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Y. Asai
Fundamental Physics Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Ibaraki 305, Japan

(Received 12 May 1994; revised manuscript received 29 June 1994)

We have calculated the largest eigenvalues of the reduced density matrix of the singlet superconducting

correlation function and pair-field susceptibility in two-dimensional and two-chain Hubbard models with

quantum Monte Carlo methods. A singlet superconducting channel opens upon doping but is otherwise closed

at half-filling when U/t = 4. The interaction vertex contribution to the largest eigenvalue of the singlet pair-field

susceptibility grows with a power law as temperature is decreased. With these two observations, we revise our

previous understanding of the interaction vertex in the two-dimensional Hubbard model. We observe that some

phases reside in the two-chain Hubbard model. An analysis of the 2k+ charge correlation up to 32X2 sites

suggests that the 2kF correlation is dominant over the superconducting correlation (0.25~K~~1.00) in the

two-component Luttinger-liquid phase (U/r=2 and r„/r=1.4). We conclude the reduced-density-matrix

analysis discussed here is needed to unveil the nature of Hubbard and related models.

Superconducting correlation in strong1y correlated elec-
tron systems such as described the Hubbard model and the
t-J model has received much attention in the context of the

mechanism of high-T, superconductivity in cuprate super-

conductors. Numerical studies, such as quantum Monte
Carlo' and Lanczos diagonalization, have been performed
but we have not yet reached a definitive conclusion of
whether the superconducting phase is truly described by such

a model.
It is partly because the numerica1 methods have technical

difficulties in accessing when a system size is sufficiently

large to perform finite-size scaling at low temperature. The
notorious "negative sign problem" in quantum Monte Carlo
methods and a very severe restriction of system size in Lanc-
zos diagonalization are examples of such difficulties.

There are other difficulties, such as the lack of an a priori
algorithm to locate possible superconducting pairing struc-
tures. In most cases, nearest-neighbor (NN) d-wave, NN ex-
tended s-wave, and on-site s-wave, etc., pairing functions
were assumed. Even when further neighbors are taken into

account, only some of the possible forms of pairing functions
in each symmetry were tested. We need a systematic method
to find the most likely candidate for a superconducting pair-
ing structure in a given model with given physical param-
eters.

Here, we introduce a reduced-density-matrix (RD) analy-
sis of the superconducting correlation function and pair-field
susceptibility with quantum Monte Car1o methods for that

purpose. The method was originally introduced by Lin et al.
in studying the superconducting pair-field susceptibility of
the Hubbard modeI on as few as eight sites by the Lanczos
method. We combine the RD analysis with the analysis of
the full and the uncorrelated part of the correlation function
and the susceptibility. This combination enables us to per-
form a general search for the superconducting channel.

%'e define the following singlet pairing operator:

0,= 1I+NXikic, &c;+it. The most general form of the sin-
glet superconducting correlation function C(0) is

C(0)=g &;);,y,-,-„ (Ia)

yl l' gX ( ci tci +l)c.+pic.t).
EJ

(Ib)

After a spectral decomposition, C(0) can be expressed as a
sum that includes every superconducting mode:

where co and y are the mth eigenvalue and normal coor-
dinate of {yi i ). As Eq. (1) is a special form of Lowdin s
reduced density matrix for the singlet superconducting cor-
relation, we call (yi ii) the RD of the singlet superconduct-
ing correlation function. Similarly, we define the RD of the
singlet pair-field susceptibility (yi i ) by

f P
Xi j =gX «(T,c,t(r)c, ,(0))

ij ~G

X(T~,-+it(r)c-+i, t(0)). . .(4b)

It should be noted that the mode vectors of superconducting
modes of the fu11 and the uncorrelated RD are not identical in
general. In our method, the pairing structure of the supercon-

1 ~P
dr(T~, t(r)c,"+jt(r)c-+i, &(0)c-&(0.)), (3).

