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Spectroscopic manifestation of a confinement-type lattice anharmonicity
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The observed broadening of the line shape of the emission spectra of the luminescence centers in crystals

with high electron-lattice coupling has been explained in terms of the ion-motion spatial confinement in the

lattice. For this, a simple and analytically solvable model for the potential of the electronic energy sheets has

been proposed. As an example of application the emission spectrum of Bi06 complex has been analyzed.

In the theoretical description of the emission and absorp-
tion spectra of the luminescence centers in crystals, the stan-
dard and most widely used approach' assumes that both the
excited and the ground electronic manifolds are represented

by the energy sheets generated by the elastic forces. In the
totally symmetrical vibronic mode, this corresponds to one-
dimensional shifted parabolas. The whole spectral line shape
of the transitions between various phonon states is repro-
duced by the sequence of squares of overlap integrals be-
tween the vibronic wave functions of the initial and final
electronic states. The emission and absorption spectra are
given by the Pekarian curve: '

Sn
I(E)= exp( —S)—6'(E (ea n Ii cu——))n!

Here S is the Hung and Rhys factor, eo is the energy of
the zero-phonon line, and A, co is the energy of phonon. This
model works well for small and medium electron-lattice cou-
plings (S is of the order of unity, in general smaller than
ten). For large couplings, however, when the Hung and

Rhys factor is greater than ten, like in color centers or in
metal complexes, the individual lines corresponding to tran-
sitions to various excited phonon states are broadened and
cannot be detected. In such a case, formula (1) cannot be
verified directly and all the parameters of the system should
be detected from the whole spectrum line shape. Since in that
case the offset between the ground and excited electronic
manifolds is very large, one should verify assumptions con-
cerning the lattice potential for large displacements of the
ions. We are concerned in particular about the assumption of
the lattice elasticity, which yields the vibronic Hamiltonian
proportional to the square of the ionic displacement in the
whole range of displacements considered here. The knowl-
edge about the shape of the energy sheets is very important,
since in many cases the interpretation of the spectra by the
standard harmonic oscillator approach is ambiguous and re-
sults in unexpected energy of the zero-phonon line, and in
very large energy of phonons (this problem will be discussed
further in more detail). Similar problems may occur in the
interconfigurational nonradiative internal conversion pro-
cesses. In such a case, the calculated probability of the non-
radiative transitions induced by the crossing of the displaced
ground and excited energy sheets requires also a very large
phonon energy to fit the theoretical predictions to the experi-
mental data. One can extend the model to consider interac-

tions with more than one vibronic mode, as well as "square"
contributions to the electron-lattice coupling. For example, in
the case of the A1203.Ti system this procedure was
successful. Nevertheless, when we do not have the specific
structure of the spectrum suggesting a large static Jahn-Teller
distortion, such a procedure may not be essential.

It has been shown recently that the characteristic features
(like, e.g., spectra) of many physical systems may change
considerably when the system becomes spatially confined. In
many cases (impurity states in low-dimensional semiconduc-
tor structures or atoms and molecules in molecular zeolite
sieves) the spatial confinement is frequently described by the
model of a potential well with infinite barriers. It is rather
obvious that for ionic vibrations in lattice, a deviation from
the free parabolic potential may be modeled by putting high
potential barriers related to the rigid host lattice, which con-
fines the motion of ions.

In this paper we present a model potential, which takes
into account spatial confinement of the ionic motion. We
then use it in order to reproduce the experimental broad band
emission luminescence spectrum of Bi06 complex in

Bi46e30,z (BGO) crystal. The results are compared with the
ones obtained by using the harmonic lattice potential model,
and we find our approach much more reasonable. The con-
fined potential, which we use, enables us to explain in a
simple way the experimentally observed broadening of the
spectrum line shape.

The material we have used to observe the emission spec-
tra was chosen from crystals and ~lasses with molecular
complexes as the emitting centers. ' ' ' The complexes
consist of a central metal ion and oxygen ligands in the four-
or the six-fold coordination in Oh or Tz symmetry, respec-
tively, in the ideal case. All such systems are characterized
by broad absorption and emission bands resulting from the
strong electron-lattice coupling. In the materials considered,
the emission is spin forbidden and occurs from the lowest
triplet term of the excited configuration. ' ' We deal thus
with two different zero-phonon lines, one for emission and
the other for absorption (occurring to one of the singlets of
the excited configuration). The zero-phonon line for the
emission is, therefore, expected to lie in the high-energy tail
of the emission spectrum (instead of lying between the emis-
sion and the absorption maxima) and falls within 26000—
28000 cm interval for the material used here. However,
the strong electron-phonon coupling makes this line very
hard to detect, and in consequence, it is invisible even at low
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FIG. 1. Three attempts of fitting to the emission spectrum of
Bi06 complex, obtained using the standard approach. Solid curve:
experimental spectral line shape; triangles (a): co=28 000 cm
A, cu=1000 cm '; rectangles (b): co=35 000 cm ', fico=300
cm ', circles (c): co=28 000 cm ', fico=300 cm

temperatures. The spectra of these materials exhibit some
common features. They are broad, structureless, and often
have very similar shapes. We expect that the effect of anhar-

monicity on the potential energy curves, which we explain in

one example, manifests itself in all of the emission spectra
reported 12,13,18

The experimental setup, involving the optical multichan-
nel analyzer as a detector and the excimer laser (XeCI) work-

ing at 308 nm as a source of excitation, was described in Ref.
13. The experimental line shapes are to be compared with
theoretical predictions for the shapes of the emission rate
distributions. To do this, all the measured spectra were trans-
formed to the line shape form according to procedure de-
scribed in details in Ref. 17.

