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Magnetization curling reversal for an infinite hollow cylinder
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A rigorous analysis of the curling mode for an infinite ferromagnetic hollow cylinder with exchange
and uniaxial anisotropy and external field applied along its axis is made using Brown’s equation. Curling
instability occurs only in a hollow cylinder, but never in a solid one. Moreover, the energy of the curling
mode with large-angle deviations in the nonlinear region is always higher than that of the uniform mode.
This suggests that at the nucleation field the initial saturated state cannot reverse through the curling

mode to a new stable state.

The problem of nucleation in magnetization reversal
has been extensively studied.!™> Most of the methods
used are restricted to a linearization procedure for simpli-
city, but this allows one to calculate the nucleation field
only. This was applied to the magnetization curve of an
infinite isotropic ferromagnetic cylinder which then has a
rectangular hysteresis loop and the coercive force is given
by the nucleation field. Strictly speaking, however, the
determination of coercivity actually requires analysis of
the nonlinear regime which is lacking till now. The
unwarranted identification of coercivity and nucleation
field remains to be clarified for decades,’? but many
researchers still successfully use it as a rule, at least phe-
nomenologically.

Micromagnetic analysis of an infinite solid cylinder can
be briefly described as follows: For an infinite solid
cylinder, the nonlinear Brown’s equation admits only the
uniform magnetization (trivial solution) at a sufficiently
large applied field. When the field reverses, a nucleation
field H, is reached which permits the occurrence of
infinitesimal deviations from the initially saturated state
along the cylinder axis. The form of these deviations is
determined by solving a linearized Brown’s equation.?
Furthermore, it has been shown numerically that the
solution of the linearized Brown’s equation is not a stable
solution to the full nonlinear equation at applied fields
larger than the nucleation field, so that the only possible
stable states are those of uniform alignment along the
axis.>® Thus, magnetization is assumed to reverse com-
pletely at the nucleation field and the magnetization
curve is rectangular.

Two possible reversal modes have been identified
within the linearized model for an infinite solid cylinder
at the nucleation field.>” If the cylinder radius is
sufficiently large, the above jumplike magnetization re-
versal starts with a curling mode,’ in which the deviation
of the magnetization angle 0 from its initial value in-
creases with increasing radius;? it was therefore believed
that the magnetization near the cylinder surface reverses
first. However, the amplitude of this deviation cannot be
determined solely from the linearized Brown’s equation?
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and it has recently been shown that the curling solution
of the full nonlinear Brown’s equation is just a uniform
mode at the nucleation field and is unstable at any other
applied field.’ In other words, the undetermined ampli-
tude of the linearized deviations turns out to be zero at
the nucleation field. This result indicates that instability
occurs at the nucleation field of the linearized Brown’s
equation but that the curling mode of the full nonlinear
equation cannot propagate because of its null amplitude.
Thus, magnetization should not jump to the reverse
direction and the coercive force is not equal to the nu-
cleation field of the linearized equation. This paradox re-
sults from inappropriate boundary condition chosen for
the center of a solid cylinder [i.e., 8(r =0)=0],% which is
a line singularity in micromagnetic calculations with
cylindric symmetry. This singularity not only restricts
the possible magnetization configurations but also the
number of possible magnetization reversal processes.®
Therefore, the curling mode with nonzero amplitude can
never occur during the reversal process in a solid
cylinder.

In this paper, we demonstrate that curling instability
can only appear in an infinite hollow cylinder. We have
calculated the nucleation field for different ratios of the
inner and outer radii and found that the nucleation field
of a hollow cylinder is always lower than that of a solid
cylinder. Moreover, from analysis of the nonlinear
behavior it follows that contrary to the solid cylinder the
deviations amplitude is nonzero. However, the curling
mode has, in the nonlinear region, higher energy than the
uniform mode and this suggests that the initial saturated
state of an infinite hollow cylinder can not reverse
through the curling mode either.

For an infinite hollow cylinder of inner radius a and
outer radius b (Fig. 1), the demagnetization energy is zero
if the magnetization reverses in the curling mode. The
free energy is a sum of the exchange, anisotropy, and
Zeeman energy terms:

E= ["(6,+6x+Ey2mrdr . (1)
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FIG. 1. An infinite hollow cylinder of inner radius a and
outer radius b. The easy axis is along the z axis.