EJ

where P= 1/T and T is the temperature. The uncorrelated
part of the RD of the singlet superconducting correlation
function ( y; i ), and the RD of the singlet pair-field suscep-
tibility fbi; ) are defined, respectively, by

0163-1829/94/50(9)/6519(4)/$06. 00 50 6519 1994 The American Physical Society



6520 Y. ASAI 50

1.2

O
UJ

0)
1.0-

Cl
x&~ Lll

I I
c~
0 0
&cPo

~
c:x)

L

6oC0
.01 -.

t=1, U=4

0.8 r

0.60 0.70 0.80 0.90
I

1.00
.001

5

FIG. 1. Filling (p~N, /N, ) dependence of the LERD of the

ground-state singlet superconducting correlation function of the

two-dimensional Hubbard model with t= 1 and U=4. The data at

p=0.625, 0.72, 0.78, and 1.00 were calculated with 4X4, 6X6,
8 X 8, and 4 X 4 lattices with projecting time 7= 15, 7, 4, and 15 in

units of t, respectively. We have also calculated the p=1.00 case

with the 6X6 lattice, and we found no change in quantity. In all

fillings, open circles and closed circles are the full and the uncor-

related LERD, respectively. We find an opening of the supercon-

ducting channel upon doping otherwise closed at p= 1.00.

ducting mode has the freedom to be changed upon turning on

the interaction vertex, as it should be.
We apply the method to the two-dimensional square lat-

tice and the two-chain Hubbard models. The Hamiltonian of
the two-dimensional Hubbard model is given by

H= —t g (ct c, +H c )+Up. . n;&n;&,
(i,j)o

where (ij) represents sum over the nearest neighbors.
The square lattice Hubbard model is the most promising

model that has explained many experimental observations of
cuprates such as the gap formation at Q =(m, m) in the spin
excitation spectrum observed in neutron scattering experi-
ments and it is still the most likely candidate for a model for
the cuprate.

We have used the determinantal quantum Monte Carlo
and projector Monte Carlo methods in calculating finite-

temperature and ground-state physical properties, re-

spectively. ' We have developed the codes previously. We
have adopted the matrix-stabilization techniques proposed by
Loh and Gubernatis in calculating both equal-time and

imaginary-time-dependent Green functions. These theoreti-
cal techniques should be consulted in Refs. 1 and 9.

We have calculated the largest eigenvalue of the RD
(LERD) of the ground-state superconducting correlation
functions in the two-dimensional square lattice Hubbard
model. We have also calculated the uncorrelated part of the
LERD of the ground-state correlation function. The results
are summarized in Fig. 1. We used 10 electron 4 X 4 site, 26
electron 6 X 6 site, and 50 electron 8 X 8 site systems with
the periodic boundary condition, respectively. These system
forms closed-shell in the noninteracting case that reduces

FIG. 2. Temperature dependence the interaction vertex contribu-

tion to the LERD of the singlet pair-field susceptibility defined by
the difference between the full and the uncorrelated LERD of the

two-dimensional 4 X 4 Hubbard model. The interaction vertex con-

tribution to the LERD is plotted against the inverse temperature

1/T in log-linear scale. The physical parameters are the same as in

Fig. 1. The filling is 0.89. The interaction vertex contribution to the

pair-field susceptibility grows as 1.57X10 (1/T) as tempera-

ture is decreased.

"negative sign" ratio in the projector Monte Carlo
sampling.

' "The ratio strongly depends on filling but also
depends on U and the projecting time r. In any case the ratio
in the closed-shell system is much smaller than that in the

open-shell condition provided that the other parameters are

the same. The reason for this observation is still unknown.

The notorious "negative sign" problem in the open-shell
condition of the projector Monte Carlo calculation does not
allow us to do meaningful finite-size scaling analysis with

sufficiently large projecting time. This prevents us from mak-

ing a definitive conclusion on superconductivity through the

analysis of the correlation function. The physical parameters
are t = 1.0 and U= 4. While the full LERD of the correlation
function is almost identical to the uncorrelated LERD of the

correlation function at half-filling, the full LERD surpasses
the uncorrelated LERD in the less than half-filling case. The
enhancement has a broad peak at p~N, /N, =0.70. This in-

dicates that while the interaction vertex opens a supercon-
ducting channel in the less than half-filling cases the channel
is closed at half-filling. This is quite different from the pre-
vious observation with NN d-wave pairing. ' The enhance-
ment with the interaction vertex of the NN d-wave pairing is
largest at half-filling.

