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Theory of second-harmonic generation from atom pairs in solids
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We present a theoretical study of the second-harmonic generation from pairs of two-level atoms in

solids. The density-matrix formalism is used to obtain the nonlinear polarization governing the process.
The second-harmonic polarization depends on the laser frequency, the interaction potential between the

atoms, and the laser intensity. The signal line shape may exhibit power broadening and shift of reso-

nances.

I. INTRODUCTION

Studies of cooperative optical transitions involving
pairs and triads of atoms in solids have been of large in-
terest in recent years. ' ' Phenomena such as coopera-
tive absorption, ' frequency upconversion in crystals,
and glasses, stimulated emission by atom pairs, and
dispersion interactions between excited atoms are exam-
ples of effects which may occur when the active atoms in-
teract among themselves.

From a practical point of view the studies in this area
are of interest, for example, to determine the interaction
potential among ions, - to develop very sensitive site-
selective spectroscopy, ' ' and to develop upconversion
lasers which operate in the blue-green region with large
efficiency.

The basic element in all the effects referred above is a
pair (or a triad) of atoms and the experimental investiga-
tions with weakly doped samples have provided basic in-

formation related to their intrinsic behavior. Experimen-
tally, cooperative single-photon absorption by atom pairs
in doped solids was first demonstrated by Varsanyi and
Dieke' who observed that weak absorption occurs at the
sum of transition frequencies of the coupled atoms. This
effect was qualitatively understood considering that it is
the interaction potential between the atoms that allows
the pair excitation to occur. Since then, many other ex-
periments have been carried out where one photon in-

teracts resonantly with a two-neighbor atom system.
The excitation of an atom pair in a two-photon absorp-

tion process was first studied in Ref. 10. In this process
two photons with energy Ace each interact resonantly
with a pair of atoms having transition frequencies co, and

co&, respectively. The resonance in this case is given by
2co=co, +co&. The same process is also allowed for pairs
of identical atoms and experimental evidence of this
effect was reported for rare-earth doped solids and atom-
ic vapors. " More recently the same process was further
investigated by other authors. '

Although our interest here is focused in solid-state sys-
tems, we note that there is a close relationship between
condensed-matter studies and experiments on laser-
induced collisions where various linear and nonlinear op-
tical processes were observed. "' ' In particular,

The active atoms are impurities such as trivalent rare-
earth (RE) ions introduced in a large bandgap solid and
we consider atom pairs formed by identical two-level RE
atoms in the presence of a linearly polarized single-node
monochromatic radiation field.

To simplify the problem, we assume that the SHG pro-
cess will be more effective when the distance between the
atoms is smaller than the light wavelength. For such
atom pairs the crystalline field has the same strength in
both atom-pair sites. Atoms separated by large distances
behave as isolated atoms and may not contribute to the
SHG process.

Figure 1 indicates the energy levels for the isolated
atoms and the manifold of energy levels for the two-atom
complex. The noninteracting states llM &, p=o, l, 2, 3, of
the atom pair corresponding to the atomic ground and
excited states are defined as

lo& = lo&, lo&, (la)

ll&= [lo&,g li&, +li&,g lo&, ],v'2

I» = ~- [Io&, II &i
—I»| lo&2],v'2

I» = l», e I», ,

(lb)

{lc}

(ld)

several authors' ' report evidences of collision-assisted
second-harmonic generation (SHG) in atomic vapors.

In principle, SHG by atom pairs can also be observed
in solids doped with appropriate atoms or ions and we

present here a theoretical approach to describe this effect.
Basically, we propose that atom pairs may allow coupling
between the laser field with its second harmonic, even in

a centrosymmetric environment, via a nonlinear polariza-
tion which is a function of the laser intensity, the laser
frequency detuning with respect to the atom-pair energy
levels and the atom-atom interaction potential.

After a discussion, in Sec. II, on the physical charac-
teristics of the atomic states involved in the SHG process
we derive, in Sec. III, the stationary second-harmonic po-
larization induced in the ensemble of atom pairs and the
signal line shape. Possible experiments to observe the
effects studied here, are briefly discussed at the end of
Sec. III.

II. BASIC ASSUMPTIONS
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FIG. 1. (a) Energy levels for two identical isolated two-level

atoms; (b) the manifold of energy levels for the two-atom pair.

