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One model of granular superconductors is based on a Josephson-junction array with capacitive,
or charging, terms. As a result of having these noncommuting terms in the Hamiltonian, energy
transport is possible. We have obtained an expression for the heat current for this model and
have employed it in calculating the thermal conductivity e. We Snd that as the temperature is
lowered through the system's order-disorder phase transition, ~ increases by more than one order of
magnitude. Effects of having a distribution of grain sizes are also calculated.

The physics of granular superconductors (GS) has been
investigated intensely for many years now. i It has been
well established that the phase of the Ginzburg-Landau
(GL) order parameter on each grain may make a contri-
bution to the electrical conductivity, the specific heat, s

and frictional forces on vortices. 4 In this paper, we sug-
gest that fluctuations in this phase may also contribute
to the thermal conductivity. We employ a Kubo the-
ory in the harmonic approximation, and a molecular dy-
namics simulation using classical Green-Kubo theory, to
calculate e for one simple model of GS. We find good
agreement between the two methods, and that, although
the order of magnitude of tc is low, it increases by more
than one order of magnitude as T is lowered through the
system's order-disorder transition, T,i. We suggest that,
although this system has very little entropy, there is also
very little scattering, resulting in a large increase in e be-
low T,q. Parameters appropriate to granular aluminum
are used. To our knowledge, this contribution to K has
not yet been discussed.

The superconducting transition of three-dimensional
(3D) GS typically takes place at a temperature T,i «
T,o, where T,o is the transition temperature of the in-
dividual grains. Near T,o, the grains develop supercon-
ducting fiuctuations. However, as they are of finite size
and separated by the dielectric, they cannot establish
long-range phase coherence. If the size of the grains is
less than the bulk GL coherence length (GL, one can as-
sociate a GL order parameter with each grain. Then,
close to T,i, only fiuctuations in the phase of this order
parameter are dominant. The grains become Josephson
coupled at these temperatures, with the coupling energy

kIc'
given by H~ = g&&, E& [1 —cos(PI, —P )]i/2, where
PI, is the phase of the order parameter on grain k and

E& is the Josephson coupling energy between sites k
(kIt.")

and k'. This model has been used extensively for GS, and
recently for pure high-T materials. The thermal conduc-
tivity of these materials has received relatively little at-
tention, although a review of e of amorphous metals has
recently been given by Lohneysen. One can also include
a term in the Hamiltonian to account for the charging
energy associated with transferring a Cooper pair &om
one grain to another. This term takes the form of a

kinetic energy, within the diagonal approximation to the
capacitance tensor, allowing one to directly study dynam-
ical aspects of this model such as energy transport. The
charging term to be added to the Hamiltonian is written
most generally as Hc = ez p& &, n&C& &, ni, ~/2, where

nI, measures the number of Cooper pairs transferred, and

C& &, is the inverse capacitance matrix. The variables

Pt, and ni, are canonically conjugate, [ni„gr,~] = i6t, I,~. —
Therefore, for T & T',0, the dynamics of GS may be de-
scribed by the following Hamiltonian:

H = ) ( E, 8'/Bg—t + 2) Ez [1 —co (Pt —g&)])
Ic'

= ) Ht„ (1)

where Eci l = e2/2C is the charging energy which is as-
sumed to have diagonal components only (an often-used
simplifying approximation) and the other terms are as de-
fined previously. The operator Hp, the quantity in curly
brackets, is a reasonable definition of a local energy op-
erator within this model. It is often assumed, as is done
here, that screening greatly reduces the eH'ect of the long-
range Coulomb interactions. Of importance to the ther-
mal conductivity, Eq. (1) contains no cubic anharmonic
terms upon expanding the potential about the ground,
phase-locked state. If one considers a model with only
nearest-neighbor off-diagonal components in the kinetic
energy, as in Ref. 9, a canonical transformation yields a
similar Hamiltonian with a diagonal kinetic energy and
a cosine potential, whose argument depends on nearest
and next-nearest neighbors. Therefore, one again finds
no cubic anharmonic terms.

We will assume nearest-neighbor Josephson coupling
and that the grains are located on a simple cubic lattice.
The latter has been assumed in previous studies and can
be partially justified. This model is known to display an
order-disorder transition at T i ——2 2Eg/k~ Periodic. .
boundary conditions are used on a supercell of length
NL, where L is the nearest-neighbor distance and N the
number of grains along a unit cell. We wish to reason-
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ably apply classical Green-Kubo theory, and therefore
require that E, ( EJ. Also, it must be that T,y « T p,
that is, the system's order-disorder transition tempera-
ture should be lower than the transition temperature of
the individual grains. Although this may seem obvious,
it is by no means assured by the model and places lim-
its on the parameters. The Josephson coupling energy is

