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Electron-energy-loss spectrum of the cuprate superconductors
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We present a theoretical description of the near-specular (dipole) electron-energy-loss spectrum of a
superlattice constructed from anisotropic dielectric layers, as a model of the superconducting copper-
oxide-based materials. The theory is applied to a description of recent data taken on the Bi 2:2:1:2com-

pound. We find that parameters deduced from the electron loss spectrum are compatible with infrared

re6ectivity data. Manifestations of the superconducting energy gap are not evident in the new data.

I. INTRODUCTION

High-resolution electron-energy-loss spectroscopy can
be used to probe a diverse array of elementary excitations
on crystal surfaces. The technique has been applied in
numerous instances where microscopically thin conduct-
ing layers are present on the surface. ' Such data, when
taken in the near-specular scattering geometry where the
electric dipole mechanism is operative, can be analyzed
quantitatively through use of the basic theory and its
various extensions. By this means, one may extract in-
formation on the conductivity of thin layers on or near
the surface, and analyze the influence of such layers on
the intensity of dipole-active surface vibrations.

In the recent literature, the method has been applied to
the superconducting copper-oxide-based materials. It
has been argued by these authors that a signature of the
superconducting energy gap appears in the electron-
energy-loss spectrum.

However, a new series of experimental studies has been
completed by two of us and our collaborators, which
raises serious questions about the earlier data. The new
experiments show strong phonon peaks in the energy-loss
regime where the gap structure was found earlier. In ad-
dition, the background, whose origin, as we shall argue
here, is provided by electronic fluctuations in the CuOz
layers, is roughly two orders of magnitude stronger in the
new experiments than in the earlier data. It is argued in
Ref. 5 that the very low backgrounds reported earlier
are evidence that, in the experiments, the substrate had
acquired a net negative charge after its exposure to the
electron beam. In this circumstance, the beam electrons
are repelled as they approach the sample, and never actu-
ally reflect from the surface. Very high backgrounds,
strong phonon peaks, and the absence of an energy gap in
the loss spectrum have been reported also by Franchy,
Decker, Masuch, and Ibach, in their study of
Y&azCu307 —„by near-specular electron loss spectrosco-
py.

In this paper, we present a theory of the electron loss
spectrum in the dipole regime, for an anisotropic layered
structure such as the high-T, materials. We apply this to

an analysis of the data on the BizSrzCaCu20s (Bi 2:2:l:2)
compounds reported in Ref. 5, and also explore a number
of related questions. We shall see that the electron loss
data provide material parameters which may be used to
describe the infrared reflectivity of these samples. The
agreement we obtain with the data of Zibold et al. by
this means is quite satisfactory, save for the fact that one
mode observed in the infrared spectrum is not resolved in

the electron loss measurements. The fact that the elec-
tron loss and infrared data are accounted for nicely
within a single picture provides strong support for the ar-
gument that the data reported in Ref. 5 indeed represent
the intrinsic loss spectrum of the uncharged surface.

As remarked earlier, the experiments explore electrons
which suffer only very small angle deflections in the in-

elastic scattering event, and thus emerge from the surface
very close to the specular beam. The angular variation of
the strength of the inelastic losses contains a strong,
near-specular peak that is the subject of study here. This
feature has its physical origin in electrons scattered
inelastically from long-ranged electric field fluctuations in

the vacuum above the crystal produced by the vibrational
and electronic fluctuations near the surface. Such long-

ranged Coulomb fields produce intense small-angle
scatterings. Through use of an appropriate version of the
fluctuation-dissipation theorem, one may relate the
near-specular (dipole) loss cross section to the frequency-
dependent dielectric response functions that characterize
the constituents of the substrate. '

The present analysis is based on an extension of the
theory of dipole scattering from dielectric superlattices,
as described initially by Camley and Mills, and later ex-
tended to apply to a structure whose outermost layer may
difFer in thickness and physical properties from those in
the underlying superlattice. These previous treatments
assume each of these layers may be described by an iso-
tropic, frequency-dependent dielectric function which, of
course, is complex. We provide the extension of the for-
mulas in Ref. 9 to the case where each layer is a uniaxial
dielectric. In our application to the high-T, materials,
we model the CuOz layers by endowing them with a
Drude conductivity parallel to the surfaces, and the insu-
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lating regions as dielectric layers with suitable infrared-
active vibrational excitations. The analysis in the paper
by Persson and Demuth" is based on a similar picture.
However, their paper displays and employs special limit-
ing forms of the general description, at various points.