Notice that in this approximation the wave functions are
modified while the energy levels remain unshifted. This
approach is valid only for weak interactions between the
active atoms.

For pairs of RE ions the interaction potential may con-
tain all order multipoles and the variation of I(vI O'IP)

I

with the ions separation is given by 3 Ir', where s =6, 8,
and 10 for dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole interaction, respectively. ' The
strong distance dependence of I(vIVIP) I can lead to
higher-order processes dominating at small distances' 's
especially as they can be allowed in first order, while the
dipole moments of 4f-4f transitions vanish under the La-
porte rule and require the crystal-field interaction to mix
the higher-lying Sd orbitals. For example, numerical cal-
culations reported in Ref. 18 show that dipole-
quadrupole interaction may be larger than dipole-dipole
interaction for ions separated by less than 10 A.

Therefore, in the following development only dipole-
quadrupole interaction is considered, being represented
in the basis of the noninteracting states by

0 v 2V00. 1(1 0 0

0 ~2 Vio;11

0

+2Voi;oo

0 0 0
~2V( 1;01

where the matrix elements are f„„=(pIP'Iv) in the
noninteracting basis and V~.k(=1(iI3(jI O'Ik )3II )1 in the
bare atomic basis of the two-atom Hilbert space. Equa-
tion (3) corresponds to a particular choice of symmetry

whose energies E„=fuu„are 0, Ei, E2 =Ei, and
E3=2E„respectively. The states IO), 3 and I 1 ), 3 refer
to the isolated atoms. The antisymmetric state I2) is
decoupled from the other symmetric states and the atom
pair behaves as a three-level s stem. '

The effect of the potential which governs the interac-
tions between the atoms, is taken into account through
the atom-pair states I((i(+') which are obtained from the
states IP). In the framework of first-order perturbation
theory, the atom-pair states are related to the corre-
sponding noninteracting ones by

(+1& I-&+ y I && I IP&
(2)

E„ E„

for the noninteracting states which participate in the pro-
cess. For instance, if IO), 2 correspond to s states, then
the excited states I 1), 2 should have a p symmetry. Of
course, other multipole potentials would require excited
states of difFerent symmetries and Eq. (3) should be
modified '7

Hence from Eqs. (2) and (3) we obtain that the interac-
tion potential mixes up the noninteracting states Ip, ) in
such a way that the atom-pair states assume the form

Io(+1&=IO&-~2 "'
II &,

~o&;oo
(4a)

E,

I
1'+'& =

I
l &+v 2 '

Io &
—v'2 "" 13),E

(4b)

(4c)

I3'+')=I3)+v 2 ' Il) .~io;ii
(4d)

In the rotating wave approximation, the Hamiltonian
describing the atom pair in the presence of the light field
can be represented by

and

(+1 ~2 e
gio =f10+ f& Voo;io

(+)— 2
g31 t31+ gg Vio;11

(6a)

(6b)

Physically the eSect of the atom interactions is to favor
the creation of a nonzero-dipole matrix element
D03 = (O'+'Id, +d2I3'+'), where d; is the atomic dipole
transition operator for atom i (i =1,2). The electric di-
pole of the atom pair can be calculated using Eqs. (4a)
and (4d) to obtain

2
D03 E g 10( Vlo;11 Voo;01 ) '

1

Note that the occurrence of atom-atom interactions is
essential for the existence of Do3 and thus a second-
harmonic polarization may be induced. In other words,
the interaction between the two atoms breaks the symme-

ao„I}(i'+'&&}(i'+'I—[A(g(+'I 1'+'& &0'+'I
p, =0,1,3

+g'+, ' I3'+') (1'+'I)Ae '~'+H ]

where Ag„(+„.' represents the matrix elements of the atomic
electric-dipole moment; the electric field of the incident
light beam is represented by Re Ae '"' and fico„ is the en-
ergy of state Ip(+'). For the results reported here, we
have considered laser frequencies close to resonance with
co( =E1/fi. Note, however, that the dipole moments are
different from the free-atom values and their corrected
expressions (up to first order in the interaction potential)
are
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try allowing a dipole oscillating at 2' to be created by the
electromagnetic field in each atom pair. Therefore, the
presence of these dipoles originates a polarization,
PsH(2cr) ), which will be the source for the SHG.

