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The thermal conductivity A, of KOH-doped ice was measured using the transient hot-wire method at
temperatures in the range 55—250 K and at pressures up to 0.15 GPa. With an isobaric increase of tem-

perature at 0.08 GPa, A. decreased 17% at about 74 K. This decrease is associated with the known tran-
sition from ordered phase XI to phase Ih which exhibits orientational disorder of HzO. A model for A,

indicates that the decrease of A, at the transition is due to an increase of the lattice anharmonicity which

might be caused by the disorder in phase lb. It was inferred from the temperature dependence of A, that
phonon scattering in both phases Ih and XI is dominated by three phonon unklapp processes. At 58 K,
A. of supercooled phase Ih decreased slightly with increasing pressure whereas A, of phase XI was in-

dependent of pressure.

I. INTRODUCTION

Ice is a typical hydrogen-bonded crystal which has
been described in detail elsewhere. ' An oxygen atom in
ice Ih is hydrogen bonded to four neighboring oxygen
atoms in a tetrahedral arrangement. The oxygen-oxygen
distances of the four hydrogen bonds are all nearly equal
in length, about 276 pm. Between two adjacent
hydrogen-bonded oxygen atoms are two potential wells
symmetrically placed with respect to the center of the
bond. The location of the protons in the potential wells is
governed by the ice rules proposed by Bernal and
Fowler. These rules state that each of the four hydrogen
bonds to an oxygen must be occupied by one proton.
That is, only one of the two wells in a bond is occupied by
a proton. In addition, two of the four protons in the
bonds must be in potential wells close to the oxygen.

In spite of the simplicity of the ice Ih crystal structure,
it is accepted as a crystal that does not obey the third law
of thermodynamics. The residual entropy at 0 K, deter-
mined by Giauque and Stout, is explained fairly well by
the half-hydrogen statistical model proposed by Pauling.
Pauling calculated the entropy associated with the num-
ber of equienergetical states the protons can adopt, based
on the ice rules, and found good agreement with the re-
sidual entropy.

It is clear that the constraints imposed by the ice rules
imply that an ordering transition is difficult to achieve.
Every displacement of a proton must, in general, be fol-
lowed by a number of proton movements among the
nearest neighbors. As a result, there is a strong correla-
tion of the proton movements or, equivalently, of the re-
orientational motion of the 820 molecules. The proba-
bility of such thermally activated processes occurring de-
creases, of course, with decreasing temperature. Ap-
parently this motion essentially ceases at a temperature
that is higher than the hypothetical transition tempera-
ture to an ordered proton state. It follows that the disor-
der associated with the protons becomes frozen in, which
results in the observed residual entropy.

Onsager proposed using an impure ice specimen in or-

der to relax the severe constraints imposed by the ice
rules and thereby obtain an ordered ice phase. In fact, an
ice specimen doped with a small amount of KOH has
been shown to exhibit a first-order phase transition at 72
K. Consequently, KOH incorporated into the lattice
enhances dramatically the mobility of the H20 molecules
making the transition possible to realize within the time
of an experiment. A neutron-difFraction experiment on
KOD-doped heavy ice revealed that the low-temperature
phase has the space group of Cmc2, (orthorhombic) with
the H20 molecules in an ordered state. The ordered
phase has a polar structure along the c axis of the original
hexagonal lattice and was designated ice Xl.s

The purpose of the present work is to investigate the
relative importance of proton disorder on the thermal
conductivity A, of ice. As described above, there is good
evidence that proton disorder is present in ordinary ice
lb. Furthermore, this disorder is, to a large extent, re-
moved at the transition Ih ~XI, which occurs in KOH-
doped ice. Therefore, the change in A, at the transition
should refiect the extent to which proton disorder
scatters phonons or otherwise influences A, .

There are a substantial number of investigations of A, of
ice. In a review of work done before 1980, Slack found a
diff'erence of +10% between the reported values for i(, at
100 K after excluding some of the work he considered to
be less accurate. No investigation of A, of phase XI has
previously been made.