The organization of this paper is as follows. Section II
presents the extension of the dipole loss theory to the
multilayered, anisotropic dielectric. Section III describes
application of the theory to analyze the data on the Bi
2:2:1:2 compounds, along with a discussion of the in-
frared re6ectivity. Conclusions and final remarks are
found in Sec. IV.

A

II. THE THEORY

The model we consider is described by Fig. 1. We have
a semi-infinite superlattice, fabricated from films of two
materials, A and B Th.e structure has an outer layer of
material C, whose thickness and properties may differ
from the layers of the underlying material. We have in
mind identifying the B layers with the highly conducting
CuOz planes, and the A layers with the insulating regions
between the CuOz planes. When we apply the model to
the Bi 2:2:1:2structures, we assume that cleavage of the
crystal severs the bonds between the two BiO planes, pro-
ducing an outer layer thinner than the interior insulating
layers.

Each of the dielectric films is described by an aniso-
tropic dielectric tensor of uniaxial character. The dielec-
tric response perpendicular to the surfaces of each film is
ej(ro), and that parallel to the surfaces is eII(co). The con-
ducting layers will be modeled by adding the contribution
4@io II(co}/co to @II(ro), while e~(r0) for these layers is as-
sumed real and independent of frequency. The dipole-
active vibrations evident in the electron-energy-loss or in-
frared spectra are introduced by adding the appropriate
resonant terms to the dielectric constants of the insulat-
ing spacer layers. We will discuss these choices in more
detail in Sec. III. Here it will suffice to simply endow
each film with the complex, frequency-dependent dielec-
tric functions, as just described.

In the near-specular dipole regime, the electron loss
spectrum is described as follows. Let Io be the intensity
of the elastic beam, specularly refiected from the surface.
Of course, Io depends on both the beam energy and the
angle of incidence. Then the number of electrons which
emerge from the surface with energy loss between A'co and
A'(co+ dco)may be written IoP(co)de, where P(co) depends
on frequency-dependent dielectric functions of the con-
stituents of the substrate, in addition to the beam energy
and angle of incidence. Our interest here is in P(co). We
note there are instances where this simple picture of di-
pole scattering breaks down, ' but such questions are of
no concern in the experiments of interest here.

For the model illustrated in Fig. 1 it is quite straight-
forward to derive the form of P(co), by following a pro-

clA

FIG. 1. The model structure considered in this paper. We
have a semi-infinite superlattice fabricated from layers of ma-
terial B and material A, capped by a layer of material C. Each
film is described by its complex, uniaxial dielectric tensor arith
elements t.&(co) and eI~(co) for response perpendicular and paral-
lel to the surfaces, respectively.

Im[R (QII, co)]

—1=Im
+'Fc(co)[1 F(QII'co)]/[ +F(QII'co)]

where

Zc(co) = [e'I) (co )Gj (co) ] (2)

is the geometrical mean of the two dielectric-tensor ele-
ments of the outermost layer. We shall express quantities
below in terms of Zz(co) and Zz(co), defined similarly.
We also encounter quantities such as

QC
~ (~)

(3)ec(~}

Then

cedure very similar to that used in Ref. 8 or 9. As a
consequence, we shall only quote the final result.

The dipole loss probability P(co}has a form identical to
that given in Eq. (3.22) of the paper by Camley and
Mills. s We require the form of the loss function

Im[R(QII, r0)] which appears in the integrand. This may
be written in a form similar in structure to Eq. (3.16) of
Ref. 8. We have here

[ec co +~~(a)]G(Q I~I) +[~c(~) ~~(~)]-
F(QII,co}=exp[—2QII dc]

[zc(rd} zg(CO)]G(QII Co)+ [zc(CO}+'Fg(CO)]
(4)
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where

G(Q~~, co) = &ii(co)+&& (co)

Fii'(co) Z—~ (co)

exp[ Q(( da 1 e"p[ Pd+Q(( dz ]

exp[+Q~~da] —exp[ —Pd+Q~~ dz]

In Eq. (5), d =d „+da is the thickness of the superlattice
unit cell, and P is found by solving

cosh[Pd ] =cosh[Q~~ da ]cosh[Q~~ d„]
&&(co) &a(co)+- +
Z~(co) Z„( co)

Xsinh[Qllda]sinh[QII dq ] . (6)

It is straightforward to evaluate P(co) from the above
expressions, for any specific model of the dielectric
response of the constituents. However, these expressions
are indeed cumbersome, and as a consequence they offer
little insight into the key features which infiuence the loss
spectrum. We conclude this section with comments on
special limiting cases.

