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We study the effects of the Coulomb electron-electron interaction on the Aslamazov-Larkin fluctua-

tion correction to the conductivity in impure two-dimensional metals. We show that unlike the correc-

tion to the superconducting transition temperature, the above correction to the conductivity is sensitive

to the form of the Coulomb interaction. In particular we studied the case of a thin metallic film separat-

ed from a massive metallic substrate by an insulator, when the electron-electron interaction is modified

by image forces.

The correction to the BCS transition temperature T,o
in a two-dimensional impure electron system due to
modification of the Coulomb interaction was studied by
many authors using different techniques. ' For the
transition temperature T, renormalized by quantum fiuc-
tuations from the Coulomb interaction the following re-
sult was obtained:
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tion of the transition temperature alone. There are addi-
tional corrections which strongly depend on the form of
the Coulomb potential and therefore they are not univer-
sal.

Our calculations show that the effect of the Coulomb
interaction on the Aslamazov-Larkin correction to the
conductivity ho~t, the diamagnetic susceptibility be&,
and the upper critical magnetic field H, close to the tran-
sition T T, « T, —may be presented in the form

a
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where e is the electron charge, R~ =1/o d, o is the con-
ductivity of a film, d is its thickness, pz is the Fermi
momentum, I is the electron mean free path due to elastic
electron-impurity scattering, and r is the corresponding
momentum relaxation time. We assume in Eq. (1) that
d & 1. This result was obtained for the screened Coulomb
potential in Refs. 1, 4-6 and for a local potential in Refs.
2 and 3. It was not clear why the results were the same in
these different cases. Nevertheless, the theory which
takes into account higher order terms in the Coulomb po-
tential seems to describe experimental data for homo-
geneous films quite well.

However, there is uncertainty in extracting the transi-
tion temperature from analysis of the temperature depen-
dence of the conductivity. It was assumed that all
Coulomb corrections were absorbed in the renormalized
transition temperature T„and the fluctuation conduc-
tivity depended on T, as a parameter. Direct effects of
the Coulomb interaction on the fluctuation conductivity
were not taken into account. The rn.ain purpose of the
present paper is a complete study of the effect of the
Coulomb electron-electron interaction on the Suctuation
conductivity. First of all we shall show that the correc-
tion of the transition temperature is universal in the sense
that it does not depend on the detailes of the screening of
the Coulomb potential. Then we shall show that the Quc-
tuation conductivity is not described by the renormaliza-
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a
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1
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which is obtained by linearizing an expression similar to
Eq. (1) close to T, . Therefore P is a universal function.
However, the functions az and a&, which describe the
renormalization of the "kinetic term" and the "gradient
term" in the nonstationary Ginsburg-Landau equation
depend strongly on details of the screening of the
Coulomb interaction.

For this purpose we consider two cases which may be
realized experimentally. First is the case of a thin metal-
lic film on an isolating substrate where the Coulomb po-
tential may be considered two dimensional. In this case

Here ho ~L( T T, ) is the co—rrection to the conductivity
which depends on the renormalized transition tempera-
ture T, as a parameter. The corrections 6J4(T T, ) and—
H, (T T, ) are define—d in the same way. The functions

an and a& describe the effects of the Coulomb interaction
not included in the renormalized transition temperature.
The function P is defined by the equation
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1a&= 1+3p ln 2' T,v

Eo
ln E =

T,
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where D is a di8'usion coefficient, and ~z is the two-
dimensional Debye screening momentum. Second is the
case of a metallic film separated from a massive metallic
substrate by an insulator where the Coulomb potential is
modified by image forces. In this case

1 1a&= 1 —3p ln ln
27TTc 7 2$Tc7p

where p is the dimensionless coupling constant [see Eq.
(16)]. In the approximation we use a first order of pertur-
bation theory in the Coulomb potential, af, =a&. It is

seen from Eqs. (3)—(5) that corrections to the kinetic term

u& and to the transition temperature (the function P} are
equally important close to the transition. We expect
them to be equally important when the corrections are
not small.

Now we present some details of the calculations. The
Aslamazov-Larkin correction to the conductivity close
to the transition may be written in the following way:

T
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where n is a unit vector and L (Q, n) is the retarded fiuc-
tuation propagator which efFectively describes the
electron-electron interaction in the Cooper channel
L "(Q,n) '=1, ' —P"(Q,n). Here P (Q, Q) is the re-
tarded Cooper polarization operator and A, is the interac-
tion constant. The transition temperature is determined
from the pole of the fiuctuation propagator for Q=0 and

Q =0. When the Coulomb interaction efFects are not in-

cluded, we obtain for the polarization operator Po the fol-

lowing result:

and accordingly

Lo (Q,n}=——ln +4( in+D—Q )
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where v=mpz/H is the two-spin electron density of
states, D is the diffusion coefficient, %'(x) is the logarith-
mic derivative of the y function, coD is the Debye fre-
quency, and yE is Euler's constant.

