. For comparison,
the short-dashed line is the result of adiabatic approxima-
tion. It is obvious that quantum lattice fluctuations
reduce the gap b,(0) compared with the adiabatic value
b,,(0), and the ratio 6(0)/b, ,{0) is a monotonically in-
creasing function of u. Equation (39) shows that this ra-
tio is 0 at the u ~0 limit. It goes to 0.98 at u =0.5. For
the input parameters used by SSH:~ %=21 eV/A2,
t=2. 5 eV, a=4. 1 eV/A, M=3145 eV '/A, we have
u=0. 32 and co /2t=0. 0327. Figure 2 shows that the
reduction for this case is 12% [b,(0}/5,(0)=0.88]. Here
we list some results of previous authors for this redution:
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FIG. 2. The gap 6(0) (solid line) and the optimum value of
variational parameter y (long-dashed line) as functions of the
coupling constant u. co /2t =0.0327. The short-dashed line is
the result of the adiabatic approximation.

20% of Ref. 16, 15% of Ref. 15, 7% of Ref. 13, 8% of
Ref. 19.

The optimum value of variational parameter y is a
monotonically increasing function of u. It goes up from
y=l at the v~0 limit to y=3.763 at v =0.5. This may
be an indication that the effect of the higher-order terms
(of order a and higher) has been taken into account part-
ly, as was mentioned after Eq. (18). On the other hand,
since the effect of quantum lattice fluctuations is the
strongest at the u~0 limit (the reduction is nearly
100%},we can say that the weaker the effect of quantum
lattice fiuctuations, the larger is y.

Figure 3 shows the gap b,(0) and the optimum value of
variational parameter y as functions of the phonon fre-
quency ~ in the case of v =0.32. The horizontal short-
dashed line is the result of adiabatic approximation:
b,,(0)/2t=0. 13. We can see clearly that the quantum
lattice fluctuations gradually reduce the gap b, (0} when
the phonon frequency co increases. The ratio
b,(0)/6, (0)=0.65 for tu„/2t=0. 1. The optimum value
of variational parameter y is a monotonically decreasing
function of m . This means that the stronger the effect of
quantum lattice fluctuations, the smaller is y.

For calculating the electron DOS p(E) we use the in-

put parameters of SSH, u=0. 32 and co /2t=0. 0327.
p(E) is defined as

0.15

FIG. 4. The electron DOS. co /2t=0. 0327 and U=0. 32.
The dashed line is the result of the adiabatic approximation.

p(E)= 1 1

2m ~de/dk~ ii„=E
(42)

Here 8'k =QEk+ 6k and Ek and b, t, are shown in Eqs.
(24) and (25), respectively. In Fig. 4, we show our result
for the electron DOS p(E) compared with that of the adi-
abatic approximation (dashed line in the figure) using the
same input parameters. The inverse-square-root singular-
ity disappears but there is a peak around E=b, (0},which
has a displacement from the adiabatic value b,,(0) (the
vertical dashed line in the figure): b, (0)/b, ,(0)=0.88.
Besides, there is a significant tail below the peak. As the
optical absorption coefficient a(co) of the band-to-band
direct transition is proportional to the joint density of
states,

a(cu) -p(E =co/2), (43)

b, =4'k 1

2 1+(4ty/tu )icos(k)i
(44.)

with that in the adiabatic approximation:
b, k =4auosin(k), one can see that the subgap states come
from the quantum lattice Quctuations, i.e., the second
term in the square bracket of Eq. (44).

V. CONCLUSIONS

we conclude that our calculated DOS is in consistent
with the observed optical absorption coeScient in un-

doped trans-polyacetylene.
Comparing our gap function [see Eqs. (25) and (28)]

0.1-

0.05—

0.0
0.0 0.1

FIG. 3. The gap 5(0) (solid line) and the optimum value of
variational parameter y (long-dashed line) as functions of the
phonon frequency co /2t. u =0.32. The horizontal short-
dashed line is the result of the adiabatic approximation.

We have studied the effect of quantum lattice fluctua-
tions on the dimerized ground state of the half-filled SSH
model. Our results show that, at least in the weak-
coupling limit, quantum lattice fluctuations change the
functional dependence of the gap b,(0) on the coupling
constant u even if the ratio tu„/4t is small (but finite). In
the spin- —,

' case our result is the same as that predicted by
Fradkin and Hirsch. ' But in the spinless case we still
predict a long-range dimerization order even if the cou-
pling is weak and co /4t is finite. %e have shown by nu-

merical calculations that our variational approach gives a
good description of the continuous variation of the gap
b,(0) in the fermionic spectrum as a function of the cou-
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pling constant u or the phonon frequency co . By using

the same input parameters as those of SSH (Ref. 2) we get
a 12%%uo reduction af the gap b,(0) compared with the adia-
batic value. The calculated electron DOS p(E) does not
have the inverse-square-root singularity but have a peak
around E=h(0). There is a significant tail below the
peak. These are in consistent with the observed optical
absorption coeScient in undoped trans-polyacetylene.