III. SECOND-HARMONIC POLARIZATION
AND SIGNAL LINK SHAPE

In the previous section we have shown that the electric
dipole responsible for the second-harmonic generation,
D03 depends linearly on the atom-atom interaction po-
tential. We also recall that as the state ~2(+)) is decou-
pled from the others, the atom pair behaves as a three-
level system with states ~0'+ ' ), ~

1'+ ' ), and
~

3'+ ' ) .
Hence, the ensemble of pairs is described by the density
operator p, with matrix elements p;, = (i (+ )

~ pj~(+ ) ),
which satisfies the Liouville equation given by

P = ——'[8 "]+"P
dt A

' dt

where the relaxation terms are described by

~ ~ (o, 1) — (
—1, 1) —+ (1,1)

'Poo glo~pol ' g lo~plo'

+is lan'll'"+B 1

. -(0, 1) -e g g (1,1) — g ( —l, l)l P33
—g 31 P31 g 31 P13

(0, 1)—iy31P33' +B2,
~ (1, 1) — g (

(0, 1) (0, 1)) -e g e (2, 1)'P 10 g 10 P 1 1 Poo g'31 P30

+(~)—~—
1 rlo}p'lo'"+B3

(1,1) — g( (0, 1) (0, 1))+—e g e (2, 1)l P31
—g 31 P33 P 1 1 g 10 P30

+(co —ct), co—i I—, }p","+B
~ ~ (2, 1) — (1,1) — (1,1)
'P30 glO~P31 g31~plo'

+(c03 2c0 —i I 3—0)p30"+B5,

(12a)

(12b)

(12c)

(12d)

(12e)

where the source terms are linear in the interaction po-
tential and the terms B; (i = 1 —5) are given by

Another set of coupled differential equations for first
order in P('n =1) is given by

(9a)

e ( —1,0) (1,0)
( V30 lopoi

'
Voo loplo' (13a)

dPoo = —r lopll
rel

dP33 ——r»P33
rel

(9b)

(9c)

with the relaxation rates denoted by I;~ and y;~
(i j =0, 1,3).

In order to solve for the density matrix elements, we
make a double expansion where we consider a Fourier
series in the frequency co and a power series in the in-

teraction potential A, t);

(m, n)e —immtgn
Pij

m, n

(10)

. ~ (0,0) — g {—1,0) — g e {1,0)+ . (0,0)
&Poo g lo Pol g lo Plo

~ ~ (0,0) -+ g e (1,0) — g ( —1,0)
& ~ (0,0)

lP33' —g 31 P31 g31 P13 P31P33

. .(1,0) — g (
(0,0) (0,0)) —e g e (2,0)

'P lo g lo P 1 1' Poo g 31 P3o'

+(~(—~—«(0)p)o"
. .(1,0) — g ( (0,0) (0,0))+—e g e (2,0)
lP31

—g 31 P33 p11 g 10 P30

+(co co cr) 1 I )p

; (2,0) — ~ (l,o) — ~ (1,0)
'P30 g 10 P31 g 31 P 10

+ (cc73 2co —1 I 30)p30

(1 la)

(1 lb)

(1 lc)

(1 ld)

(1 le)

However, only the resonant terms which correspond toI=+1,0, +2 are considered. Substituting Eqs. (5}, (9),
and (10) into Eq. (8} and making the rotating wave ap-
proximation we obtain a set of coupled differential equa-
tions involving the several elements of p. For zero order
in the atom-atom interaction potential (n =0) we obtain

B2=

B4=

(1,0) e (
—1,0)

( Vlo. 1 1p31' )o. 1 1 p)3
'

)

2 (0,0) (0,0) 0 (2,0)
~(P11 Poo ) Voo; 10 V10;11P30

(0,0) (0,0) e (2,0)
I. (P33 Pl 1 ) Vlo;11 + Voo;10P30

e (1,0) e (1,0)
A

(VN;lop31' -Vlo;ilplo' )

(13b)

(13c)

(13d)

(13e)

Equations (11}—(13) allow the calculation of PsH(20)) in-

cluding the effects of the atom-atom interaction up to
second order.