II. EXPERIMENTAL

We used the transient hot-wire method' to measure
the thermal conductivity A, . The hot-wire probe used was
a Ni wire (0.1 mm diam) placed horizontally in a ring of
constant radius within a Te6on cell. The probe, sur-
rounded by the medium under investigation, was heated
by a (1-s) pulse of about constant power and the wire
resistance was measured versus time. This enabled the
temperature rise of the wire to be determined. A theoret-
ical expression for the temperature rise was fitted to the
data points, thereby yielding A, . For temperatures above

0163-1829/94/50(10)/6583(6)/$06. 00 50 6583 1994 The American Physical Society



6584 O. ANDERSSON AND H. SUGA 50

100 K, the inaccuracy was estimated as +2%%uo.
' Owing

to the decreased sensitivity of the hot-wire, the inaccura-
cy in X increases with decreasing temperature and was
+4% at 40 K. The standard deviation was an order of
magnitude smaller than the inaccuracy. The hot-wire
method also yields values for the heat capacity per unit
volume, but these are subjected to a large uncertainty,
especially at low temperatures, and are therefore not
presented here.

The TeAon cell was mounted in a piston-cylinder type
of pressure vessel of 45-mm internal diameter, and the
load was applied using a 5-MN hydraulic press. Temper-
ature was varied by cooling or warming the whole pres-
sure vessel and was measured using an internal chromel
versus alumel thermocouple, which had been calibrated
against a commercially available silicon-diode thermome-
ter. Pressure was determined from load/area with an
empirical correction for friction, which had been estab-
lished using the pressure dependence of the resistance of
a manganin wire. The vessel was cooled with a refrigera-
tor using a closed helium gas cycle. The apparatus has
been described in detail elsewhere. "

A standard 0.1-M KOH aqueous solution was pur-
chased from Wako Pure Chemical and used without fur-
ther purification. The concentration corresponds to a
1.8 X10 ' mole fraction of KOH to H20. In an investi-
gation of the heat capacity of phase XI, this concentra-
tion was found to be the most effective in producing the
low-temperature phase XI. In order to obtain this phase,
the sample was cooled at a low pressure ( =—0.005 GPa)
down to about 65 K and was annealed for three days at
temperatures in the range 65-70 K following the pro-
cedure reported by Tajima, Matsuo, and Suga.

For large values of thermal diffusivity (below about 100
K for ice), reflection of the heat wave against the wall of
the sample cell causes additional heating of the hot wire.
In order to compensate for this, a small temperature drift
(linear with time) was subtracted from the measured
values for the temperature rise of the hot wire. This pro-
cedure decreased the standard deviation of the fits by
about three times. The values for A, , which were compen-
sated in this way differed in the worst case by 3% to the
uncompensated data.
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FIG. 1. Thermal conductivity A, of ice plotted against tem-
perature T at a pressure of 0.08 GPa: (~ ) phase Ih and (O)
phase XI. The inset shows log&oi, plotted against log&oT. The
line corresponds to A, ~ T

would take a prohibitively long time). The small anoma-
ly in the data for A, of the supercooled phase Ih, near the
transition temperature, is probably due to some degree of
transformation to the ordered phase XI.

The magnitude of the data for A, of the doped phase Ih
at 80 K is 8% lower than the "best value" of pure phase
Ih at 80 K. Our data for A. are, in general, lower than
that of previous work. However, the data agree well
with those for a single crystal reported by Klinger. '

In order to estimate if the dopant has any in6uence on
A, , a comparison between the phonon mean free path I
and the average distance between two KOH provides an
indication. If we assume that the dopant is homogene-
ously distributed in the ice lattice then the average dis-
tance between two KOH is roughly 25 A. The phonon
mean free path calculated at 270 K from the equation
A, = —,'pc„l(where p is the density, c„is the isochoric heat

0

capacity, and U is the phonon velocity) gives 1=20 A.
Since I is of the same magnitude as the average distance
between the KOH we can expect that iL will be less for
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Figures 1 and 2 show the temperature dependence of A,

at pressures of 0.08 GPa and 0.16 GPa, respectively. The
transition between the proton-ordered phase XI and the
proton-disordered Ih can be detected as a decrease of A,

by about 17%. As discussed in more detail later, the
temperature dependence of k for both phases Ih and XI is
typical for crystals for which A. is limited mainly by three
phonon umklapp scattering (A, ~ T ' at T 2 Debye tem-
perature).