From our work we can say that the main effect of
quantum lattice Quctuations is twofold. One is to lower
the effective dimerization potential seen by electrons, as is
represented by the factor 1 —5(k qr, k—) in Eq. (27) or in
the fifth term af Eq. (A3) for Fo(T). The other is to in-

duce an interaction term of electrons, the last ane in Eq.
(A2). The Hartree-Fock approximation is used to decou-
ple the interaction term and leads to c ) 1, as shown in

Eq. (26}. As was mentioned before, Eqs. (26) and (27) are
two basic equatians in our theory.

In our model system, quantum lattice fluctuations
compete with the long-range dimerization order and the
physical properties of the system should be determined
by this competition. Figure 1 shows that this competi-

tion influences mainly those electrons near the Fermi
points km/2. Figures 2 and 3 show the effect of this
competition with varying v and t0: When v is small but
co large, the quantum lattice fiuctuations dominate;
when U is large but co small, the long-range dimerization
order dominates.

In this work, our main interest is concentrated on the
small co case (co /2t(0. 1 throughout this paper) be-
cause this is the case of practical interest. If the ratio
co /2t is large it might be necessary to reconsider the
functional form of the variational function 5(k', k). We
leave this problem for further investigation.
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APPENDIX

In this appendix we show mathematical details of the analysis in Sec. II. Equation (13) gives the upper bound of the
free energy,

Fv( T)= ——ln Tr[exp( —PKv )]+Tr[exp( 13K& )(H' ——Hv )]/Z+ pN, ,
1

(Al)

where Hv is given by Eq. (19) and H' is the transformed Hamiltonian Eq. (14). The second order terms in H' can be
collected as follows:

[S,K']+ ,'[[H,S],S]=—gg ' ' (bt b)(b ~ b—)(e„——e )
q, q' k, k', cr Nq COq~

X5(k+q, k)5(k'+q', k')[cz+q ~cz ~5& +q I, ci,.+q. ci, ~—51, + I, , ]

k+ k k' ' k'

q, q' k, k', o Q)q

5«+e k)5(k'+—e' k')l[ck+q ck', 5k'+q', k ck'+q' ck, 5k+q, k']

g(k +g, k)g(k' —g, k')

q k n k', cr' Nq

X[25(k+q, k) 5(k+q, k)5(k' q,
—k')]cI, ~ c—

I, cit. ,ci, . (A2)

Here 5k +q k is the Kronecker 5 symbol. All terms of higher order than o, in H' will be omitted in the following treat-
ment. Substituting Hv and H' into Eq. (A 1}we can get an upper bound of the free energy
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in[2+2 cosh(PWk )]
1

k &O, o.
Fo( T)=2Eu ~+—g ln 2 sinh

1 COq

P 2

+ X ~k(Ck, Ck, Ck —,Ck —,
k &O, cr

+ g 4iauosin(k)[1 —5(k, k —m)](ck ck ck ck &)
k &O, cr

+ y y coth (&k' &k )5 ( ik )(ck, hack, e ck —1r crck 1r I7—)
1 ig(k', k)i'

k' k &O, cr k' —k 2

2N k'&O, k &O, e
5(k' —n., k)[2—5(k' —n., k)]

X[1+(ck&ck~ ck ~&ck &~)(ck &ck z ck «ck' —m, e)]

+ g g sin(k)sin(k')5(k —n, k) [2—5(k', k' —~) ]
1 2a

2N k&p, cr k'&O, cr'

~ j
k, e k —n, e k —n, rr k, n k', (r' k' n, cr' —k' —~u k , ,(r''

Ek(ck, ck, ck , ck ——,
k&O, o

i5k( k ~ck „~ ck n, ec—k ~)—,
k&p, o

(A3)

where the spectrum for the elementary excitations in the dimerized state is

Wk =QE„+6k . (A4)

The gap function 6k and the renormalized band function Ek will be determined later. The thermodynamical averaging
. ) is defined as

( ) =Tr[exp( /HO ) ]—/Tr[exp( PHD )] . — (A5)

Because of the quadratic form of the trial Hamiltonian Ho, in deriving Fo(T) [Eq. (A3)] we have decoupled the correla-
tion term by means of the Wick's theorem:

(ck+q ~ck ~ck ~ Ck ~ ) —5 ~(ck ~ ~ck ~) (Ck +~ ~~ck 0 ) +5 ~(ck+~ ~ck ~)(ck~ ~ ~ Ck ~ )

+5k+ k5 (c„+ ck+, )(ck ck

Ek and b, k in Fo( T) should be determined by minimizing Fo( T),

5FO( T) 5FO( T)

By di6'erentiating it is easy to get

Ek =ok ——g (ok+ok ), ' coth 5 (k' —m., k)1 (g(k' n.,k ) ~2 ~~—k ~ k2—
N k&O 2

~g(k ~, k)P 5(k' —n. , k)[2—5(k' —m, k)](ck ~ck ~
—ck ~~ck ~~),

N k, p mk. ~ k

bk =4auosin(k)[c —
—,'5(k, k —m. )],

where

1 2a PWk
c = 1+—g sin(k)5(k —m., k) tanh

4auo Wk 2

The equation to determine up is

BFO( T) =0,
Bup

(A7)

(A8)

(A9)
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which results in

2 2a ~k P~k
1 =—g sin(k) [1—5(k —n, k) ] tanh

4auo Wk
(Alo)
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