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Nonequilibrium dielectric behavior in glasses at low temperatures: Evidence for interacting defects
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We find that recent low-temperature nonequilibrium dielectric experiments indicate that glasses have

strongly interacting defects. While many of the features found in the experiments can be explained by
the standard model of noninteracting two-level systems, we find that the frequency dependence cannot.
Using a Monte Carlo simulation of a nearest-neighbor Ising spin glass, we show that interactions be-

tween defects can qualitatively explain the experiments because they lead to the formation of clusters
and a hole in the distribution of local fields.

I. INTRODUCTION

The low-temperature properties of glasses, such as the
specific heat and the thermal conductivity, have been
traditionally explained by the model of two-level systems
(TLS) which are usually thought of as tunneling
centers. ' The standard model of two-level systems as-
sumes for the most part that the TLS do not interact with
one another. Recently, however, several groups have
suggested that interaction between defects may be crucial
to our understanding of the universal properties seen in
amorphous materials. Unfortunately, since both in-
teracting and noninteracting models have been able to ex-
plain the low-temperature experiments, there has been no
way of clearly determining whether or not interactions
between defects are truly important. This absence of a
definitive experimental test may be due to the fact that
most experiments on amorphous materials are equilibri-
um measurements.

Recently, however, B. Tigner et al. at Stanford have
undertaken nonequilibrium dielectric experiments which
show that interactions do indeed play an important role
in the low-temperature physics of glasses. They have
discovered unexpected behavior in the dielectric proper-
ties of glasses such as SiOz, SiO„(x=2. 1), and poly-
mers. Using an ac capacitance bridge, they have been
studying the history-dependent dielectric constant of 1—3
pm films of glass samples at temperatures between 20 and
1000 mK. The amplitude of the ac fields range from
1X10 to 5X10 V/m at frequencies between 1 and 10
kHz. After the sample is cooled, a large dc field
( —10 —10 V/m) is applied. As a result, the capacitance
jumps up and then decays logarithmically with time.
(They also find that the resistance, which is out of phase
with the ac signal, jumps up and decays logarithrnically
with time. ) After applying a axed voltage for some tixne
(a day), they subsequently sweep the dc bias field and find
that a hole has formed in the capacitance at the previous-
ly applied bias voltage. In the absence of an applied field
they find a hole at zero bias. They have also examined
the temperature and ac frequency dependence of the

slope of the logarithmic time decay (dC/d lnt, where C is
capacitance). They find that the magnitude of the slope,
as well as the size of the jump, decreases with increasing

temperature and increasing frequency.
To understand this behavior, we can start by asking

the following question. To what extent can these experi-
ments be explained by the standard model of noninteract-
ing two-level systems? As we shall see in Sec. II, the
jump in the capacitance and its subsequent logarithmic
decay is consistent with the model of noninteracting TLS.
In addition, the decrease in the magnitude of the slope of
the logarithmic decay with increasing temperature is also
consistent with noninteracting TLS. However, the stan-
dard model predicts that the slope of the logarithmic de-
cay will be independent of frequency because the frequen-
cy is much smaller than the effective TLS energy split-
ting. This lack of frequency dependence contradicts ex-
periment. This leads us to consider interactions between
defects mediated by the strain field. In Sec. III we identi-
fy two important consequences of interactions: (1) a hole
in the distribution of local electric fields seen by single di-
poles; and (2) clusters of strongly interacting defects. We
have studied these effects using a Monte Carlo simulation
of a three-dimensional nearest-neighbor Ising spin glass,
and we find qualitative agreement with experiment. In
Sec. IV we argue that clusters are crucial to the under-
standing of the frequency dependence seen in the experi-
ments. In particular, we include the time-dependent hole
in the density of states at low energies in calculating the
capacitance due to TLS. We find that the resulting fre-
quency dependence is much smaller than that seen exper-
imentally. This implies that even single TLS with a den-
sity of states that include correlations are insufficient to
explain the experiments and hence, that clusters play an
important role in glasses. In using the term "cluster", we
are referring to a group of defects with collective excita-
tions which result from correlations.

II. NONINTERACTING TWO-LEVEL SYSTEMS

We consider a two-level system that is sitting in a
double-well potential with an asymmetry energy 6, and a
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Ho=—0

%hen the external dc and ac fields are applied, they will
affect the energy asymmetry of the wells. Thus

1 0
0 —1

(2)

and

tunneling matrix element 50 describing transitions be-
tween the wells. The Hamiltonian is'

field is far from resonance, we will get a response in phase
with the ac field proportional to B,. It is the analog of
this response which contributes to the measured capaci-
tance.

Now let us include the relaxation times and write down
the Bloch equations

dS 1y(—S 8, —S,B )+—S„=O,
~2

S 1y(S—,B„—S„B,)+—
Sy ——0,

72

1 0
H„= 0 1

pE(t), (3)

dS, 1' —y(S„B,—s,B, )+—(s, —(s, ) )=0,
1

where p is the electric dipole moment of the two-level
system, E~, is the external dc electric field,

E„(t)=E„cosQt is the small perturbing ac field, and 0
is the ac frequency. It is convenient to diagonalize
H0+Hz, and treat H„as the perturbing Hamiltonian.
In this new basis the Hamiltonian becomes

() E/Z 6,0/Z
+ (4)

where b, =b, +2p E~, and Z=QE +50. In this new

basis, the dc Geld and the energy splitting of the two-level
system will produce an effective field along the z axis,
while the ac field will be in the x-z plane at some angle to
the z axis. Notice, however, that Ez, now has x and z
components. This implies that the polarization will also
have x and z components. When the dc field is first ap-
plied, the two-level systems will be out of thermal equilib-
rium in terms of the population of the levels. They will
equilibrate in a characteristic time r, . If we think of the
two-level systems as spins, then we can say that the z
component aligns with the total field in a characteristic
time ~&. Notice that the dynamics of this system can be
described with the Bloch equations of motion that are fa-
miliar from NMR. ' '" According to these equations, if a
spin is not aligned along the field, then it will precess
about the total field.