Figure 1 includes data for A, of phase Ih pertaining to
the supercooled state below the transition temperature of
about 74 K. As explained in the experimental section, it
is necessary to anneal belo~ the transition temperature
for several days in order to obtain a substantial amount
=70% of phase XI (to obtain a 100% transformation
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FIG. 2. Thermal conductivity of ice plotted against tempera-
ture at a pressure of 0.16 GPa: (~ ) phase Ih and ( o ) phase XI.
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FIG. 3. Thermal conductivity of ice plotted against pressure
at a temperature of 58 K: (0) phase Ih and ( 0 ) phase XI.

the doped specimen than that of an undoped specimen.
In fact, a measurement of X of pure ice resulted in larger
values than those of the doped ice. The data of the pure
ice were in good agreement with those of Ross, An-
dersson, and Backstrom. ' However, since the dopant
will affect A, of both phases Ih and XI to approximately
the same degree, the difference of A, between the phases
should still reAect the effect of the proton disorder in
phase lb.

The isothermal pressure dependence of both the phases
Ih and XI was nmasured at 58 K (Fig. 3). In general,
crystalline phases exhibit a significant increase of A, with
increasing pressure, '" but both phases Ih and XI differ
from that general pattern. In particular, phase Ih shows
a slightly negative pressure dependence of similar magni-
tude as that found previously at 248 K.' This behavior
of A, has been explained by a negative mode Gruneisen
parameter for the transverse acoustic modes. In the case
of phase XI, it can be seen from Fig. 3 that (M./BP)z is

very small in magnitude. A near-zero value of this par-
tial derivative is unusual but has been found previously
for clathrate hydrates. '

From data for isothermal A,(P) it is possible to deter-
mine the density dependence of A, , described by the
Bridgman parameter g, where g =(8 ink, /8 lnp)T. Using
data for adiabatic compressibility of phase Ih (Ref. 15)
( =isothermal compressibility at these low temperatures}
together with the data for A,(P} (Fig. 3), it is straightfor-
ward to calculate the g value. Assuming the same
compressibility for phase XI, we found g = —2.8 and

g =0.2 for phases Ih and XI, respectively. It is dificult
to estimate the inaccuracy in these data but g for phase
Ih is certainly negative. The experimental value for g of
phase XI is 0.2 but a negative value is probably within
the inaccuracy limits. However, g for phase XI is cer-
tainly larger than that for phase lb. The g value of Ih is
in good agreement with g = —2.6 determined at 248
K.' ' In general, crystalline phases exhibit g values
larger than 6.' Consequently, both phases Ih and XI are
exceptional concerning their pressure and density depen-
dencies for k.

Since the transition temperature at two different pres-

sures was determined, it is possible to calculate roughly
the slope of the transition line hP/AT=0. 1 GPa/K.
This value is in rough agreement with hP/b, T=O;067
Gpa/K determined in a high-pressure investigation of
the heat capacity of ice. '

IV. DISCUSSION

We shall devote the main part of the discussion to the
decrease of I, at the XI~lb transition. As mentioned in
the Introduction, it appears fairly well established that
the main structural difference between the phases is that
the protons are disordered in phase Ih, whereas they are
ordered in phase XI. If this picture is correct, then we
can use the change in A. at the transition to determine the
significance of proton disorder in phonon-scattering pro-
cesses.

Ahmad and Phillips' have investigated the effect of
proton disorder in ice Ih and also in 1,3-dioxolane (DO)
clathrate hydrate using low-temperature data for A, . In
their model, tunneling states associated with proton dis-
order caused phonon scattering. A theoretical expression
for the relaxation time ~ of tunneling-state scattering to-
gether with that for point, boundary, and umklapp
scattering was used to interpret the data for A, . In their
results, Ahmad and Phillips' did not explicitly express
the relative importance of phonon scattering associated
with proton disorder. However, our interpretation of
their results is that phonon scattering arising from proton
disorder was insignificant at 50 K in the case of ice Ih,
whereas it was the major source of phonon scattering in
(rapidly cooled) DO clathrate hydrate. In our view, their
model indicates that proton disorder in ice Ih is impor-
tant to thermal resistivity only at low temperatures,
whereas in the case of DO clathrate hydrate it is of great
significance in a wide temperature range. Another inter-
pretation in which proton disorder is not present to the
same extent in ice Ih as it is in DO clathrate hydrate is
also possible.