In order to solve the above set of equations for an arbi-
trary laser intensity, in the steady-state regime, we look
for the density-matrix element p30" which can be ob-
tained by dropping the time derivatives and performing
several algebraic manipulations with EcIs. (11) and (12).
Hence, assuming that p((()' )+p(1)' '+p(33' '=1, g3)=f10
=g, I 30=21",0, and that the atoms are initially in the
ground state, we obtain the zero-order solution using Eq.
(11).

The first-order solution in 0' is obtained after substitu-
tion of the zero-order solution into Eqs. (12) and (13)
which gives p30". The expressions obtained are written
in several levels of new quantities, so that we give them in
the Appendix.

Finally, the induced second-harmonic polarization is
given by

&sH(2~) =&p3'o "Do3' (14)

where X is the number of pairs per unit volume.
In principle, Eq. (14) includes the efFects of the elec-

tromagnetic field in all orders and describe saturation
effects such as light shifting and power broadening of the
energy levels. ' A numerical analysis was done to display
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bandgap insulators doped with trivalent rare-earth ions
(RE +}. The large amount of previous studies in these
materials indicates that some crystalline hosts favor clus-
tering of ions. Crystalline CdCsBr3 doped with RE +,
for example, seems to be a possible candidate for observ-
ing SHG assisted by pairs because the majority of
trivalent ions introduced in this host usually form sym-
metric dimers along parallel crystalline chains. Of
course, a comparison with experimental results may re-
quire samples of good quality to reduce effects due to
crystalline-field inhomogeneities.

Excitation of pairs having diS'erent distances among
the atoms can be done with conventional tunable lasers
and the pair assignment is possible using site-selective
spectroscopy. 2 ' '9 The real and the imaginary parts of
the density matrix components can be investigated using
homodyne or heterodyne detection schemes to access the
in-phase and in-quadrature components of the SH field.

In conclusion, we mention that the present approach of
modeling the interaction among atom pairs and the
elecromagnetic field may be extended to investigate the
third-order nonlinear response which will give rise to new
effects not observed in isolated atoms.
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APPENDIX

where Q=gI Ai, F=D(D —20 },and

S1 =2F*D 2F (D ' } ——S2,

Sz =2iQ ImF,
~ 2 0

y IFI' y IFI'

(A3a}

(A3b}

(A3c}

)y ~(0,0)—
g g ep(1,0)

g g ( —1,0)

~(0,0)—g g «p(1, 0)
g g ( —1,0)

D (1,0) ——+ g e (2,0) — g (
(0,0) (0,0)}P10 g 31 P30 g 10 P11 Poo

(1,0) —— g (
(0,0) (0,0)} —+ g e (2,0)

P31 g 31 P11 P33 g 10 P30
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(Ald}
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In this appendix we give the expressions of the
density-matrix elements for zero and first order in the
atom-atom interaction potential (P}that c'ontribute to
the second-harmonic signal. For zero order in P; the
steady-state solution, is obtained from Eqs. (11) by put-
ting the time derivatives equal to zero. The set of equa-
tions for any arbitrary laser intensity is given by

(0, 1) ~( (1,1) ( —1, 1))l+P11' — P10' —
P01

' —
1

(, ) —II( (, ) ( —1, )}+g
(1, 1)—II( (2, 1)

(
(0, 1) (0, 1)})P10 LP30 P11 Poo ~ 3 ~

D (1,1)— II(' (2, 1)+ (
(0, 1) (0, ()})

P31 &P30 P33 P11 J 4 &

(2, 1) ft( (1,1) (1,1)}P30 P10 P31 5

(A4b}

(A4c}

(A4d}

(A4e}

where the terms 8,. (i = 1 —5}are given by Eqs. (13}.
Assuming that poo"+P', ,"+p33 =0, we may solve

the above set of coupled equations and 6nd, for the

The steady-state solution for first order in f', is ob-
tained, in the same way, from Eqs. (12}. The set of equa-
tions is given by
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density-matrix elements, in first order in f
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y

Pii

—(ImR, )(p', ,
'"—p' ")—ImR ]—

(A5a)

(A5b)

Q Q(2D —Q )Rq=
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'
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L
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3 3 4
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y

' '
y

—2Q
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y
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y

—20 l
p = Im(2R —R )+—(2B)—B2),r
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