Let us first consider an elementary example in which a
spin S precesses around an effective field
B=Bo+B,cosQt where the static field Bo points along
the z axis and the time-dependent field points along the x
axis." If we momentarily ignore the relaxation terms,
then the equation for precession is simply:

dS =ySXS,
dt

where y is the gyromagnetic ratio. If we transform to the
frame which rotates about the z axis with frequency 0,
then there is a component of the ac field which is static
and points along the new x' axis. In this frame the equa-
tion of motion is

ds =SX [(co0—Q)z+co,x'],
dt

where ct)o=&BO and co& =yB &. Notice that even if the ac

where the spin S=o/2, o is a vector of Pauli matrices,
and ~2 is the transverse dephasing time due to spin-spin
interactions. (S, ) is the thermal equilibrium value of S„
and is given by (S, )=tanh(pyAB, (t)/2)/2 where
p=1/kT. The effective magnetic field is B=B~,+B„
where —fiyB&, =(0,0,Z) and

AyB„/—2=(~0/z, O, ~/z)p0E„cosecosQt .

Here po is the magnitude of the dipole moment, and 8 is
the angle between the dc field and the dipole moment.

Since the perturbing ac field is a small perturbation, we
can linearize the Bloch equations by only keeping terms
to first order in 8„. This means that we expand
(S, ) = tanh(pyfiB, (t)/2)/2 in a Taylor series, and we
look for solutions to the Bloch equations of the form
S(t)=S(t)+S'(t), where S(t)=(O,O, S,(t)) is zeroth
order in B„and S'(t) is first order in 8„. Thus the
linearized Bloch equations become

OS, +—[S,(t)—S,(oo)]=0,
dt 'Ti

dSx —coP'+ —S„'=0,
dt

(10)

dSy 0 11 0+cog„+—S —5aS, (t) cosQt =0,
dt

ds,' +—(S,' —5A, cosQt) =0,
7]

(12)

(13)

ds(t) . i + . 0+i co0——S (t) ia5S, (t—)cosQt=0
dt ~2

(14}

and the equations for. S is the complex conjugate of
this.

It is straightforward to write down the solutions of
these equations.

where the resonance frequency co0=yB, ~, = '/fi, —
5= —(2b/A'Z)p0E„cos8 is first order in E„,the equilib-
rium value of the aligned spin S,(~)= —tanh(pt'/2)/2,
a=50/b„and A. =fiP[1—4(S0(oo)) ]/4. If we introduce
raising and lowering operators S+—=S„'+iS', then the
equations for S+ and S separate. The equation for S+
becomes
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S,(t)=S,(~ )+[S,(0)—S, ( ~ )]e (15)

S,'(t )= [cosQt+r, Q sinQt ],1+ lQ
(16)

5a[(cop —i/~2) cosQt —iQ sinQt]S, ( ao ) 5a[(cop+i /rl i—lr2) cosQt i Q—sinQt ][S,(0)—$, ( ao )]e

(cop —i /r2) —Q (cop+i /r, i l—v2) Q—

(17)

The equation for S (t) is the complex conjugate of the
equation for S+(t ). S, (0) is the initial value of S, (t )

shortly after the dc field is applied. We have ignored
terms that oscillate at frequency cop since we are only in-

terested in terms that oscillate at the ac frequency. The
expression for S, (t ) shows that an individual TLS relaxes
exponentially back to its equilibrium value S,(00). This
exponential time dependence feeds into S+(t). When it
is averaged over the TLS parameters, it will give the loga-
rithmically slow time decay seen in the capacitance.
Quantum mechanically, S* are raising and lowering
operators that govern transitions between the two energy
levels. Equation (17) indicates that the amplitude for
such transitions is enhanced when the system deviates
from equilibrium. This makes sense since such transi-
tions are needed to restore equilibrium.

Now we must relate the Bloch spins to the polarization
in the direction of the applied electric field. In the origi-
nal basis of Eqs. (1)—(3), the dipole moment operator n of
a TLS can be written as a product of a real-space opera-
tor (p) and a spin-space operator (cr, ), i.e., n =o,p
Thus the Hamiltonian for coupling to an electric field is
m" E, where the dot product refers to real space [see Eqs.
(2) and (3)). If we transform rr to a basis in which
Hp+Hz, is diagonal as in Eqs. (1) and (2), then

kpPp cosH
Xl6

COp+ 0 Cgp 0
X 2+1+r, 2(cop+ Q ) 1+r l2(cop

—Q )

Xrl2[S, (0)—S, ( ~ )]e (22)

X."= Epp cosH P[1—4[S, ( oo )] ]rlQ
1+riQ

(23}

kppp cosH
lk

1

1+(cop+ Q) rz

1 pr2$, (~),
I+(cop —Q) r2

(24)

cop+ Q COp 0
X + 2$, ( 00),

1+(cop+0) r2 1+(coll—Q) H2

(21}
2

kpPp cosH
X2+

p
7T= CT + O' P. (18)

b,ppp cosH
X2+

Using S=cr/2 and p E= ppEcosH, we —see that the
component pl of the dipole moment along the direction
of the field is given by

1
X

21+(cop+ Q ) r j2 1+(cop —Q ) r l2

Xr,2[S,(0)—S, ( 00 ) ]e (25)

pp cosO
2ES,'(t ) hp(S++S )

(19)

bppcosH P[1—4[$,(~})]
I+HQ

(20)

where the average values (a, ) and (o„) found in (w)
are given by the solutions to the Bloch equations.