In another investigation of k of ice, Klinger' found
that the data were well described by a model that includ-
ed phonon scattering from point defects, boundaries and
dislocations as well as phonon-phonon scattering. That
is, proton disorder was not attributed to a specific ~, but
its significance may perhaps be described approximately
by that for point defects or dislocations. As a result, in
the model of Klinger, ' a part of the scattering provided
by these terms may perhaps be due to scattering from
proton disorder. Phonon interactions involving both nor-
mal and umklapp processes were also considered in his
model. However, it was found that normal processes
were insignificant with regard to the thermal resistivity.

The theoretical basis for the discussion of our results is
provided by the Debye formula for A, ( T) given by' '

k~T 8D/'T 4 &

(1)
2um A' (e —1)

where OD is the Debye temperature, v is the phonon ve-
locity, s(x) is the relaxation time, x =%co/kz T, where co

is the phonon angular frequency, and the other symbols
have their usual meaning. A.any simplifications have
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been made in order to obtain this formula for A.. ' '

Despite this, it has been shown to be successful in
describing A, for completely different systems such as elec-
trical insulators as well as semiconductors, metals and
high-T, superconductors when the influence of free elec-
trons is properly taken into account.

There are, at least, two ways to account for the proton
disorder in a theoretical model based on Eq. (1). Phonon
scattering can be divided into two major parts: phonon-
phonon scattering (three-phonon umklapp scattering) and
phonon-structural scattering. In the two models for X of
ice which we shall describe, the proton disorder affects
mainly: (i) the phonon-phonon scattering, (ii) the
phonon-structural scattering. In model (i), the effect of
the proton disorder on the phonon scattering is of a
secondary type. The strength of the interaction in three-
phonon umklapp processes depends on the anharmonici-
ty of the lattice. As is well known, phonons are not scat-
tered in phonon-phonon interactions in a perfectly har-
monic lattice. Consequently, if the proton disorder can
increase the anharmonicity of the ice lattice, then this
would enhance the phonon scattering in phonon-phonon
interactions. In model (ii), the proton disorder is ac-
counted for in a similar way as for point defects, disloca-
tions and other forms of structural disorder. That is, a
specific ~ is attributed to the interaction between the pho-
nons and the proton disorder. This approach is the same
as the one described by Ahmad and Phillips. " However,
we could not obtain a good agreement with the experi-
mental results using their expression for ~, which they at-
tributed to scattering from tunneling states associated
with the proton disorder. As mentioned, their model in-
dicates insignificant scattering of this kind at tempera-
tures where the transition occurs. As a result, the de-
crease of )(, at the XI~lb transition cannot be accounted
for solely by the disappearance of this scattering process.

In summary, the models include phonon scattering
from the following.

(i) Three phonon umklapp processes and point defects
The scattering strength of the umklapp processes can be
different in the two phases as the proton disorder present
in phase Ih can increase the lattice anharmonicity. Con-
sidered as phonon scattering centers other than proton
disorder, the point defects are assumed to be present to
the same extent in both phases Ih and XI.

(ii) Three phonon umklapp processes, proton disorder
and point defects. The scattering strength of the three
phonon umklapp processes is assumed to be the same in
phases Ih and XI. Moreover, the scattering from proton
disorder is assumed to be described by the same type of v.

as that from point defects. Hence, a part or a11 of this
scattering should disappear at the Ih ~XI transition
when the protons become ordered.

We have no theoretical argument for using the same ~
for scattering from proton disorder as that from point de-
fects. However, if this type of description for the proton
disorder [i.e., model (ii)] were to account for the change
in A, at the transition then the phonon scattering from the
proton disorder must depend strongly on the phonon fre-
quency (as it does from point defects}. Otherwise, the
temperature dependence of X of phase Ih would be

significantly less than k~ T ', which is approximately
obtained in an analysis of the data for A, (T} (see inset in
Fig. 1). According to Klemens, ' phonon scattering
dominated by that from point defects yields A, ~ T ' in a
broad temperature range above the maximum in A, (the
maximum is below the temperature range investigated
here). Consequently, it would be a possibility that point-
defect scattering, associated with proton disorder, exists
in phase Ih to a sufBcient extent that its disappearance
account for the increase in A, at the Ih ~XI transition,
and still A, 0- T ' would be obtained for phase Ih.