First, suppose that we have a simple semi-infinite
dielectric substrate, whose dielectric response perpendic-
ular to the surface may differ from that parallel to it. To
describe this, we let dc ~ ao, and drop the superscript C
on e~~(co) and ej(co) to find

R (Q„,co)
1+[e~~(co)e~(co)]'~

Im[R(Q((, co)]-=p, (co),
4m.

where

0.,(co)
s»(~) =

cT &(co)+cT &(co)

an expression that appears also in the paper on the high-
T, materials by Persson and Demuth.

Suppose the substrate is a simple isotropic highly con-
ducting material, such as copper metal. Then

e'~~ ( co ) =Ej ( co )=6~ +4iri cr ( co ) /co,

where e„has its origin in interband transitions. In the
infrared, the term involving cr(co) dominates, and to ex-
cellent approximation, if cr(co) =cr &(co)+ icr z(co),

is the real part of the frequency-dependent resistivity.
The behavior and magnitude of R(Q~~, co) are very

different than those displayed in Eq. (8), if the conductivi-
ty is highly anisotropic. With the cuprate materials in
mind, suppose we consider a substrate with large parallel
conductivity o~~(co), so that e~~(co)= 4—micr~~~(co)/co, while

e~(co) =@~ independent of frequency. This picture would
be appropriate to a material with electrons confined to
infinitesimally thin two-dimensional sheets parallel to the
surface.

Then we have

+i
Im[R(Q~~, co)]= — Im .

2 m'e~ 1/ cr ll(co)

(10}

suppose also that d& is very small. We then keep the
contributions to (1—F)/(1+F) first order in d& to find

We see that if E'y assumes a value characteristic of a typi-
cal insulator, and the conductivities in Eqs. (8) and (10}
are the same order of magnitude, the contribution to the
loss spectrum from fiuctuations of the conduction elec-
trons is very much larger for the anisotropic materials.
For Cu at room temperature, and fico=-100 meV, one has
4iicr(co)/co-=10, so the background for the isotropic ma-
terial is roughly two orders of magnitude smaller than for
a highly anisotropic material of the same conductivity
confined to sheets parallel to the surface. The back-
ground signal levels are a central ingredient in the argu-
ments advanced by Phelps and collaborators.

In the papers by Lieber and co-workers, " it is argued
that the free-carrier contribution to the loss spectrum of
the cuprates is proportional to the real part of the resis-
tivity p&(co). We see that, for very anisotropic materials
such as the cuprates, this claim is incorrect, as is evident
also from the earlier discussions by Persson and
Demuth. " We shall illustrate this point further with the
numerical calculations reported below.

If we have highly conducting films of finite thickness
present, then it is essential to utilize the full expression
for R(Ql, co). This point is illustrated by examining the
form of R~

(Q~~, co) for the case where we have a single con-
ducting layer placed over a semi-infinite dielectric sub-

strate. Expressions derived earlier, generalized to the
case where both media are anisotropic, are found by set-

ting d„ to zero. We then have a film of material C on a
semi-infinite substrate of material B. One has

G(Q~~, co) 0 here, so

Zc(co) —Za(co)
F(Q~~, co) =exp[ —2Q

~~

dc]
Zc(co)+Ps(co)

—1
R(Qii, co) —=

1+ [&~~ (co)&j (co)]' +a~~ (co)Q~~dc[1 —[Zii(co)/Zc(co)] j
(12)

If the outermost layer has very high conductivity
parallel to the surface, then even though Q~~dc may be
small compared to unity, the combination e~~(co)Q~~dc
may be large. Consider some numbers. In electron-

energy-loss spectroscopy,
Q~~~

=(fico/2Ei)kc, ' with %co

the energy loss, and E~, k~ the energy and wave vector of
the incident electron. If Ez =—3 eV as in the experiments
discussed below, and fico =100 meV, then Q~~

-——1.6X 10—
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cm '. If we have do-=3 A, then Q~~d, =0.05&&1. But
if the overlayer has the conductivity of Cu, we have seen
already that e~~(ro)=10. Quite clearly, the full depen-
dence of the loss cross section on

Q~~ must be retained.
Even the first term in Q~~, described by Eq. (12), is inade-
quate.