We have calculated the LERD of the singlet pair-field
susceptibility and its uncorrelated part of the two-
dimensional 4X4 Hubbard model with the same physical
parameters. The filling is (n) =0.89. We plotted the interac-
tion vertex contribution, i.e., the difference of the full and the
uncorrelated part, against the inverse of the temperature,
1/T in Fig. 2. The unit of the temperature T is t As tempera-.
ture is decreased, the interaction vertex contribution grows as
1.57X 10 (1/T) . While a low enough temperature
(T=0.01t) cannot be reached for us to make a definitive
conclusion on a possible superconducting transition in this
model due to the "negative sign" problem and bad statistical
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independence, the data we obtained down to T=0.2 may be
an indication of the possibility. The pairing symmetry that

gives the LERD of the singlet pair-field susceptibility is
d-wave-like. The real-space singlet pairing structure factor
includes a large contribution from distanced pairs as well as
the NN d-wave pair. The d-wave-like superconducting chan-
nel is one of the most plausible superconducting channels in
the two-dimensional Hubbard model. The eigenvalue of the
RD of the ground-state singlet superconducting correlation
function with an extended s-wave-like pairing structure fac-
tor accompanied with a contribution from distanced pairs
with nodes in radial directions is a bit larger than that of a
d-wave-like structure factor. We cannot exclude the possibil-
ity of an extended s-wave-like pairing channel, before we
find a way to overcome the "negative sign" problem to make
it possible to do a finite-size scaling analysis in the two-
dimensional Hubbard model.

It should be mentioned that we have made the same
analysis on the 4 X 2 Hubbard model, which Lin et al. stud-
ied. We have used the same parameters as in Fig. 1 of their
paper. We do not observe enhancements due to the interac-
tion vertex at low temperature.

Following the experimental observation of a line defect in
SrCuOq, ' some groups studied the two-chain t-J model'
and/or the two-chain Hubbard model. ' ' The Hamiltonian
of the two-chain Hubbard model is given by

H = —t g (c, c, + H.c.) + Ug n,'& n,'&
(i,j )o.

t g (dt d, +H—.c.)+Up n", tn;&
(i,j)~

t,g (ct d; —+H.c.),
io

(6)

where t„ is a transfer integral in the direction vertical to the
chains. In this anisotropic system, we need a RD analysis to
make the arguments more clear. We have made a RD analy-
sis of the ground-state superconducting correlation function.
We have also tried a finite-size scaling analysis of the 2kF
charge correlation to estimate the upper and the lower
bounds of K~.

We have calculated the LERD of the ground-state corre-
lation function and its uncorrelated part of the 16X2 Hub-
bard model at 0.75 filling. We used t=1.0 and U=2.0. We
changed t, and traced the changes of the full and uncorre-
lated LERD. We plotted the results in Fig. 3. The interval
(0.0(t„~2.0) can be classified into four regions, some of
which are characterized by bumps of the LERD. We have
labeled the four regions with Roman numerals in Fig. 3. In
region IV, we observe little enhancements of the LERD by
the interaction vertex and hence attractions. We found stron-
ger attraction in the other regions. On the basis of a calcu-
lated momentum-dependent spin correlation function along
with the help of a weak-coupling renormalization-group
(RG) result, we tentatively assign regions I and II, region
III, and region IV a strong-coupling phase (SC2), a two-
component Luttinger-liquid phase, and a Luttinger-liquid
phase, respectively. The presence of a Luttinger-liquid phase
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FIG. 3. The vertical transfer integral t„dependence of the LERD
of the ground-state singlet superconducting correlation function of
the 16'2 two-chain Hubbard model with t = 1, U= 2, and
p=0.75. We used projecting time r= 10 except at t„=1, where we
used r=7.5. The open and closed circles are the full and the un-

correlated LERD, respectively. We found four regions in this model.
We labeled each of them with Roman numbers. We found attraction
except in phase IV.

at t, =0 is trivial. Besides the possibility of two distinct
strong-coupling phases in 0.0& t,~1.0, our projector Monte
Carlo result does not contradict the weak-coupling RG result
predicting the SC2, the two-component Luttinger-liquid
phase, and the Luttinger-liquid phase in the interval.