The relaxation time for three-phonon umklapp pro-
cesses at temperatures of order of the Debye temperature
and below is of the form'

'(x)=Ax T e (2)

where A is the scattering strength and P is a constant,
which depends on the details of the Brillouin zone and
the dispersion of the lattice waves near the zone boun-
daries. '

The relaxation time for scattering from point defects is
given by'

'(x}=Bx T (3)

where 8 depends on the number of point defects. We will
refer to 8 as the scattering constant in point scattering as
well as in proton scattering [the latter in model (ii)].

The total relaxation times in the two models are then
given by the same expression:

r '(x)= Ax T e +Bx T (4)

In model (i), B was assumed to be the same in the phases
Ih and XI, whereas in model (ii) A was assumed to be the
same in both phases.

The Debye formula does not take into account changes
in X due to thermal expansion. It follows that in order to
make the best comparison with theory, the measured iso-
baric data for A, should be transformed to isochoric con-
ditions. The change in k due to expansion alone is given
by

r r

i}ink, 8 ink,

BT BT ga, (5)

where g =(Bink/Blnp)r is the Bridgman parameter and
a is the thermal expansivity. Using the calculated data
for g together with data for a, ' the isobaric data for k
were transformed to isochoric conditions. The transfor-
mation introduced a change in A, by an amount less than
4%.

In order to minimize the number of fitted parameters,
data for OD and P were taken from Klinger' and for the
phonon velocity U, we used the average value for the
sound velocity in the temperature range 5S —250 K (Ref.
18) (SD =226 K, P=6.5, v =2400 m/s). Consequently,
Eq. (1) with r given by Eq. (4) was fitted to the data for A,

of phase Ih with 3 and B as the only adjustab1e parame-
ters. The result of the fit is shown as a solid line in Fig. 4.
A detailed examination of the relative importance of the
Eqs. (2) and (3) in the calculation shows that the term de-
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ture dependence of A, than that of the measured data for
phase XI.

Roufosse and Klemens have derived a theoretical ex-
pression for the scattering strength A of three-phonon
umklapp processes in a simple cubic lattice, given by

4m.a yike'i
A=

~2u Mfi
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FIG. 4. Thermal conductivity of ice plotted against tempera-
ture after transformation to isochoric conditions pertaining to
the volume at 0.08 GPa and 55 K: (~ ) phase Ih and (0 ) phase
XI. The lines are theoretical fits of Eq. (1): ( ) models (i)

and (ii) for A, of phase Ih, (
———) model (i) for A, of phase XI,

and ( —- ——) model (ii) for A, of phase XI.

scribed by Eq. (2) is by far the dominant term. That is,
phonon scattering in ice is determined mainly by three-
phonon umklapp processes. In order to explain the in-

crease of A. at the Ih —+XI transition, we now turn to the
difference between the two models (i) and (ii) and the
fitting to the data for phase XI.

In model (i), the scattering constant in point scattering
B was the same in phase XI as in phase lb. That is, Eq.
(1) with ~ given by Eq. (4) was fitted to the data for A, of
phase XI with A as the only adjustable parameter. The
result is shown as a dashed curve in Fig. 4 (

———).
In model (ii), the scattering strength of the three-

phonon umklapp processes A was the same in phase XI
as in phase lb. That is, Eq. (1) with ~ given by Eq. (4) was
fitted to the data for A, of phase XI with 8 as the only ad-
justable parameter. As mentioned, in model (ii} we attri-
bute B to the scattering constant arising from both point
defects and proton disorder. The result is shown by the
chain curve in Fig. 4 ( ———}. Since the fit yielded a
negative value for B, the smallest possible value for B
which makes physical sense (8 =0) was used to generate
this curve.

The parameters obtained in the fitting procedure are
summarized in Table I, which shows that the scattering
strength for urnklapp processes in phase Ih agrees very
well with that used by Klinger. ' As can be seen in Fig.
4, model (i) gave a better fit than model (ii), which could
not account for the change in A, at the transition and, in
addition, yielded a somewhat more pronounced tempera-

where a is the lattice parameter, y is the Griineisen pa-
rameter, and M is the mass of a unit cell. [The form for
Eq. (6) given here is the original form r multiplied by the
factor kri /R to account for the fact that r was given as a
function of the phonon angular frequency ~(co).] It fol-
lows from Eq. (6) that the scattering strength is propor-
tional to y . In other words, three-phonon umklapp
scattering depends strongly on the anharmonicity of the
lattice, which is conveniently described by the absolute
magnitude of y (an increase of the anharmonicity corre-
sponds to an increase of i y i ).