In earlier work by Dubois et al. ,
' the influence of mi-

croscopically thin Ag overlayers on the loss spectrum
GaAs was studied. It was found that even a monolayer
of Ag influenced the loss spectrum very substantially; the
very strong surface optical phonon signal from this ionic
material was screened out completely from such a very
thin layer. The model derived from the form in Eq. (11)
described these data very well.

One might think it possible that, since the supercon-
ducting cuprates have very thin conducting CuOz sheets
separated by very thin insulating layers, the electron loss
spectrum can be described by treating the substrate by
effective-medium theory, wherein the structure is re-
placed by a semi-infinite dielectric described by average
dielectric constants which characterize its response paral-
lel and perpendicular to the surface. The above example
shows that such a description is inappropriate. One must
retain a full description of the microstructure of the sub-
strate. We shall illustrate this point further in Sec. III,
when we show the loss spectrum to be very sensitive to
whether the outermost layer is insulating in nature, or
consists of a conducting Cu02 sheet. The data reported
in Ref. 5 are compatible with only the first possibility, as
we shall see.

III. A COMPARISON BETWEEN THEORY
AND EXPERIMENT: THE CASE OF Bi 2:2:1:2

In this section, we apply the theory outlined in Sec. II
to the analysis of electron-energy-loss data taken on the
Bi 2:2:1:2material in its superconducting state. We shall
see that we can extract from these data a set of material
parameters that also may be used to reproduce the in-
frared reflectivity data reported by Zibold and co-
workers, as remarked earlier.

The data that will be the focus of our attention are
reproduced from Ref. 5 in Fig. 2. We see a quasielastic
peak centered around zero energy loss, and then a rather
intense background which falls off slowly with increasing
energy loss. Upon the background are superimposed
three vibrational loss peaks. We argue the background
has its origin in fluctuations in the conduction electrons
contained in the CuOz plane, i.e., in the particle-hole ex-
citations of these structures.

We first comment on how one may extract absolute
values for the loss function from such data. As remarked
in Sec. II, the fraction of the electrons in the incident
beam that suffer energy losses between Rco and R( +dro)ro
is IoP(ro)dro, where Io is the total number of electrons in
the specular beam which reflect elastically from the sur-
face. There is an energy spread in the incident beam, so a
scan of the energies of the electrons in the specular beam
produces the approximately Lorentzian feature centered
about zero energy in Fig. 2. If 5co is the half width of the
quasielastic beam at half maximum, the number of elec-

20—
Bi 2:2:I:2
T =47K

Eh

l5—C

O IO—
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Energy Loss (meV)
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FIG. 2. The electron-energy-loss spectrum of Bi 2:2:1:2.The
data are reproduced from Ref. 5. %'e see the quasielastic peak,
and the portion of the loss spectrum which contains the vibra-
tional losses is multiplied by a factor of 40.

trons found in the specular beam in the window de is
Io[5ro/rr[ro +(5ro) ]]dro. If we assume that scattered
electrons are collected in bins of width pro, the peak in-
tensity I at co =0 in the specular beam is
I~=Iobro/n5ro The nu. mber Isr and 5ro may be extract-
ed from Fig. 2. If I&,„(co) is the strength of the loss spec-
trum in Fig. 2, then I„(ro)=IoP(ro)pro, which gives
P(ro) =I~,~(ro)![n 5roI~ ]. From Fig. 2, we estimate
5ro =2 meV, while IM = 12 units. At 100 meV,
I&„,(ro)—=0. 1, so we estimate P(100 meV)=—1.3X10
meV '. We shall use this number as a means of assessing
the conductivity of the layers.

For appropriate superlattice structures, we find that
layer resistivities in the range 50—200 p, Q cm provide
reasonable values for the background. The shape of the
background is controlled, however, by the means of mod-
eling the frequency dependence of the parallel conductivi-
ty of the layers, o'~~(co). We illustrate this in Fig. 3. Here
we have a semi-infinite superlattice, with A layers insu-
lating, and B layers endowed with a frequency-dependent
metallic conductivity o~~(ro). For o~~(ro) we take the
Drude form, where cr~~(co) =cro/[1 i coro], whe—re for now
both oo and ro are independent of frequency.