defined by E& ——xhA(T)/4e R, where b, (T) is the
superconductor's energy gap and R„ is the intergranular
normal state tunneling resistance between sites k and k'.
The effects of dissipation are neglected in this treatment
as we are only concerned with temperatures T ( T,p.
It appears difBcult to choose a consistent set of param-
eters such that (1) T,q ( T,o, (2) L ( (GL, and (3)
E, ( EJ. The set chosen below satisfies the first two
criteria, but not the third. We make use here of the re-
sult of Simanek showing that the phase transition takes
place for all E, ( 6EJ. Using these relations, and that
6(0)/k~ = 2 K, a value appropriate for aluminum, s we
find C = 8.5 x 10 ' F, or, using | = el. with e —8
(appropriate for alumina), L = 9500 A. (which is still less
than (GL for Al), Eg 3.08 x 10 eV, and p = 1.75 0
cm. Because we have chosen E, = 6Ep, quantum effects
will be non-negligible in this model, tending to suppress
T,q, indeed TE;»t„„——her /k~ --8T,q. However, the
essential physics of the transition should remain, as we

will discuss. We can also note that the modes responsible
for carrying much of the heat are the long wavelength,
low frequency ones, which effectively have a much lower

TE;„,q„-„. Disorder in grain sizes is always present to some
extent. Therefore, disorder is introduced into the charg-
ing energies, which are taken to be E," = Eo(1 + 0.5r),
where r is a uniformly distributed random variable be-
tween 1 and 0 and Eo = e2/eL. The Josephson coupling
energies are assumed to be equivalent.

The expression for K, put forward by Peierls is often
the starting point from which an investigation into this
quantity is begun. That theory is valid for weak scatter-
ing of the propagating excitations and is useful in many
circumstances. In particular, it is valid for 3D struc-
turally ordered GS well below the phase-locking transi-
tion. Since we are interested in the behavior of the dis-
ordered (thermodynamic) phase, as well as the effects of
disorder in the grain sizes, we make use of the Green-
Kubo theory as implemented through molecular dynam-
ics, as well as Kubo theory. These theories require a
heat current or heat current operator. Hardy wrote
the general form of the heat Aux operator for a crystal.
It depends on the local degrees of freedom, requires an
assumption as to the division of energy among atoms,
and can be expressed in terms of diagonal as well as
off-diagonal elements with respect to the energy excita-
tions. Allen and Feldman gave a treatment for K, in the
harmonic approximation within a Kubo theory using a
simple extension of the Hardy expression. They applied
it to amorphous silicon models and found good agree-
ment with experiment. Ladd et aL. compared homoge-
neous nonequilibrium and equilibrium molecular dynam-
ics (Green-Kubo theory), and Boltzmann-Peierls theory,
in an investigation of the lattice thermal conductivity of a
Lennard-Jones crystal. They found the latter two meth-

ods to be the most useful and in agreement with each
other. In addition, their results showed little dependence
on the size of the unit cell.

We now derive the expression for the heat current op-
erator for this model, from which one may calculate K.
Following Hardy, one takes H(x) = P& A(z —qI, )HI„
where A(x —qg) is a localizing function which is g 0 for

z = qq, and 0 otherwise. Using H(x) + V'. s(x) = 0, and

H(x) = [H(z), H]/ih, we have V' s(z) = i[H(x), H]/5,
where a(z) is the local energy fiux density operator,
and H(z) is the energy density operator. Note that

[H, A(z —qg)] = 0, as PI, and 0/DPI, commute with all
spatial variables. The consequence of this is that there is
no mass transport term —the term that plays a dominant
role in energy transport in the liquid state. In addition,
it is worth remarking that for an ordinary liquid there
may be an average mass Bow which would give rise to an
energy current that should not be included in the heat
current. As in the ordinary solid state problem, this
does not occur and the energy current that we consider
is equivalent to a heat current. We find for the energy
(or heat) fiux operator,

S= dOs x

~ ) E~"'"+' El"l nI I +i sin(4~ —Pa+)) 0/Bgg, (2)
Ic, l

where I + It" labels a nearest neighbor of k and ny I,+~ is a
unit vector joining nearest neighbors.

After writing H and the heat current operator in the
harmonic approximation, one can write the (applied)
&equency-dependent thermal conductivity as a sum over
normal modes. We will refer to this calculation as the
lattice dynamics (ID) approach (please see Ref. 19 for
details). This calculation in the high-temperature limit
yields K due only to the imposed disorder. Localization of
harmonic modes is probably not an important consider-
ation in this 3D model, although it could be of great im-

portance in 2D ones. We have made a limited study of lo-
calization through the inverse participation function and
find, as expected, that the uppermost frequency modes
appear to be localizer'

Our results for this model are summarized in Fig. 1,
where the temperature dependence of e is plotted for two
cell sizes, N = 6 and N = 9. The parameter g in our
approximation to h(~) = g/m(rI + A&2) is taken to be
1.08 x 10 ps ' for N = 6, and 3.2 x 10 ps for
% = 9. A strong size dependence is evident here. The
origin of this problem is contained in the behavior of the
harmonic difFusivity at low cu, which will obey a Rayleigh
law, D(u) —ur 4. It is therefore necessary to include
some additional scattering process for these modes, i.e. ,

anharmonicity, two-level states as in glasses, or boundary
scattering as in crystals, if a finite thermal conductivity
is to be observed.