The exchange energy density

2
6.,= 4 i;g + 712—sin29 , @)
the anisotropy energy
6x =K sin%g , (3)
and the Zeeman energy
Ey=—MgH,cos6 , 4)

where A is the exchange stiffness constant, My is the sa-
turated magnetization, K is the first-order anisotropy
constant, H, the applied field which along the z axis, and
0 is the angle between the magnetization and z axis. The
Euler differential equation which minimizes the integral
(1) is the nonlinear Brown’s equation

% %%IQ= 712-+Qp(2, cos@+ H |[sind (5)
with the boundary conditions

%?— ,=E=‘Z—f|,=1=o. (6)
The reduced units are defined as follows:

t=r/b, e=a/b, Ry=V'A /Mg, S=b /R, pt=2mS?,
H=SH,/2M,, and Q=K /27M?. The nucleation field
is defined as the value of applied field at which magneti-
zation oriented along the saturation direction is no longer
a local energy minimum state. In order to find the nu-
cleation field, we only need to consider the small-angle
approximation

d* , 1d6 1 =

—t——=| |+ +H |6, 7

dtz t dt tz Qp() 7
whose general solution is

0(t)=C,J(ut)+C,N,(ut) . (8)

Here u*=—H —Qp3,C,,C, << 1 are constants, and J,(x)
and N,(x) are Bessel functions of the first and second
kind, respectively. According to the boundary conditions
(6), p satisfies

Ji ()N (ue)—J (ue)N(u)=0, 9)
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and for the integration constants we obtain the relation
Ji(w)
Ni(u)

2

C, . (10)

The nucleation field for an infinite hollow cylinder can
thus be derived numerically through p,

) (1n

and it depends sensitively on the radii ratio e.

To investigate the reversal behavior after nucleation,
one should address the nonlinear dynamic Brown’s equa-
tion with the same boundary conditions for the curling
mode as in the linearized equation. Using fourth-order
Runge-Kutta method and a trial and error procedure, we
then find the deviation 6(r). Since the solutions for a
fixed field (and radius) are not unique, we choose the
lowest energy solution as the reversal mode. Figure 2
shows the deviation of magnetization at the inner surface
(i.e., at r=a). When €—0, 6(a) approaches zero for any
value of the outer radius. Because of symmetry, at €=0,
the magnetization at the center can only be oriented
along to 6=0 or 6=m. Therefore, for an initial state of
6=0, the magnetization at the center will stay in that
direction when e=0. However, for ¢=0, there exists no
nonuniform solution of the nonlinear Brown’s equation
with 6=0 at the center when H=H,. In other words,
for a solid cylinder (e=0) at the nucleation field, the cur-
ling mode actually is identical to the uniform mode, and
the parameters C; and C, of the solution for linearized
Brown’s equation are zero. Therefore, during nucleation,
the line singularity at the center of a solid cylinder (e=0)
not only locally supports the wall structure but also glo-
bally resists the reversal. The line singularity in the
center thus locks the magnetization and prohibits the re-
versal process to propagate. At the nucleation field, there
exists no nonuniform solution which can both sustain the
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FIG. 2. Relation between the deviation of magnetization
[6(r=a)] on the inner surface of the hollow cylinder and the
ratio a /b for different values of . When a /b—0, 8(r—0) ap-
proaches zero for any S.
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cylindric symmetry and balance the net torque (i.e., satis-
fy the full Brown’s equation) in an infinite solid cylinder;
therefore, magnetization stays at its initial state even at
applied field higher than the nucleation field when an in-
stability should occur. Without thermal agitation,” mag-
netization can only reverse at a larger value of reverse
field until the next solution of nonaxial symmetry ap-
pears, e.g., buckling or rotation in unison. From Fig. 2,
we see that a nonzero amplitude of the curling mode does
exist for €#0; therefore, this micromagnetic defect, line
singularity at the center, can be removed legitimately if
we consider the magnetization reversal of a hollow
cylinder.'°

Figure 3 shows the dependence of the nucleation field
on the ratio a /b with the different values of outer radius,
b. Larger values of the ratio a /b result in reduced nu-
cleation fields, but their influence becomes insignificant at
very large outer radii. This result also indicates that
nanosize particles should be very sensitive to nonmagnet-
ic impurities and that their coercivity is significantly re-
duced. This is probably the reason for the anomalous
behavior of coercivity of granular particles.!! As the ra-
tio a /b approaches zero the nucleation field approaches
the solid cylinder results and this is apparently the reason
for the successful application of the curling mode theory
to a microsize solid cylinder. We have compared the cal-
culated nucleation fields at different values of a /b with
experimental data!? (Fig. 4). For a large outer radius, the
nucleation field is almost independent of a /b; however,
for small b the dependence is significant. Most of the ex-
perimental data!’ are, indeed, much lower than the
theoretical results for a solid cylinder of small radius.
Besides the pores or nonmagnetic impurities within the
particles, the reduction of coercivity can also be caused
by other factors, e.g., by thermal agitation and irregular
shape,9 which are not considered here.