The susceptibility is given by g=g'+y"=dp~~/dE„,
where y' is in phase and y" is out of phase with the ac
signal. For convenience we write y'=y,'+y', ++yz+ and
X"=X,"+Xl'++X@'+,where X, comes from S,' in Eq. (16)
and X, 2+ from $ in Eq. (17}. Thus

P(b, hp)= P
0

Thus the average (X)T„s is given by

(26)

where 7]p =72 7] and Z= —%cop. Notice that only

Xz+, which is proportional to exp( —t /r, ), will contribute
to the time-dependent capacitance.

We must average y over the distribution of two-level
systems and over the dipole orientation angle 8. The usu-
al assumption for the distribution of parameters is
P(lL, X)=P, where P is a constant and the tunneling ma-
trix element is given by the WKB formula
b,p=fuup exp( —X). This implies that
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p +max 5O d Qp
(g&„s=—f dS f f d(cosg)y(h, bo, cos8), (27)

where the factor of —,
' comes from the average over cosO.

The capacitance is then given by

~(.,+(~ &„,)C=
d

(28}

~o+
c,' c,' 2W4 Z

—1

P
(29)coth

2

where A is the area of the capacitor plates and d is the
distance between them. ep is the permittivity of free
space.

In order to compare the calculated capacitance with
experiment, we estimate the values of the parameters and
do the integral in Eq. (27) numerically using Monte Carlo
integration. ' We now discuss our choice of parameters.
In the standard model, an excited two-level system de-
cays to the ground state by emitting a phonon. Thus the
longitudinal relaxation rate is given by'

2

I

lnt for various temperatures. Since all the time depen-
dence comes from yz+, only this contribution to C is plot-
ted in Fig. 1(a). We have used the values for
SiOz.. P=10 erg 'cm, y=1 eV, p=2. 2 glcm,
c, =5.8X10 cm/s, c, =3.8X10 cm/s, po=0. 5 D,
Ed, =2X10 V/m, 3 =0.5 cm, d= 1 pm,
bg'"=2X10 K, bo'"=4 K, and 6 '"=4 K. Notice
that the capacitance decays logarithmically with time in
qualitative agreement with experiment. This logarithmic
behavior depends on the fact that the TLS distribution
P(b„X) is a constant. It is tempting to speculate that the
logarithmic dependence arises from the TLS average over
exp( t /r&—), since this gives lnt. However, the presence
of other TLS factors in yz+ makes this far from obvious.
Indeed, (yz'~ )rLs does not go simply as lnt even though

0,40

where y is the deformation potential, p is the mass densi-

ty, ci is the longitudinal speed of sound, and c, is the
transverse speed of sound.

The transverse relaxation time ~2 is the characteristic
time for dephasing and spectral di8'usion due to dipole-
dipole interactions. Like 1, it has been measured in Si02
in phonon and electric echo experiments. ' ' Since we
are interested in the behavior of the TLS which take a
long time to tunnel, we use the expression that is ap-
propriate for times much longer than the shortest r, . In
this case rz is proportional to T . Since (y)rLs is rath-
er insensitive to ~2, we ignore its dependence on 6 and

hp, and use the experimental value

0.30
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where T is in Kelvin. Note that ~2 )&0 for the experi-
mental range of temperatures.

We also need an expression for the initial value of the
spin S, (0). When E=O, the TLS eigenvalues are
+ ,'e=+ ,' Qb, 2+ b—o. Th—us S,(0)= —tanh(Pe/2) /2. In
the adiabatic limit the eigenfunctions evolve continuously
as the dc field is applied. Thus the TLS eigenvalues
+e/2 (

—e/2) in the absence of an electric field become
+8/2 ( —8/2} when we turn on the field. [Note that if
the field is turned on instantaneously, the TLS population
can be inverted due to the sudden level crossing which
occurs if (I+2p.Ed, /5) &0 (or equivalently if hb, &0).
In this case S, (0)=(—tanh(Pe/2)/2} Xsgn(hb, ). Thus,
if I+2p.E~,/I, &0, then S,(0} has the opposite sign of
that found in the adiabatic limit, and the capacitance will

initially jump down when the dc field is applied. Experi-
xnentally such fast switching and short observation times
are very difficu1t to achieve, and the adiabatic limit is the
correct one to choose. ]

In Fig. 1(a) we have plotted the capacitance C versus

0.00040

0.00020

0.00000
10 10 10 10

Time (sec}
410

~le

10

FIG. 1. (a) Capacitance versus lnt for various temperatures
for noninteracting TLS. Only the contribution from g2~ is

shown since this is the only term with time dependence. (b) y2'~

versus lnt for various temperatures for noninteracting TLS. We
have used the values for Si02.. P=10 erg 'cm, y=1 eV,
p=2. 2 g/cm', cI=5.8X10 cm/s, c, =3.8X10' cm/s, pp 0.5

Debye, Ed, =2X10 V/m, A =0.5 cm, d=1 pm,
dmin 2X 10

—6 K gmax 4 K d gmax 4
Q=2mv„with v„=1 kHz, though the curves do not change
with frequency over the range of frequencies used experimental-

ly.
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gz'+ has a factor of exp( —t lr, ). Using the same parame-
ter values as in Fig. 1(a), we plot (gz'+ & TLs versus lnt for
various temperatures in Fig. 1(b}. We see that the curves
are flat at short times. To understand this, note from Eq.
(25} that the TLS with a short relaxation time r& have

large energy splittings fuuo»A'Q. This implies that the
frequency-dependent terms in yz'+ cancel, leaving a flat

time-independent contribution from the TLS with small

energy splittings and hence long relaxation times.
In Fig. 2, we plot the magnitude of the slope