In Fig. 3(a), we show calculations of P(ro) for various
choices of the relaxation time ~p. Once 1p is chosen, we
adjust oo so P(ro) assumes the value 1.3 X 10 meV ' at
a 100 meV loss, and then calculate the whole curve. Very
short relaxation times are required for the theoretical
curve to fall off substantially with increasing co, as we
move above 100 meV. If ip is then chosen quite short, less
than 10 ' s, then we also require quite a large value of
the layer resistivity pe= 1/o o; we require layer resistivi-
ties above 400 pQ cm to obtain a background similar to
that in the data.

More reasonable parameters can provide an account
of the background if we make the relaxation time ~
depend on frequency. This is illustrated in Fig. 3(b),
where we take o ~~(ro) =o0/[1 iror(ro)], where —r(ro)
=rol[1+ (ro/roo) ]. We have here the choice
pp= 1 /0 p= 163 pQ cm, ~p= 10 ' sec, and cop= 138 meV
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to generate curve (2) in the figure. Of course, in the
Drude model, oo=ne ~/m, so if ~ is frequency depen-
dent we should allow oo to depend on frequency as well.
We follow the arguments put forward by Webb, Sievers,
and Mihalisin' in their analysis of the infrared response
of the heavy-fermion material CePd3 by arguing that the
frequency dependence of ~(co) and that of the quasiparti-
cle effective mass compensate, rendering O.

o frequency in-
dependent.

We must keep in mind that we are applying a simple
phenomenology to a material whose underlying physics is
understood incompletely. Thus we cannot claim that the
parameters which emerge from the analysis are unique.
We can and do argue, however, that the discussion just
completed, along with that given in the remainder of the
section, demonstrates that the energy-loss spectra report-
ed in Ref. 5 can be described nicely by a reasonable and
physically plausible set of parameters.

We now include the vibrational losses into the analysis.
As we do so, we shall retain the form just described by

I

(

s o~"
(3)

(a)

0 20 (z
X
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3

00

(~)
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(3)
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FICJ. 3. The function P(co), as a function of the loss energy,
for various models of the conductivity. %e have (a)

~II(co) =op/(1 —ico~p), with crp and ~p indePendent of frequency,
and the following choices of parameters: (1) pp=1/up=43 pQ
cm and ~p=10 ' sec, (2) pp=121pQ cm and ~p=3. 1X10
sec, (3) pp=283 p,Q cm and wp=3X10 ' sec, (4) pp=425 pQ
cm and ~p=10 ' sec, and (5) pp=472 pQ cm and ~p=10
sec. In (b) we have curves calculated for (1) O.

p and rp indepen-
dent of frequency, with pp=1/crp=163 pQ cm, ~p=10 ' sec,
and (2) pp

= 1/0'p= 163 pQ cm independent of frequency,
Rco)=so/(1+ [co/coo] ) where so=10 ' sec, and %coo=138
meV.

A.
eA( )

—~A( )+g
COJ CO 1 NP J

(13)

while
e~~

is frequency independent. Here e~ ( ao ) is a mea-
sure of the inhuence of the electronic polarizability on the
dielectric response of the structure.

The dipole selection rule introduced some years ago'
concludes that, in the near-specular dipole spectrum,
only vibrations that generate an oscillatory electric dipole
moment perpendicular to the surface are observable. We
have tested this rule in the present instance, for the model
described below, by introducing vibrational resonances
into

e~~ (co). We find no hint of vibrational structure in
the loss spectrum when this is done. We conclude that
the modes observed in the spectrum then indeed have
symmetry such that the associated dynamic dipole mo-
ment is normal to the surface.

Our studies of the vibrational losses use
d =d „+dB = 15.4 A for the combined thickness of the A

and 8 layers. We use 3.1 A for the thickness ds of the

highly conducting CuOz sheets (there are two in this ma-

terial}. These are compatible with structural studies of
the Bi 2:2:1:2materials. ' We assume that upon cleavage
the crystal splits between the two BiO planes. This places
the thickness of the outer C layer at 4.6 A.

In addition to the oscillator strengths, frequencies, and
widths of the vibrational resonances, we also require the
electronic contributions e~"(ac ), e~~

(ac ) to the dielectric
response of the A layers, and similarly for the B layers.
The conductivity of the 8 layers is so high that the calcu-
lated loss spectra are quite insensitive to the choice of
e (co), for any reasonable value of this parameter. We

Bchoose e~ ( ac ) and e~( ac ) so that we reproduce the mea-

sured infrared reAectivities for frequencies well above the
vibrational-resonances region, using the scheme outlined
below.