We now address the evolution after instability occurs.
For the curling mode we expand the total energy into a
series in 0,
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FIG. 3. Relation between nucleation field and the ratio a /b
for different values of S. The larger ratio a/b results in the
smaller nucleation field. The dependence on a/b becomes
insignificant at the large outer radii.
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FIG. 4. Comparison between experimental data and calculat-
ed nucleation fields for different values of a /b. The symbols {
and M stand for two different samples (Ref. 12). The values of
a /b for the lines from top to bottom are 0.0, 0.3, 0.5, and 0.99,
respectively. Large value of a /b yields a better agreement.

E — [_,5
oy fe 28t dt
2
1 do 1
+ 290 41X +0p2
fe[ dt { 12 QPO

+H

6? }t dt+A. (12)

For the curling solution of the linearized Brown’s equa-
tion the second term equals identically zero and the ener-
gy difference between the uniform and the curling modes
is simply A. Neglecting the contributions higher than the
sixth order of 0, A can be reduced to

1
AW = —C‘} fs

12 fal
+ — 2,2
1 n (3Qp5—u”) 3tdt , (13)

where

Ji(p)
Ni(p)

From Egs. (8) and (10), we know that 6(¢)=C,£(¢) and it
has been found numerically that the larger the C,, the
lower the energy of the curling mode. Therefore, the
magnetization of a hollow cylinder indeed initially re-
verses by infinitesimal curling. However, because of the
growth of the deviation amplitude, the linearized Brown’s
equation is inappropriate to describe the further reversal
behavior at large deviations. Figure 5 shows the numeri-
cal solution of a curling mode for nonlinear Brown’s
equation with different b at a /b =0.1. We also calculate
the energy of these solutions and of the uniform mode!?
for H,<H, (Fig. 6). There exists an energy barrier
separating the uniform and the curling modes, and the
latter are always at higher energy in the nonlinear region.

E(t)=J,(ut)— Ny(ut). (14)
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FIG. 5. Dependence of the deviation of magnetization on r
for a/b=0.1 at different values of S. The curling mode exists
in the nonlinear region of the hollow cylinder. The values of S
for the lines from top to bottom are 1.5, 2.0, 2.5, and 3.0, respec-
tively.

Therefore, magnetization of a hollow cylinder is nucleat-
ed by infinitesimal curling, but it is impossible to say
what will really happen afterwards because of the higher
energy of curling mode in the nonlinear region.

In summary, we have shown that a nonuniform curling
mode does not exist in an infinite solid cylinder, even at
the nucleation field. Considering a hollow cylinder, we
have further shown that magnetization really curls, at
nucleation field, at an infinitesimally small angle which
depends on the radii of the hollow cylinder, and that the
nucleation field is significantly influenced by the ratio of
a/b. However, the energy of the curling mode is always
higher than that of the uniform mode in the nonlinear re-
gion and this implies that magnetization cannot reverse
through the curling mode to the reverse stable direction.
It should be noted that the above argument does not
rigorously prove that the curling reversal does not exist,
it only shows that there is no proof, within the mi-
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FIG. 6. The energy of the curling mode and the uniform
mode for |H,|<|H,|. Here a/b=0.1. The energy of the cur-
ling mode in the nonlinear region is always higher than that of
the uniform mode. The values of S for the lines from top to bot-
tom are 1.5, 2.0, 2.5, and 3.0, respectively.

cromagnetic analysis, for its existence even within the
nonlinear region of an infinite hollow cylinder. However,
because of the nonuniform demagnetization field in a
finite cylinder,’ the ferromagnetic samples are never
completely saturated.!* Thus, for a real fine-particle sys-
tem, the curling mode can still possibly occur due to the
lack of initial uniform saturation. Furthermore, thermal
fluctuations lead to a finite reversal probability over the
energy barrier between the curling mode and the uniform
mode.” Those are probably the reasons why linear
theory, within the framework of the micromagnetic as-
sumptions, agrees quite well with experiments.!® Howev-
er, the detailed behavior after nucleation still requires a
fully dynamic, nonlinear investigation.
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