~dC/d lnt~ versus temperature using the same parame-
ters as in Fig. 1. We find that the temperature depen-
dence of this relaxation rate agrees qualitatively with ex-
periment when poE-kT. To understand this behavior,
notice that the temperature affects the relative popula-
tions of the energy levels as expressed by terms such as
tanh(Pe/2) and tanh(+/2). At low temperatures where

kT(poE&„ the jump in the capacitance will increase
with decreasing temperature because the lower the tem-
perature, the farther the initial population of the two-
level systems is from the new equilibrium defined by the
dc field. However, even though the jump increases, the
slope does not change much with temperature at low
temperatures. This disagrees with experiment which
finds that the jump tracks the size of the slope. At high
temperatures where kT&poE&„ the energy asymmetry
introduced by the dc bias is relatively small, and the
thermal population of the energy levels does not need to
readjust very much. Hence the capacitance will not
change much when the dc field is turned on, and the
slope (dC/d lnt) will be close to zero. Thus the cross-
over from a finite slope at low temperatures to zero slope
at high temperatures occurs at a temperature kT-ppEs, .
If we plug in numbers with the electric field E-2X10
V/m and dipole moment p-0. 5 D, which is the dipole
moment of defects intrinsic to Si02, ' then poE-200
mK- T. The fact that the experiments are in the regime
where poE-kT is further confirmed by the sweeps of the
dc field which find a hole in the capacitance at zero volt-
age. They also find that they can burn a hole by applying
a given voltage to the sample for a while (-hours). As

they raise the temperature the depth of the hole de-
creases. The width of the hole in volts can be defined as
the width of the region which fills in with increasing T.
The typical width of the hole in SiO„ is 10 V/m and the
typical temperature at which the hole is diminished is
-200 mK. The fact that the hole disappears at the typi-
cal experimental temperatures implies that kT -poE.

We also find that the noninteracting TLS model is con-
sistent with a hole in the capacitance versus voltage. In
Fig. 3 we have plotted the capacitance C versus poE&, at
T=0.05 K and T=0.2 K. In making this plot we have
assutned that the system is in equilibrium at E~, =0 and
that the dc field is swept infinitely fast. Thus we set
t = ao for Ez, =0, and t =0 at all nonzero voltages in Eq.
(22). Here we assume that the dc field is turned on slowly
enough to avoid inversion of the energy levels, i.e., we set
S,(0)= —tanh(Pe/2)/2. Notice that there is a hole cen-
tered at poE&, =0. This agrees qualitatively with experi-
ment. Crudely speaking, the hole follows the thermal
population factor S, (0)=—tanh(Pe/2)/2 found in Eq.
(22). This factor tells us that when e «2kT, the TLS en-

ergy levels are equally populated and will not respond
strongly to the ac field. On the other hand, when
e &&2kT, the lower level will have a greater probability of
being populated than the upper level and the response
will be greater.

While experiment and two-level system theory agree,
at least qualitatively, on the time, voltage, and tempera-
ture dependence, they disagree about the frequency
dependence of the slope of the logarithmic time decay.
The theory of noninteracting TLS says there is no fre-
quency dependence, while experimentally the slope de-
creases roughly logarithmically with frequency. The
reason why a noninteracting TLS model has no frequency
dependence is because the experimental frequencies 0,
which are on the order of kHz, are much smaller than the
typical effective energy splitting Z, which are on the order
of GHz. This can be seen in Eq. (22) where the contribu-
tion of 0 is negligible because ~0 &&Q. If we include TLS
with such small energy splittings that coo-0 by reducing
60'", then the magnitude of the jump in the capacitance
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I

0.2 0.4
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FIG. 2. Magnitude of the slope ~dC/d lnt
~

versus tempera-
ture for noninteracting TLS. The parameters are the same as
those used in Fig. 1.

FIG. 3. Capacitance versus p0E&, for noninteracting TLS.
The capacitance has been calculated using pl~, gz~, and g,'.
The parameters are the same as those used in Fig. 1.
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becomes frequency dependent, but the slope remains fre-
quency independent. This is because TLS with such
small energy splittings have very long ~, 's and decay very
slowly [see Eq. (29}j. They essentially contribute a con-
stant to the capacitance until they decay. (For a TLS
with 6=0and ho'"=2X10 ' K, z&

—10' sec at 50mK.
Note that a small value for 50 corresponds to a large bar-
rier height which is physically reasonable. )

These long-lived TLS can experience a population in-
version due to level crossing which will cause the capaci-
tance at long times to fall below the value it had before
the dc field was applied. As a result the theory of in-
dependent TLS predicts the change in capacitance due to
the dc field to be positive at first and then to have a nega-
tive dip at longer times. As we mentioned earlier, when
b, b, &0, S, (0)=( —tanh(Pe/2)/2) Xsgn(b, b, ) can change
sign, indicating population inversion. If the condition
66&0 is satisfied, then an estimate of the probability
P„„„for such an inversion to occur is given by the
Landau-Zener tunneling probability'

Ao~, m
2

zener xp
Po

(31)