As an example we have considered the emission spectrum
of Bi06 complex in BGO crystal. (It is important to note,
that the optical properties of this stoichiometric material are
solely determined by the considered complex. In contrast to
glasses with molecular complexes, where the crystal field
distribution can alter the emission spectrum, the BOO crystal
exhibits one-site emission and is a proper candidate for our
considerations. This one-site character of the emission has
been confirmed by a single-exponential decay of the
luminescence. '

) The experimental spectrum is shown in Fig.
1. Three different attempts to fit the theoretical curve, ob-
tained in standard harmonic oscillator approach, to the ex-
perimental emission line shape are also presented. Since the
experimental spectrum have been observed in the room tem-
perature, the emission from higher vibronic states of the ex-
cited electronic manifold is also considered, and instead of
using formula (1) we have

I(E)=g ~l(e, mug, n)~ f(E )8(E [eo—(n —m)fia—)]),
n, m

(2)

where lg, n) and ~le, m) are harmonic oscillator wave func-
tions representing vibronic states of the ground and excited
electronic manifolds, and f(E„)is the Boltzmann occupation
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FIG. 2. Configuration coordinate diagrams for Bi06 complex
resulting from the fitting procedures. Solid line: present model po-
tential. Other lines correspond to cases (a), (b), and (c) as in Fig. 1:
dotted line (a), dashed (short) (b), dashed (long) (c)—coincides
with (b) for the upper curve (the same h, co). Vertical arrow corre-

sponds to the transitions in the maximum of the emission line

shape.

number. The overlap integrals were calculated according to
the recurrence formula described in Ref. 3. The zero-phonon
line energy eo and the phonon energy ft, ru are the only free
parameters in the fitting procedure. For a reasonable phonon
energy (300 cm '), the value for the zero-phonon line re-
quired to make the best fit is rather unphysical
(35 000 cm ') Ref. 19, and falls near the first maximum of
the absorption spectrum (the curve represented by rect-
angles). On the other hand, when we chose a realistic
so= 28 000 cm ', an unacceptable value of
fi, re=1000 cm ' has to be taken (triangles) to obtain a rea-
sonable fit. Choosing realistic values for both eo and fico

(28 000 cm ' and 300 cm ', respectively), results in a
bad fit, represented in Fig. 1 by circles. The electron energy
sheet diagrams are presented, for illustration, in Fig. 2
(dashed and dotted curves). Similar results have been ob-
tained when we analyzed the emission spectra of other crys-
tals and glasses. ' ' The presented results show that the
usual procedure of fitting the emission line shape fails in the
presence of strong electron-phonon coupling. It means that
the assumption about harmonic oscillations for high vibronic
states and in the whole range of displacements is too sim-
plistic in the case of optically active ions in such materials.
We thus propose here another model, which in the frame of a
single fully symmetrical "breathing" mode goes beyond the
simple harmonic oscillator picture by taking into account the
confinement of the ionic motion in lattice, but retains simul-
taneously its analytical simplicity.

Before we discuss our model potential let us have a look
at another system, which shows the broad vibronic absorp-
tion and emission bands. In a diatomic molecule the energy
sheets are usually approximated by the Morse potential (see
Fig. 3, asterisks), which increase to infinity when the atoms
are close to each other, and falls to zero when they are far
apart. Although in the vicinity of the minimum the potential
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a, by a simple substitution Q=Qm/a] from 0 to m, and

V(Q)~~ for Q —+0 and Q~m. The energy E„, with re-

spect to the bottom of the potential is

Pl

E„=—+ u(n+ —,'), n = 0,1,2. . .

and the solutions of Eq. (3), corresponding to ~g, n) vibronic
states, have the form:

(Q)=sin (Q)Ct ~[cos(Q)], (6)

Configuration coordinate Q

FIG. 3. Various types of vibronic potentials; dashed curve: har-

monic lattice; asterisks: Morse potential; solid curve: our model

potential.

can be described by a parabola, for higher energies it is
strongly anharmonic. In the case of a solid state we consider
the system of complex ion which consists of the central
metal ion and four or six oxygen ligands surrounded by the
other host ions. Thus, when the local vibrations are consid-
ered, large displacements of an arbitrary ion are limited by
the presence of its neighbors. Not taking into account the
special case when the ion migration is allowed, an arbitrary
deflection of the individual ion leading to dissociation is
rather unexpected. For this reason we assume that for large
ionic displacements in any direction, the potential increases
more rapidly than the harmonic one. One can study different
types of anharmonicity yielding contraction of the potential
energy curve. One possibility is, for example, the harmonic
oscillator potential embedded in the infinite rectangular well;
another one is an anharmonicity proportional to the fourth
power of the displacement variable.

