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Dressed fluxon in a Josephson window junction
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The static fluxon solutions of a Josephson window junction have been studied numerically. We show
that the effect of the idle region surrounding the junction is to “dress” the fluxon causing its energy to in-
crease. This effect can be predicted accurately by a simple model.

A fluxon in a Josephson tunnel junction provides the
simplest example of a topological, intrinsically nonlinear
excitation in an electromagnetic system. A Josephson
tunnel junction consists of two overlapping supercon-
ducting thin films, which are separated by a thin oxide
layer. This insulating layer forms a potential barrier
through which Cooper pairs can tunnel.! The electro-
dynamical state of the junction is characterized by the
value of the phase difference 8(x,y) at every point (x,y)
of the barrier, which can be considered as a portion of
plane. The phase difference obeys a partial differential
equation of the sine-Gordon type.? For “large” junc-
tions, i.e., junctions where at least one dimension is much
greater than the Josephson penetration length A, it is
well known that this equation admits solitonlike solu-
tions, which correspond to flux quanta (fluxons) trapped
inside the junction, the flux lines running parallel to the
plane of the junction.® The static and dynamical proper-
ties of these fluxons have been extensively studied both
experimentally and theoretically.»* Microwave oscilla-
tors based on the shuttle motion of fluxons inside a
current-biased junction have been proposed.* In this pa-
per we investigate numerically the static shape of a fluxon
in a variant type of Josephson tunnel junction, the win-
dow junction (see Fig. 1). Window junctions are fabricat-
ed by depositing on top of the oxidized bottom film a
thick, window-shaped, perfectly insulating layer before

FIG. 1. Cut-away view of a window Josephson junction.
Josephson tunneling takes place only inside the window,
through a thin oxide layer represented by a thick line. The idle
region outside the window confines flux lines entering or leaving
the window and tends to increase the magnetic energy of flux-
ons.
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depositing finally the counter electrode. Thus, tunneling
occurs only between the two portions of the films facing
each other in the interior of the insulating window. Win-
dow junctions are important from a practical point of
view because they have the advantage over ordinary junc-
tions to have a more uniform, better controlled oxide bar-
rier.’ This occurs because in a window junction the per-
imeter of the oxide layer does not coincide with the edges
of the superconductor films, which are often of poor qual-
ity because of the patterning process. Furthermore, the
outer slabs of the superconductor can play the role of the
cavity® and enhance the power of fluxon oscillators.

We model the window junction as an array of induc-
tors,” whose nodes i are each connected to ground by a
Josephson element (see Fig. 2) obeying the Josephson re-
lations. These relations involve the phase difference §;
across and the current I; through the Josephson element

< _ | &
% 2e Vi M
L,=Iysin(8,) . @)

Here V;(t) and I;; denote the voltage and critical current
of the junction at node i. Introducing the time integral of
the voltage at node i,
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which has the dimension of a flux, we can write the total
energy of the window junction as
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(®,— D, )?
E = —r y (5)
" nearest ngghbors ij 2L"j
#i 2e
E;= 3 Iy [l—cos|=®, || . (6)
junctions i " 2e [ it

The first term E,, is the magnetic energy of the surface
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FIG. 2. Portion of equivalent circuit model corresponding to
the window junction displayed in Fig. 1. Crosses represent tun-
nel elements. The critical current I,; is nonzero only inside the
window.

currents of the junction induced by the gradient of the
phase difference, while the second term E; is the Joseph-
son energy of Cooper pairs tunneling across the barrier.
The symbol L;; stands for the inductance between node i
and node j. Only the tunnel region of the junction inside
the window contributes to the Josephson energy, since
outside, in the idle region, I,; =0. On the other hand,
both the tunnel region (7) and the idle region (J) con-
tribute to the magnetic energy. If a is the distance be-
tween two nodes, the link between this discrete model
and the parameters of the window junction is given by
the relations
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where ¢t;, t;, Az, Ayp, Jo, and A; refer to the tunnel and
insulating layer thicknesses, the London penetration
lengths of the top and bottom superconducting films, the
critical current density of the tunnel barrier and the
Josephson length in the tunnel region, respectively.
Minimizing formally the energy with respect to the ®;’s
one gets the set of coupled equations
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which in the limit a —0 are equivalent to Maxwell’s
equations combined with the Josephson relations; these
reduce in the static case to
sin(§;)
A;
A§;=0, (13)
where 8; and §; refer to the phase difference field in the
junction and in the idle region, respectively. Equations

(12) and (13) must be supplemented with the following in-
terface and boundary conditions

(14)

on the junction interface and
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on the idle region boundary. The virtue of the discrete
model is that these conditions are automatically satisfied
by (11). We have obtained numerically the solution of
(11) by minimizing (4) by the conjugate gradient method
of Polak and Ribiere.® An important feature of the
method is that given an initial condition antisymmetrical
with respect to the long axis of the junction, the algo-
rithm preserves the antisymmetry at each iteration stage.
This is useful, since static solutions in a finite junction are
only marginally stable with respect to translation in the
absence of magnetic field, which is the case under study
here.