III. INTERACTING DEFECTS

The lack of agreement on the frequency dependence in-
dicates that interactions between defects need to be in-
cluded. The exact form of the interactions is not crucial
as long as random. ness is included. Thus we shall see that
a very simple system which has both randomness and in-
teractions, namely a nearest-neighbor Ising spin glass,

where ~„ is the time it takes for the dc field E to rise to its
final value. (The prefactor is of order unity. ) This indi-
cates that population inversion is appreciable when the

exponent is small, i.e., when bp~ +2RppE/r„m In the.
case of the Stanford experiments, the rise time v.„-100
msec implies that b,p-3X10 K if Ed, =2X10 V/m.
Setting hp=e in Eq. (29) gives an upper bound for r) of
—10 sec at 50 mK. This indicates that the dip will
occur about 10 sec after the dc field is applied. The fact
that the negative dip is not seen experimentally, in spite
of observation times as long as 8 X 10 sec, implies that
the model of noninteracting two-level systems is not ap-
plicable, though the expression for I'„„„in Eq. (31) is ad-

mittedly quite crude. From this expression for P„„„,we

see that lowering r„and/or increasing the dc field E leads
to the population inversion of TLS with larger 50, and
therefore smaller ~„so that the negative dip will occur
earlier and be deeper. For example, if ~, =10 msec, ten
times faster than in the current Stanford experiment,
then b,0-10 K and ~, ~10 sec at 50 mK. The corre-
sponding time trace for the capacitance with
Ao'"-2X10 ' K is shown in Fig. 4; the dip is clearly
visible at time scales of order ~, . It would be interesting
to do a more systematic search for such a negative dip ex-
perimentally. Since we do not believe that interacting de-
fects predicts such a dip, this would be a way of
differentiating between interacting and noninteracting de-
fects.

0.20 4 T=0.05 K

(:T=0.1 K:T=0.2 K

0.10
LL
D

0.00

-0.10
10 10 10 10

Time {sec)
10 10

FIG. 4. Capacitance versus lnt for noninteracting TLS. Only
the contribution from y,'~ is shown since this is the only term
with time dependence. The parameters used are the same as for
Fig. 1, except that ho'"=2X 10 ' K. Using this smaller value
for 6() '" implies that more TLS are being averaged over in Eq.
{27). Notice the negative dip at long times produced by very

slowly decaying TLS with inverted populations.

gives qualitative agreement with experiment. Still, it is
worth taking a moment to discuss the nature of the in-

teractions in insulating glasses.
Since the dominant interaction between defects is

mediated by the strain field, we start by considering de-
fects with internal degrees of freedom that couple linearly
to the strain field:

H=o p(r }s p(r), (32)

where e p(r) is the symmetric strain field and o p(r ) is

the stress Geld associated with the defects. The indices a
and P range over the real-space directions, x, y, and z and
the sum over repeated indices is understood. As in the
two-level system model of glasses, ' we assume that the
defects have internal degrees of freedom. Thus cr,p can
be replaced by I' p.S where S is a spinlike TLS operator
represented by Pauli matrices. F

&
is a vector in spin

space and a matrix in real space. The spin representation
is that of the energy eigenstates of the two-level system.
S„and S are operators for transitions between energy
levels, while S, does not involve transitions and is Ising-
like.

The defects interact with each other via the strain Geld.

First let us consider the effective S,S, interaction which

does not involve transitions between energy levels. Using
either elasticity theory or second-order ' perturbation
theory to eliminate the strain Geld yields:

H, (r(r —r') = —g 2
cos[k.(r—r') ]

1

~k pvx

Xq."p)r)(,'s)o.p(r)o „(r'), (33)

where n(Jk=(k.ep(~)+kpe(.') )/2 The sum over .~ is over
the longitudinal and transverse phonon polarizations. p
is the density and v is the speed of sound. k is the o,'th

component of the unit phonon wave vector and e& is the
Pth component of the unit phonon polarization vector.
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Summing over k is straightforward but tedious. Rath-
er than writing out the result, we will simply comment on
some of its features. Equation (33) is the tensor analog of
a vector dipole-dipole interaction. It roughly goes as

g /~ r —r'
~

where g —y /pv and y is the order of magni-
tude of the defect stress. Taking y -0.5 eV, we estimate

g —10 KA for amorphous Si02. Notice that this is an
order of magnitude larger than the electrostatic interac-
tion between two electric dipoles. A dipole moment of
p-0. 5 D, which is the dipole moment of defects intrinsic
to SiOz, ' gives p —10 KA . The interaction (33) does
not change sign as the radial distance ~r —r'~ changes, but
it can change sign as the angular position of the defects
changes due to terms which are proportional to
5;kryo&o; (r)oki(r') and P, r eke&o; (r)ok&(r'), where r, is

the ith component of the unit vector connecting the two
defects. Since the defects have random positions, there
will be both positive and negative interactions, just as in a
dipolar spin glass.

Now let us consider the effect of including transitions
between energy levels, e.g., S,S, terms. Using second-
order perturbation theory to calculate the effective in-
teraction between two defects with energy splittings hE
and hE', we find

vzk v2k2

q z 2pv& (b,E) —vzk (bE') —v&k

Xcos[lt (r r')]rt'—&rt~z'o &(r)o rs(r') .

(34)

Notice that this reduces to Eq. (33) when b,E=EE'=0.
Summing over It yields oscillatory factors such as
sin(EE ~r

—r'~/v) and cos(EE ~r —r'~/v). This is the
analog of Ruderman-Kittel-Kasuya- Yosida interactions
which oscillate as a function of the distance ~r —r'~.
Equation (34) also has angular factors which vary in sign
according to the placement of the defects and their orien-
tation. As before, random positions of the defects result
in interactions of random sign. Thus the system is the
tensor analog of a spin glass.