We propose here a model, which gives analytical solu-
tions having simple physical interpretation. The solutions of
our model potential fulfill simple recurrence relation, and can
be easily generated to any required order. The potential has
special importance in the calculation of the spectral line
shape, where vibronic wave functions for highly excited
phonons are currently required. One has to stress that such a
calculation and theoretical prediction of the spectrum could
not be done if one were condemned to perform exact inte-
gration of the Schrodinger equation in order to obtain the
high-lying states. In our model the Schrodinger equation for
the totally symmetrical mode of vibration reads

where C„[cos(Q)] are Gegenbauer polynomials. The
wave functions ql'„(Q) vanish at the border of the confin-
ing region, i.e., where the potential V (Q)~~. For further
comparison with the harmonic oscillator solutions, let us de-

note as 2firo the energy of the ground state Eo=-,'u. For

small ionic displacements around the equilibrium position

Q = m/2, the potential becomes V =[u(u 1)/2](—Q
—m/2), and is a good approximation to the harmonic oscil-
lator potential. As the effect of the spatial confinement, the
energies E„are not equally spaced, and E„+,—E„
=[1+(n+ —,')/u]fi, ro. For u&)1 and n not too large, i.e., near

the bottom of the potential, E„+&—E„=A,eo.

The excited state potential curve has to be shifted in the
energy scale by the amount Ep corresponding to the zero-
phonon line, and by 8 in Q variable in order to represent the
different equilibrium position due to the electron-lattice cou-
pling. Various shapes of the potential curve may be chosen
by different parametrization n, and finally the potential for
the excited states is

V (Q —8)+ eo.

Let us denote the vibronic wave functions corresponding to
the ~e,m) state of the excited electronic manifold as

(Q). The transition probabilities P„between dif-
ferent phonon states (n, m) belonging to the ground (u) and
excited (u') electron states are in this model proportional to
the squares of the corresponding functions. The emission
spectral line shape for transitions from m to various (n) pho-
non states of the final (ground) electron state reads

I' n

I „(E)= 4„* (Q)'P (Q)dQ 8[E—(E —E„)].

For the temperature 0 K, the transitions are assumed to
occur from the I=0 vibronic state of the excited electron
state. For higher temperatures I ~0 K, one has to perform
summation over all I „[see Eq. (2)], and the final spectrum
line shape is given by

1 d'
—

2 ~ 2+V.(Q)+E. 'P"(Q)=0, (3)
I(E)=X I,.(E)f(E )

where Q is the configurational generalized coordinate, and

u(u —1)
V (Q)= 2 „.„Q (4)

is a model potential (Figs. 2 and 3, solid line), which extends
[the confining region can be declared as (0—a), for arbitrary

In, n

We have performed calculations considering a as a free
adjustable parameter of the system. Very good fits to the
experimental spectrum have been obtained for
u=u'=127. 1 and 8=0.62. This corresponds to realistic
E'p= 28 000 cm and hem= 300 cm '. The results are pre-



50 SPECTROSCOPIC MANIFESTATION OF A CONFINEMENT-. . . 6507

-1cm

0
0

0
0

12000 1 7000 22000 27000 32000
Energy (cm ')

sented in Fig. 4. Comparing the results presented in Figs. 1
and 4 one can see that the assumption of the ionic motion
confinement yields much better fit to the experimental emis-
sion line shape than the standard approach.

The intensity of the emission from the m th
~
e,m) vibronic

FIG. 4. Theoretical fit (circles) to the emission spectrum of
Bi06 complex obtained using the model potential defined by Eqs.
(4) and (7) co=28000 cm ', h, (@=300 cm ', a=127.1, and
8= 0.62.

state of the excited electronic manifold can be rewritten in
the form: I (E)=X„(e,m~W„~e, m). The operator W„ is
given by W„= ~g, n)(g, n~bI[E (—E —E„)]f(E ) and deter-
mines the line shape in two ways: by the dependence on the
energetic structure, and by the dependence on the vibronic
wave functions related to the ground electronic manifold.
The former dependence has "nonlocal" character, since it is
the consequence of the potential shape in the whole range of
the displacement variable Q, whereas the latter one is "lo-
cal, "because it concerns only the range of Q near the bottom
of the excited state energy sheet. Comparing the results of
our model potential calculations with the ones obtained using
the harmonic oscillator approach, one can see that in the
confined case the line shape is much broader, and exhibits
slight asymmetric broadening in the range corresponding to
transitions to higher vibronic states. The broadening is due to
the energetic distance between the neighboring vibronic
states, which increases slowly in the confined case, while it
is constant in the harmonic oscillator case. This effect is
additionally enhanced by moderate changes resulting from
the potential curvature (accumulation of the main maxima of
the wave functions near the border of the confining region).

The luminescence spectra were taken during the program
aimed at evaluation of potential laser characteristics of mo-
lecular ions in solids, conducted by Professor A. Lempicki,
at Boston University.

Departament de Ciencies Experimentals, Universitat Jaume I,
Apartat 224, 12080 Castello, Spain.
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