As is clear from Eq. (6), to study the Coulomb correc-
tion to the fluctuation conductivity we need to calculate
the corrections to the polarization operator shown in Fig.
1. We perform calculations with Matsubara technique
and make the analytic continuation only at the final step.
The result of calculations of the diagrams in Fig. 1 is
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where Qsr=2nMT, co =2nmT, and s„=mT(2n+1), where M, m, and n are integers; V(q, ro ) is the Coulomb
electron-electron interaction. We do not write the expression for P5 and present contributions from all terms after sum-

mation over n:
5

P('Q IIM )= y P;(Q IIM }

2Tv, 1 V(q, ~ )[ln(m}—@(DQ'+II~}]

)0 (2n )
d~q
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x +
ln( m } 4(D—Q +Q~ }—2

Dq +a) ln(m) Dq +tom
(13)

In deriving Eq. (13) we assume that DQ +O,~ &&co

Dq . The essential region of the summation over n is
0& e„&r0 . The first term in square brackets originates
from P& +P2 and the second from P3+P4. The last term
in the square brackets corresponding to P5 was calculat-
ed with logarithmic accuracy which means that the fluc-
tuation propagator was chosen in the form
L(q, ro )=—(2/v)[ln(m)] ' for co =Dq2))4rrT [see
Eq. (4)].

Now we specify a form of the Coulomb potential. The

P

Coulomb potential in an impure metal in three and two
dimensions is

1"'«1 m)=-
pdp q~~m

/e /+Dq
v Dq

(14)
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where Pzo is the diffusion polarization operator,
K2 =2m.e vz, and v2 is the two-dimensional density of
states vz=vd. When a metallic film of thickness d is
separated from a massive clean metal by a dielectric film
of thickness b and permeability s, the electron-electron
interaction is modified by the image forces and has a
dipole-dipole character Vdd. At distances larger than b
the screened electron-electron interaction is

Vo(q) =

Vo(q)
Vdd b m

1 p ( )V

4ne d 4ne db

q(1+ e Ibq ) s v
'

(16)
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where Vo is a nonscreened interaction and p is the in-
teraction constant for the dipole-dipole interaction.

The equation for the renormalized transition tempera-
ture is Po(0,0)+P(0,0)=A, '. It is seen from Eq. (13)
that for P(0,0) the expression in square brackets is pro-
portional to Dq . This is a reason why the singular q
dependence of the Coulomb potential V' ' cancels out
and we obtain Eq. (1). The same result may also be ob-
tained for the potential Vdd in the case of strong screen-
ing PdpVp&&1. Therefore we conclude that the correc-
tion to the transition temperature is not sensitive to the
form of the Coulomb potential, i.e., it is universal.

The situation is different for the coefficients az and a&
which are defined by the equations

FICx. 1. Coulomb interaction corrections to the Cooper po-
larization operator. For P3 and P4 only diagrams with interac-
tion on the upper electron Green's function are shown. The tri-
angle vertices correspond to interaction vertices in the diffusion
and Cooper channels renormalized by impurities. The zigzag
line is the Coulomb potential and the wavy line is the fluctua-
tion propagator.

16T ~P«»~)a~=1-
~v aoM

16T BP(Q,Q)
n.v Q(DQ~)

We get from Eq. (13)

(17)



6478 BRIEF REPORTS 50

x 3

Dq +Nm

(18)
Here there is no cancellation in the expression in square
brackets and the right-hand side of Eq. (18) essentially
depends on the form of the Coulomb interaction. The
right-hand side of Eq. (18) is divergent for V' '; therefore
the correct form of the two-dimensional potential from
Eqs. (15) and (16) must be used, and as a result we get
Eqs. (4) and (5). Note that equality a„=a& holds only in
the first order of the Coulomb potential.

In conclusion, we showed that the Coulomb correc-
tions to the fluctuation conductivity, susceptibility, and
the upper critical magnetic field are not universal and

strongly depend on the screening of the Coulomb poten-
tial. The particular interest is to study the effect of image
forces in a film separated from a metallic substrate by an
insulator. Such a situation may be realized in multilayer
systems. " Equations (2)—(5) show that the effect of im-

age forces is measurable and may be obtained, e.g., from
studying the temperature dependence of the conductivity.
It is worth mentioning that the screening effect of image
forces changes the sign of the logarithmic correction in
the function a&. Note also that in granular films under
the same conditions the charging effects are also dimin-
ished due to weakening of the Coulomb interaction by
image forces.
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