The idea that an insulating glass can act like a spin
glass is reinforced by recent experiments done by Feni-
more and Weissman on a real spin glass (CuMn). ' They
have done the magnetic analog of the Stanford dielectric
experiments and find similar results. For example, they
find a hole in y" versus magnetic field H with the
minimum being at the field in which the sample was
cooled. They also find that g" relaxes logarithmically in
time when they change the applied field from +H to—H.

While we could use the previous discussion to justify
modeling insulating glasses as spin glasses, we believe
that it is important to point out that the exact form of the
interactions is not crucial in explaining the experiments.
In fact we can obtain qualitative agreement with experi-
ment using an interacting Hamiltonian that is much
simpler than the one in Eqs. (33}and (34). In general, in-
teractions have two consequences: (1) they imply that
clusters of defects behave as dynamical entities; and (2)
they produce a hole in the distribution of local fields. We

H =HO S,h, (t }, — (35}

where the field h, (t)=h+h, cosQt acts on an Ising spin
S,=2—,

' and h is a constant field. The thermal average of
the spin [S,],z=tanh(Ph, (t)/2)/2. Expanding this to
lowest order in h „we obtain

[S ] =—tanh + 1 —tanh
Ph Phi , Ph

z ~h 2 2 4 2
cosQt .

(36)

The susceptibility g in phase with the ac field is given by

d ( [5,],„cos fit )
y'(h ) =2

1 =0
l

1 —tanhp 2 ph
4 2

(37)

where (. . . ) denotes an average over one period. The
factor of 2 cancels the factor of —,

' that comes from
(cos2Qt ). In a random system we must average over the
distribution of local fields P(h ). Thus the disorder aver-
age is

now discuss these two effects.
As we mentioned before, in order to explain the fre-

quency dependence of the dielectric experiments, interac-
tions must be included. Interactions lead to clusters of
strongly interacting defects which make the capacitance
frequency dependent. At low frequencies large slow clus-
ters as well as small fast clusters contribute to the
response, while at high frequencies only small fast clus-
ters have time to respond. This is consistent with the ex-
perimental observation of the jump in the capacitance be-
ing bigger and the slope ~dC/d lnt

~
being larger at low

frequencies than at high frequencies.
Interactions also prevent the distribution of local fields

at defect sites from being flat. In particular, stability ar-
guments have been used to show that there must be a
hole in the distribution of local fields. ' ' To be more
specific, think of a spin glass with long-range interac-
tions. Suppose you find the ground-state spin
configuration and suppose that the distribution of local
magnetic fields P(h) is finite at h =0. This means that
those spins with no local field can flip without changing
their energy. But if they do so, other spins have their field
altered and so some of them will flip. This in turn causes
others to flip and so on. This avalanche means that the
supposed ground state is not stable. In order to have a
stable ground state, the distribution of local fields must
go to zero as the local field h ~0.

The Stanford experiments are the first to test these
long standing ideas about a hole in the local-field distri-
bution of glasses because the strong dc field enables them
to probe P(h) away from h =0. Consider the situation
before the application of the dc field. Defects whose local
fields are small can flip easily in response to the ac field;
these are the main contributors to the capacitance. In
fact, we can show that the electric susceptibility due to
single Ising dipoles is proportional to P(0). Consider an
Ising spin glass in a magnetic field:
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(y')d;, =f dh P(h )y'(h } .

If we assume that only the spins with a small local-field
contribute, then we can replace P(h ) with P(0). Thus

This contribution dominates the susceptibility at low
temperatures and high frequencies. When the dc field is
applied, a new set of defects find themselves in zero local
field. The applied dc field effectively shifts the local-field
distribution along the local-Geld axis. Immediately after
the dc field is switched on, P(0} will be large and finite.
Thus the susceptibility and hence capacitance suddenly
jumps up. The size of the jump increases with the depth
of the old hole out of which the system jumps. Since the
hole is smeared by thermal effects, we expect that the size
of the jump will increase as the temperature decreases.
Once the dc Geld is switched on, a new hole develops and
the capacitance decreases with time.

We can test these ideas about the effects of interactions
by studying a simple system that incorporates both ran-
domness and interactions. The three-dimensional
nearest-neighbor Ising spin glass is just such a system.
We have performed heat-bath Monte Carlo simulations
on this system. The spins represent the interacting elec-
tric dipoles in the glass samples. We place the spins on
the sites of a cubic lattice of size 10, and choose the ex-
change interactions from a Gaussian distribution cen-
tered at zero with a variance of unity. This system is
known to have a transition temperature of about 0.9.
We have run at temperatures ranging from 0.1 to 0.9. In
order to simulate the conditions of the experiment, we
run for N/2 Monte Carlo steps per spin with no applied

field, then switch on a dc field (POEd, -0.4 and Po= 1)
and run for another N/2 Monte Carlo steps, where N is
the total number of Monte Carlo steps. We used
1V=12000 and 25000 Monte Carlo steps. We need not
achieve complete thermal equilibrium at low tempera-
tures since we are interested in nonequilibrium phenome-
na. To average over the disorder, we averaged up to 8000
samples.

To measure the susceptibility, a small ac field
E„cosQt is applied with an amplitude E„-0.03 and an
oscillation period between 4 and 128 times steps. (A pass
through the lattice takes one time step. } By measuring
the polarization M(t) as a function of time, we can
deduce the susceptibility which is proportional to the ca-
pacitance.

(M(t ) cosQt ) 2

roE„,
0

g M(t; ) sin(Qt, . +P),
ac

(M(t ) sinQt )X"=2

(41)
where we are averaging over a period ~0. The factor of 2
cancels the factor of —,

' that comes from (cos Qt) or
(siniQt ). The phase factor P is used to cancel spurious
effects from a linear relaxation. In other words, if M(t)
decreases linearly in time but does not respond to the ac
Geld, we would get a spurious response in y" if we simply
do the average (M(t )sinQt ) with /=0. An appropriate-
ly chosen P cancels out this effect.