In Fig. 4(a), we show an energy-loss spectrum calculat-
ed as just described. It has been assumed here that the
outermost C layer has dielectric response characteristics
identical to the interior A layers, though the C layer is
thinner as mentioned above. We have used e~(~ }=8,
e~ (00 )=4.5, and e~~ ( ~ )=4; the calculated spectra are
infiuenced only modestly by changes in

e~~
(00 ), and this

parameter does not enter our description of the ir
reAectivity. The resistivity po of the material in the con-
ducting layers of 106 pQ cm produces an acceptable
background intensity in the 100-meV region. The oscilla-
tor strengths and other vibrational parameters are sum-

marized in Table I.
The parameters above are most reasonable, from a

physical point of view. One may inquire about their
uniqueness.

r(co) always, then adjust o.
o to provide the value

1.3 X 10 for P(co) at the energy loss of 100 meV.
The vibrational losses may be introduced simply by ap-

pending the appropriate resonant terms in the
frequency-dependent dielectric functions. For instance, if
we wish to simulate dipole-active vibrations in the insu-
lating A layers, polarized perpendicular to their surfaces,
we use for the dielectric function of the A layers
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FIG. 4. (a) The electron loss function P(co), calculated for the
model described in the text. In this case, the outer C layer is a
vibrationally active insulator. (b) The electron loss function
P(ro), calculated for the case where the C layer contains no
dipole-active vibrations. The vibrationally active layers thus lie
below the outermost conducting layer.

TABLE I. Vibrational parameters used to generate the loss
spectra displayed in Fig. 4.

We believe the value inferred for the resistivity of the
conducting layers to be reasonably secure. The calculat-
ed background near and above 100 meV is rather insensi-
tive to the vibrational parameters, and various other mi-
croscopic details.

There are, however, ambiguities in the remaining pa-
raineters. For example, if one considers an isolated, thin
dielectric film with a dipole-active vibrational resonance
perpendicular to the surface, one may see that the
strength of the vibrational loss in the near-specular elec-
tron loss cross section scales as [A /ei(oo )] . Thus it is
difiicult to determine A and ei(oo) uniquely from the
mode intensity in the electron loss spectrum alone. We
have constrained ei"( oo ) and e~( oo ) through contact with
infrared re6ectivity data, as discussed below. But we
could have chosen ei( oo ) somewhat smaller, and ei"( oo )

soinewhat larger, and increased the oscillator strengths
A- upward, to still find a satisfactory account of both
data sets. In the end, we have a model which provides a

~i"(ro)~i(~0)
Zi(co) =

fr~i (~)+f~ +i(ro)
(l4)

We show the infrared re6ectivity calculated from our
model in Fig. 5. Our theory is presented as a dotted line.
We also reproduce in the figure the re6ectivity data of Zi-
bold et al. , given as a solid line. Note that the data do
not extend below 40 meV. Thus, Zibold et al. did not
observe the rather weak, low-frequency mode observed in
the electron loss spectrum. The agreement between our
Fig. 5, and the re6ectivity data is very good indeed, with
one exception. Zibold et al. observe two vibrational res-
onances in the 30—40 meV region, while only a single
feature appears in the electron loss data. The discrepan-
cy may have its origin in the limited resolution of the
electron loss method. We note, for example, that the loss
peak in the 45 meV region of Fig. 1 is somewhat broader
than the other two structures, so improved resolution
may show that two modes in fact contribute to this
feature.

very good account of the electron loss data, and, we shall

see, the reflectivity in the infrared. This allows us to con-
clude firmly that the electron loss data are recording the
spectrum intrinsic to the material. But care must be ex-
ercised if, for example, one wishes to link our parameters
to microscopic theories of these materials, because there
are ambiguities in the choices, as just discussed.

The theoretical spectrum in Fig. 4(a) assumes the C
layer, which lies outside the first conducting Cu02 layer,
is vibrationally active with dipole resonances identical to
those of the insulating A layers in the crystal interior.
One can inquire how the loss spectrum would appear if
the conducting layer were the outermost. We illustrate
this in Fig. 4(b), where we suppress the contribution from
the vibrational resonances in the C layer. The loss spec-
trum has changed dramatically. In essence, in Fig. 4(b),
we see a free-carrier background, modulated by the vibra-
tional resonances in the underlying material. We have
been unable to produce anything close to the experimen-
tal spectrum with the conducting layer outermost. We
argue the electron loss data provide strong evidence that
the outermost layer is insulating.