In addition to the efFect of disorder on the thermal
conductivity, anharmonicity should also be considered.
For this purpose, molecular dynamics (MD) is ideally
suited as it can easily include anharmonicity to all orders.
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FIG. 1. Comparison of results for e calculated using Kubo
theory in the harmonic approximation for an N = 6 and an
N = 9 unit cell. The Snite size errors are evident in this
plot and result &om the longer wavelength modes available
for carrying heat in the latter case.

FIG. 2. logsp(ss) vs logsp(l/T) calculated using clas-
sical MD and Green-Kubo theory. Above T,&, where
logsp(1/T, s) = 0.102, the data fall onto the expected straight
line. There is a weak size dependence at T = T,~ which is too
small to be seen on this plot.

Also, we may observe the efFect of the phase transition in
this way. Next, we present results of MD calculations of
the thermal conductivity for the Hamiltonian shown in
Eq. (1) using Green-Kubo theory, both with and without
disorder. The classical equations of motion are written
using the canonical momentum, p; = m;P;, and "mass, "
m; = 5 C/4e . The average heat current in the classical
limit for our problem can be extracted from Ref. 21 as
well as &om the classical analog of our previous discus-

sion, and is S'1(t) = g &„F (v + u„)r /2, where

for m, n nearest neighbors and 0 otherwise. The ther-
mal conductivity is then given by e,p(v)Vk&Tj (S'(t)Sp'(0)) cos(art) dt.

Standard classical molecular dynamics methods have
been used. We have averaged all results presented here
over two sets of independent, random, initial conditions,
as well as over the three Cartesian coordinates. The
time step chosen was to/100, where to is a typical os-
cillation time. We used a minimum of 50000 time steps
for thermalization, and then an additional 180000 time
steps during which the correlation functions were cal-
culated. The accuracy was chosen so that the vari-
ation in energy over the time of the simulation was

((QQ) ) / & ]. x ].0 ~E~„.
In Fig. 2 we summarize the results of the simulations.

The logarithm of e is plotted vs logM(1/T) both with
and without disorder in the charging energies, and for
the cell sizes N = 6 and N = 9. Two observations may
be made immediately. First, the size effect is signifi-
cantly reduced here. The anharmonicity dominates over
the disorder at these temperatures, and renders the long
wavelength modes inefFective carriers of heat. The second
observation is that the disorder does not affect the ther-
mal conductivity above the order-disorder phase transi-
tion. For temperatures below T,q, however, the effects
of disorder can clearly be seen in the reduction in K,. In
this phase-locked regime, the anharmonicity plays a less
dominant role, the disorder now contributing noticeably
to the thermal resistance. Note that the charging ener-

gies used here are the same as those used in the lattice
dynamics calculations.

The difFerent temperature dependences observed in
Figs. 1 and 2 are the result of the scattering mechanisms
being considered in the two calculations. In the former,
the temperature dependence of the phonon occupation
numbers results in a strong increase in the thermal con-
ductivity with increasing temperature; whereas, in the
latter calculation, the anharmonicity causes the thermal
conductivity to decrease with increasing temperature.

We have also calculated the electrical conductivity vs
T and N for this model. Our results are indistinguishable
&om those presented in Ref. 2.

We find that the high-temperature LD results agree
reasonably well with low-temperature MD results. This
is so because at high temperatures the phonon occupa-
tion numbers which enter into the expression for ~ in
the LD formalism are equivalent to those in the fully
classical MD simulations, and the anharmonicity in the
low-temperature MD results is small.

The order of magnitude of K for this model is fairly low
but still may be of signi6cance for actual GS. The lattice
phonon contribution is therefore expected to dominate
the experimental situation. However, strong evidence of
the order-disorder transition is found in ~ Aone order .of
magnitude change in ~ at T,q encourages us that this may
be observed experimentally if a dielectric with a small
enough phonon contribution could be found. We believe
the cause of this large increase to be the lack of a third-
order anharmonic term in the potential. It is interesting
to note that a scalar variable interacting in a material
with cubic symmetry will result in a dispersion curve
with only one acoustic branch. In this case, following
Peierls, no cubic anharmonic processes can take place.
Therefore, although this system has very little entropy,
there is also very little scattering, resulting in a large
increase in K below T q.

The authors would like to thank Professor Estela
Blaisten-Barojas for many valuable discussions and sug-
gestions.
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