The results of our simulations show that the applica-
tion of a dc field causes the capacitance to jump up and
then decay logarithmically with time as shown in Fig.
5(a). [Figure 5(b) shows the behavior of the imaginary
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FIG. 5. y' and g" vs time in Monte Carlo steps (MCS) per spin at different frequencies from nearest-neighbor Ising spin-glass

simulations. From top to bottom the periods of the ac field are 64, 32, 16, 8, and 4 MCS per spin. 8000 samples were averaged over

and T=0.1. The rather smooth solid line in the y' plots that goes through the highest frequency (shortest period) curve is P(0).
Note that P(0) is independent of frequency. (c) and (d) show the same data as (a) and (b) but plotted vs lnt. Notice that p' has loga-

rithmic time dependence.
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part of the susceptibility. ] We also monitor the hole in
the local-field distribution and find that P(0) matches the
susceptibility at the highest frequency, indicating that the
high-frequency response is due primarily to single spin
fiips. Note that P(0) is less than the low-frequency sus-

ceptibility, which indicates that the single spin flips are
joined by somewhat slower clusters of spins in contribut-
ing to the time-dependent capacitance at low frequencies.
Because of these clusters, the Monte Carlo simulations
see qualitatively the correct frequency dependence of the
logarithmic slope of the decay as shown in Fig. 6. How-
ever, experimentally the slope ~dC/d 1nt

~
decreases by a

factor of 5 as the frequency increases from 300 Hz to 30
kHz, while the simulations only show a decrease in slope
by a factor of 2. This is because the clusters responding
in the real glass are much bigger than those in the simula-
tion. There are two reasons for this. First, the response
measured by the real part of the susceptibility involves all
clusters whose frequencies are less than or equal to the ac
frequency. Since the ratio of the microscopic frequencies
to the ac frequencies is much larger in the experiment
than in the simulation, the experiment is able to measure
the response from much bigger clusters than is the simu-
lation. Second, the experimental sample contains many
more defects than the system in the simulation. Howev-

er, since the typical spacing of TLS with energy splittings
less than or of order 200 mK is 1000 A in a real glass, our
Ising spin glass with 10 spins represents a 1-pm sample.

Figure 6 also indicates the fluctuations in our results by
showing two curves that differ in the number of samples,
the number of Monte Carlo steps, and their bond
configurations. The difference between the two curves
comes from the fact that we are taking a second deriva-
tive, i.e., the slope is roughly d M/dE„d lnt. Deriva-
tives are quite sensitive to numerical noise. For example,
the noise in the time traces in Fig. 5 leads to some error
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the bottom ( X ) represents P(0) which is independent of fre-

quency. Each point represents an average over 4000 samples

with 12000 MCS per spin. The same bond configuration was

used for all the data.

IV. TWO-LEVEL SYSTEMS AND P(0)

in defining the slopes of these curves. Thus, it is the
qualitative trends rather than the absolute values that are
significant in Figs. 5-7. To reduce the scatter in the
data, we have used the same bond configurations in Figs.
5 and 7.

In Fig. 7, we show the magnitude of the logarithmic
slope versus temperature for P(0) and for y' at different
frequencies. Although there is a slight initial increase at
low temperature, the slope decreases with increasing tem-
perature when kT-poE for the reasons we discussed be-
fore. We only achieve qualitative agreement with experi-
ment because the clusters are smaller in the simulation
than in real samples, and because P(0) in the nearest-
neighbor Ising spin glass does not go to zero at T=O,
while it does in a system which has long-range interac-
tions.
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FIG. 6. Magnitude of the slope Idy'/d 1nt
I versus frequency

f, where f is the inverse of the period in Monte Carlo steps
(MCS) per spin. The slope has been multiplied by a factor of
10 . The top curve (+) was done at T=0.2 with 4000 samples
and N=12000 MCS per spin. The middle curve ( X ) was done
at T=0.1 with 4000 samples and N=12000 MCS per spin.
The bottom curve (0}was done at T=0.1 with 8000 samples
and N=25000 MCS per spin. The same bond configuration
was used for the curves averaged over 4000 samples, but a
different bond configuration was used for the 8000 sample
curve. Comparing the bottom two curves gives some idea of the
fluctuations resulting from taking the second derivative
=d M/dE„d 1nt, where M is the polarization.

In order to sort out the role of single defects versus
clusters, we have combined the two-level system contri-
bution to the capacitance with the hole in the density of
states required by stability arguments. In particular, the
results of the Bloch equations for individual two-level
systems shows that the susceptibility y' can be written as
the sum of three pieces; y,'(0, T) in Eq. (20) depends on
frequency and temperature but is independent of time;
g+(T) in Eq. (21) depends on temperature but not time
or frequency; and y'2+(t, T) in Eq. (22) depends on time
and temperature but not on frequency. Notice that

+(Ti} and yz+(t, T) have no frequency dependence be-
cause 0 «coo, while g,'(0, T) has frequency dependence
because the product w&Q in the denominator can be large.
If we average y,'(0, T) over a time-dependent density of
states, then the capacitance would have both time and
frequency dependence.

To accomplish this, we model the TLS density of states
P(E) as a step function, i.e., the density of states has a
hole in the shape of a square well. Since the width of the
hole is comparable the temperature, we set P(E}=P(0)
for E &kT and P(E)=P for E & kT As we saw in Fig..
5, P(0) can be time dependent. In particular, immediate-
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ly after the dc field is applied, P(0) initially equals P, but
then decreases as the hole develops. Our Ising spin-glass
simulations indicate that P(0) decreases logarithmically
in time in qualitative agreement with the experimentally
observed time dependence of the capacitance. %e can
write P(0) as the sum of the constant density of states P
and the developing hole in the density of states at low en-
ergies AP(t, T).