Equation (6) can be used to calculate A for comparison
with the fitted value for phase lb. In order to do this we
associated a with the volume per molecule ( —=32 A )

and M with the molecular mass (3X10 kg). An esti-
mate for y ( = —0.5) was taken from the calculations by
Leadbetter' and the phonon velocity was the same as
used in the fitting process (v =2400 m/s). The calculated
value of A =4X 10 K s ', although perhaps an
overestimate, is in fair agreement with the fitted value, in-
dicating the reasonableness of the model. An overesti-
mate of the scattering strength calculated in this way was
also noticed by Roufosse and Klemens.

A comparison of the data represented by the chain
curve in Fig. 4 with those reported by others is interest-
ing, since these data correspond to A, in absence of any
point-defect scattering. After accounting for the
difference of pressure, we find good agreement (within
1%) with the best value for A, at 80 K. This makes it
plausible that the effect of KOH on A, is accounted for by
the term described by Eq. (3), which, consequently, is not
connected with the proton disorder.

In our discussion, we have simply claimed that the
change of the scattering strength A is due to an increase
of the lattice anharmonicity. However, if we examine the
parameters which determine A [Eq. (6)] this assumption
appears to be the most reasonable one. As described
above, we have used the same phonon velocity and Debye
temperature in the calculations of A, in the two phases. It
can be shown using data for heat capacity in the ternpera-
ture range 16—25 K of the phases IIt (Ref. 3) and XI (Ref.
24) that the Debye temperature is the same to within 1%.
It probably follows that the sound velocity is the same
(same elastic constants) in the two phases and, hence,

TABLE I. Parameters obtained by the fitting of Eq. (I) using r given by Eq. (4) and with the parame-
ters: v =2400 m/s, OD =226 K, and P= 6.5.

Parameters

A (K s ')
8 (K ')

Models (i) and
(ii) phase Ih

2.93x 10'
120

Model (i)
phase XI

2.39x10'
120

Model (ii)
phase XI

2.93 X 10
0

Klinger (Ref. 12)
phase Ih

3.0x 10'
0.1

Equation (6}
phase Ih

4.0x10'
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g =3y+2q —
3 (7)

where q = —(t) Iny/t) lnp)r and q =y can be used as an

that the assumption of the same phonon velocity in the
two phases can be a good approximation. Consequently,
a change in the lattice anharmonicity is the most prob-
able reason for a substantial change in A. The fitting
procedure yielded the result of 23% increase of A at the
transition XI~lb (Table I). This would correspond to
an increase of the lattice anharmonicity, defined by ~y~,
of 11.5%. In obtaining this result, we assumed that the
scattering constant for point defect scattering is indepen-
dent of the anharmonicity. However, this is not always
the case. A wrong atom in the lattice will, in general, dis-
place neighboring atoms and therefore introduce a strain
field in the lattice. This leads to point-defect scattering
for which the scattering constant varies as y . ' In such
case (B o-y ), a detailed analysis showed that ~y~ in-

creased 10%%uo at the transition.
As described above, our theory for tt.(T) yields about

10%%uo larger ~y ~
in phase Ih than that in phase XI. Using

this result together with a theoretical expression for g
[Eq. (7)] give an indication how the value for g can
change at the transition. In a crystal of monatomic lat-
tice, where the phonons are scattered only in three-
phonon umklapp processes, g is given by2

approximation, at least at high temperatures. The value
for y of phase XI (= —0.45) is obtained from that of
phase Ih ( = —0.5) using our result of a 10% change of y
at the transition. Assuming Eq. (7) is valid for the ice lat-
tice yields hg =0.2 at the phase Ih ~phase XI transi-
tion. The value for b,g calculated from the experimental-
ly determined g values is 3. These calculations show that
the theory we have described for Ji, ( T) is consistent with a
somewhat larger g value for phase XI than that of phase
Ih, but the increase is an order of magnitude smaller than
that experimentally observed.

In summary, the theoretical calculations indicate that
phonon scattering in both phases XI and Ih is due mainly
to three-phonon umklapp processes and, in addition, that
the decrease of A, at the XI~Ih transition might be due
to an increase of the lattice anharmonicity caused by the
orientational disorder of the HzO molecules (proton dis-

order).
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