We have tried finite-size scaling analysis of the 2kF
charge correlation with the same physical parameters and
fillings as before but with a fixed value of t„=1 4 (the two-
component Luttinger-liquid phase) by use of 8X2 site,
12' 2 site, 16' 2 site, 28 X 2 site, and 32X 2 site systems.
We used a periodic boundary condition and used systems
that give a closed-shell for the lower band in the noninter-
acting case. The upper band touches the Fermi level in the
noninteracting case. We define the following quantity for the
finite-size scaling analysis b(k, L/2) =2C(k)

C(k+2m/L) C(k 2m/L) a—nd C—(k)=1/NX;, exp(ik(r;
—r;)}(n,'n,'), where L is the length of the double chains. We
notice that (nont&z) =1/(4L)Xqexp(ikL/2}b(k, L/2). If the
following relation holds:

(non„')icos(2kFr)r ~+ . (8)

We plotted lnb(k, L/2) versus lnL in Fig. 4. While the
curvature is large in the smaller-L region, the curvature gets
smaller in the larger-L region. As the system size becomes
larger over 32X2 sites, b(2kF, L/2) becomes smaller even
than statistical error. The finite-size scaling analysis by use of
b(2kF, L/2) becomes more difficult in that situation. We are
still able to estimate the upper and the lower bounds of K~
from the information involved in Fig. 4. Our estimate of
K~ in this system is 0.25~K ~1.00. We have used the
16&&2, 28X2, and 32X2 lattices for the estimates of the

b(2kF, L/2) ~ (L/2)

then the long-range behavior of the 2kF charge correlation is
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bounds. We do not support the result obtained by diagonal-
ization study of very small clusters. The 2kF correlation is
dominant over superconducting correlation, if we assume the
Luttinger universality relations hold. The weak-coupling
RG study does not contradict our result.

To summarize, we have introduced the reduced-density-
matrix analysis to the quantum Monte Carlo and the projec-
tor Monte Carlo methods. We have applied our method to the
two-dimensional and the two-chain Hubbard models. We ob-

FIG. 4. Finite-size scaling analysis of the 2kF charge correlation
in the two-chain Hubbard model with t=1, U=2 and t, =1.4,
p=0.75. Inb(k, L/2) is plotted against InL. We have used 8X2,
12X2, 16X2, 28X 2, and 32X 2 lattices. Projecting time ~ is 10 in

all cases. By use of the 16X2, 28X2, and 32X2 lattices we esti-
mate 0.25~X~~ 1.0.

serve opening of a superconducting channel upon doping
otherwise closed at the half-filling in the two-dimensional
Hubbard model. The interaction vertex contribution to the

largest eigenvalue of the reduced density matrix of the sin-

glet pair-field susceptibility grows with a power law as tem-

perature is decreased in that model. These may indicate a
superconductivity parameter phase in the two-dimensional
Hubbard model. We revise the previous understanding of the
interaction vertex in the two-dimensional Hubbard model.
We have made the reduced-density-matrix analysis of the
ground-state superconducting correlation function and finite-
size scaling analysis of the 2kF part of the charge correlation
function of the two-chain Hubbard model. We found some
phases present in the two-chain Hubbard model with t=1,
U=2, 0.0&t„~2.0 and p=0.75. The analysis of the 2kF
charge correlation up to 32&2 sites suggests that the 2kF
correlation is dominant over superconducting correlation
(0.25~K~&1.00) in the two-component Luttinger-liquid
phase (U/t= 2 and t„/t= 1.4). Except for the possibility of
two distinct phases in the strong-coupling region, our result
does not contradict a weak-coupling renormalization-group
result on the two-chain Hubbard model.

Applications of the RD analysis were found to be very
successful in the two-dimensional and the two-chain Hub-
bard models. We conclude the analysis is needed to unveil
the nature of Hubbard and related models.
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