P(0)=P+ b P(r, T) (42)

b,P(t, T) depends on T because the growth of the hole
may be a function of temperature.

In the average over the distribution of two-level sys-
tems, the principal contribution to the response comes
from dipoles with very small local fields. Thus we can re-
place the usual constant density of states P by P(0) in Eq.
(27). Since the time dependence of the capacitance comes
from the time dependence of the hole whose width is of
order k T, we set bg '"=b, '"=k T. Averaging y,'( Q, T )

over TLS using P(0) leads to a contribution to the capac-
itance that has frequency, time, and temperature depen-
dence. We assume that on the time scale of the experi-
ment (0&i &10 ), bP(t, T)= P, in[(t—+to)lto] where
the dc field is applied at t =0, to is of order a few seconds,
and P, is such that P(0)-0 at t-10 seconds. Since
EP(t, T) has logarithmic time dependence, the equilibri-
um capacitance C,q, which comes from (g,' )r„s
+ (g+)ris, gives the slope, i.e., the coefficient of lnt.
We plot this slope in Fig. 8. Notice that the slope de-
creases with increasing frequency Q. Eventually, at high
enough frequencies, y', + dominates and the slope be-
comes independent of frequency. As Fig. 8 indicates, we
estimate that the decrease in slope between 100 and 10
Hz is at most a factor of 2, which is less than the factor of
5 seen experimentally. This implies that clusters play an
important role in the frequency dependence of the capaci-
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FIG. 8. The equilibrium capacitance (pF) vs frequency (Hz)
for TLS. The capacitance is calculated using y', from Eq. (20)

and yIy from Eq. (21). We averaged over the TLS parameters
used for Fig. 1 but with dip'" =8 '"=kT. If we consider P(0)
to have logarithmic time dependence, then C~ represents the
"slope", i.e., the coefficient of lnt. Notice that in the experimen-

tal range between 10 and 10 Hz, the C,q varies by at most a

factor of 2.

tance. To the best of our knowledge, these experiments
are the first to indicate that clusters are important in un-
derstanding the dynamics of glasses. This lack of agree-
ment in the frequency dependence does not mean that the
hole in the distribution of local fields is unimportant.
Clusters also have distributions of local fields and these
have holes at h=0 due to stability arguments. These
holes contribute to the observed hole in the dc voltage
sweeps of the capacitance.

In Fig. 8, notice that C,q increases with increasing
temperature. This is due to the fact that the temperature
dependence of y,

' is dominated by the temperature depen-
dence of r, [see Eq. (20)]. Since r, —T ' for +«1 [see
Eq. (29}],y,

' —T for TLS with small b,o. (r, is dominated
by small b,o.} From Fig. 8, we see that this tendency to
increase with increasing temperature survives averaging
over TLS. Although the resulting temperature depen-
dence disagrees with that found experimentally for the
slope, we have neglected the temperature dependence of
b,P(t, T) which could change this.

V. CONCLUSIONS

To summarize, we have analyzed recent nonlinear
dielectric experiments in which large dc fields are applied
to capacitors with glass dielectrics. The capacitance
jumps up and then decays logarithmically with time.
While we can explain the jump and subsequent decay
with independent two-level systems, we cannot explain
the observed frequency dependence with the independent
TLS model which predicts no frequency dependence be-
cause the ac frequency is much less than the effective TLS
energy splitting. Thus we must include interactions be-
tween defects. Interactions lead to cluster formation as
well as a hole in the local-field distribution. We have ob-
served both of these effects in Monte Carlo simulations of
the nearest-neighbor Ising spin glass in three dimensions.
The hole in the local-field distribution is consistent with
the hole observed in the dc field sweeps of the capaci-
tance. However, we conclude that the rather large fre-
quency dependence of the slope ~dC/d lnt

~
indicates that

clusters of defects play an important role in the dielectric
response. In particular large slow cluster are able to par-
ticipate at low frequencies but not at high frequencies.

One way to check experimentally that interacting,
rather than noninteracting, defects are the correct
description of glasses would be to study the capacitance
as a function of time for very long times after the dc field
has been applied. As we discussed earlier, the model of
independent TLS predicts that the capacitance will fall
below its pre-dc field value, while the scenario involving
the hole in the distribution of local fields predicts that the
capacitance will never fall below the value it had before
the dc field was applied.

Still, we are left with the following question: if interac-
tions are so important, why do noninteracting two-level
systems work as we11 as they do in explaining equilibrium
low-temperature experiments? There are two possible ex-
planations. The first is that there are domains or clusters
of interacting defects. These clumps of defects will have
randomly spaced energy levels with random matrix ele-
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ments connecting them and allowing transitions. At low
temperatures the low-lying energy levels will dominate
and act like "two-level systems. " Another way to recon-
cile interactions and two-level systems was proposed by
Coppersmith who assumes that the defects are strongly
interacting tunneling centers. Strong interactions
suppress tunneling in most of the defects, but for a few of
the defects, the interactions from their neighbors cancel
out to a large extent, leaving these defects free to tunnel.
In this scenario it is these "fully frustrated" defects
which are the observed two-level systems. Since indepen-
dent defects are unable to describe the frequency depen-
dence of the nonequilibrium dielectric experiments, it

would seem that this latter scenario is not the whole story
and that further investigation of the cluster picture is
warranted.
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