Examples of fluxon solution are shown in Fig. 3, for
several values of the window width w, the width of the
tunnel region. These calculations were done with an idle
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FIG. 3. Contour plots of constant phase difference. In units
of the mesh size, the characteristic lengths of the junction are
A;=35, L=600, W=1350, ] =350, w =11 (top), 5 (middle), and 3
(bottom). There are 23 contour lines, varying between § =m/12
and 23(w/12). The inflation of the fluxon as w decreases is
clearly visible.
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FIG. 4. Plot of Ad/d=[d(Ymax)—d(Vcenter )]/ (Ycenter) @S @
function of p=A; /w for fixed values of / and w corresponding
to the top (black dots) and bottom (white dots) contour plots of
Fig. 3. See text for the precise definition of the fluxon width
d(y). The line y =y .. is the horizontal symmetry axis of the
junction. The inset shows d (y) for the top plot of Fig. 3.

region sufficiently large so that finite-size effects were
negligible. A remarkable effect is that the fluxon width
increases when w decreases. The cause of the effect is the
interaction of the fluxon inside the tunnel region with the
idle region, which tries to decrease the fluxon magnetic
energy. The situation is similar to that of a charged par-
ticle, which becomes dressed when it is inside a polariz-
able medium. In order to investigate quantitatively this
dressing effect we define the fluxon width by the following
procedure.

For an infinitely long tunnel junction with no idle re-
gion, the analytic expression

8(x,y)=4tan" (e ~*/4V)) (16)

is a solution of (12), provided that the parameter d(y)
coincides for every y with A;. We have found that our
numerical solutions of (11) can be well fitted inside the
tunnel region by an expression of the form of (16). For
values of p=A;/w large compared to 1, the imit of in-
terest here, we have found that d(y) is approximately
equal to a constant d as seen in Fig. 4. In the limit p>>1
where inflation occurs, the fluxon can thus conveniently
be characterized by this parameter d alone. In Fig. 5 we
plot the variations of the parameter d characterizing our
numerical results as a function of pg=p(L;/L;). We
have found empirically that the dependence of the
inflation ratio d /A; on p can be remarkably well de-
scribed by the functional form

li=§peﬂ<1+1/ 1+4/m%0%) , (17)

J

for several values of the ratio L; /L;. This function plot-
ted as a continuous line in Fig. 5 is a simple interpolation
between d /A; =7p for large p.s and d /A ;=1 for small
Pe- This behavior can be understood as follows. Consid-
er a window junction with an infinite idle region. One
can define the one-parameter class of function §,(x,y)

FIG. 5. Plot of the reduced fluxon width d /A; as a function
of pg=pL;/L;. The white and black dots correspond to the
two sets of data presented in Fig. 4 (L;=L,, varying A;). Dark
triangles correspond to the geometry corresponding to the mid-
dle contour plot of Fig. 3 with A;=5, L;/L; varying between
5% 1072 and 3. The inset shows the infinitely thin 2D capacita-
tor whose electrostatic energy can be used to estimate the mag-
netic energy of the idle region of the window junction.

such that (i) inside the tunnel region §,(x,y) is given by
(16) with d (y)=d, (ii) 8,;(x,y) satisfies the Laplace equa-
tion in the idle region. The magnetic and Josephson en-
ergy can be computed exactly inside the tunnel junction.
One finds

= 4w

J
1
E;, L, ’ (18)
J_— 4dw
== (19)
TOAL,

In the idle region one can evaluate the magnetic energy
by considering that the solution is well approximated by
the 2D potential field produced by two colinear segments
of total length [/ at potential 0 and 27 separated by 2d (see
inset in Fig. 5). One finds, for / >>2d
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Summing the contributions (18), (19), and (20) and
minimizing with respect to d, one obtains exactly the sim-
ple expression (17). This “inflation” is also present for
smaller idle regions, where expression (17) provides an
upper bound for the fluxon width. The details of the cal-
culations will be presented in a forthcoming publication.

In conclusion, this work has shown that a fluxon in a
window junction becomes ‘“dressed” with the magnetic
energy in the idle region. This effect manifests itself by
an inflation of the fluxon, which for a long junction is
given by (17) to a very good approximation. An impor-
tant consequence of this inflation of the dressed fluxon is
that it carries relatively more energy than the bare fluxon
and is therefore of interest in fluxon oscillators, where
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this energy is released when the fluxon collides at the
junction end.
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FIG. 1. Cut-away view of a window Josephson junction.
Josephson tunneling takes place only inside the window,
through a thin oxide layer represented by a thick line. The idle
region outside the window confines flux lines entering or leaving
the window and tends to increase the magnetic energy of flux-
ons.