We turn next to the infrared data. Our interest lies in
data reported by Zibold et al. , where the infrared
reflectivity is measured in a geometry where the electric
field is perpendicular to the surfaces of the constituents of
the layered structure. The data are reported in their
Figs. 5 and 6. These authors analyze the data by assum-

ing the material to be described by a simple frequency-
dependent dielectric function. We argue one should
recognize the multilayer character of the medium, and
utilize effective-medium theory to synthesize an effective
dielectric response function Zi(co) from that of the indivi-
dual constituents. One finds, after a simple analysis, '

that for this geometry

coj (meV)

21.8
36
72

y~ (meV) A; (meV)

40
70
75

IV. GENERAL DISCUSSION AND CONCLUSIONS

We have presented the theory of near-specular dipole
scattering of electrons from the surface of a layered ma-
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I I i I I I I I I I I I We next comment on the physical nature of the loss
peaks which appear in the electron loss spectrum. First,
recall the nature of the loss peaks observed on the surface
of a simple ionic material, with an infrared-active optical
phonon in its bulk. The peak in the infrared absorptivity
is controlled by Im[e(co)], with e(co) the dielectric con-
stant. The peak in the infrared absorption occurs at the
transverse optical phonon frequency, coT. The peaks in
the electron loss spectrum occur above coTO, at the fre-
quency co, of a surface optical phonon referred to fre-
quently as the Fuchs-Kliewer mode. ' One has co, )coTo.
In fact,

0 50 100 150
Frequency (mev)

200

co, [(e,+1)/(e„+1)]'i coTo,
FIG. 5. The infrared re6ectivity, calculated using effective-

medium theory, for the model used to generate Fig. 4. The cal-
culated re6ectivity is shown as a dotted line. The solid line is
the re6ectivity data reproduced from Ref. 7.

terial, such as the superconducting cuprates. The
analysis extends earlier descriptions ' of such structures
to incorporate the anisotropic nature of the constituents
of these materials.

We have applied the theory to a quantitative descrip-
tion of electron loss data from Bi 2:2:1:2compounds re-
ported in Ref. 5, to obtain a picture compatible with the
infrared refiectivity data reported by Zibold et ctl

though evidently one mode is not resolved in the electron
loss studies. This analysis allows us to conclude that the
experiments in Ref. 5 indeed yield the intrinsic electron
loss spectrum, for a material whose outermost layer is a
vibrationally active ionic insulator.

The data in Ref. 5 have a background higher than that
reported by Lieber and his collaborators by two to three
orders of magnitude. Our analysis of these high-
background data yields a value for the resistivity of the
CuOz layers, 106 pQ cm, that we believe quite reason-
able. We have inquired if we can use model parameters
to reproduce the very low backgrounds reported by
Lieber and co-workers, but we have been unable to do
this. For instance, even if we assign to the Cu02 layers a
conductivity equal to that of room-temperature Cu, the
background at 100 meV only drops by about an order of
magnitude, to 1.4X 10,which is still very much higher
than that reported by Lieber and his collaborators. Our
inability to obtain an account of these low backgrounds
with reasonable material parameters strongly reinforces
the arguments advanced in Ref. 5 that the data reported
by Lieber et al. were taken under conditions where sur-
face charging is present.

We saw in Sec. II that the high backgrounds found for
the high-T, materials have their origin, in part, in the an-
isotropic nature of the conductivity in these materials.
We have calculated P(co) at 100 meV for copper metal at
room temperature, to find P(co)=6X10 meV ', a
value far smaller than the 1.4X10 meV ' quoted in
the previous paragraph for the layered materials with
conductivity equal to copper, but only parallel to the sur-
face. Data reported some years ago indeed show such a
very small background for Cu metal. '

where e, and e„are the static and high-frequency dielec-
tric constants, respectively.

The anisotropic, layered structure modeled here also
has surface collective modes that are the analog of the
Fuchs-Kliewer modes. Unfortunately, these are not de-
scribed by elementary formulas, but occur as poles in the
(co, Q~~ ) plane of the loss function R(Q~~, co). These collec-
tive modes are damped, in our model, by virtue of the dis-
sipation in the conducting layers described by the finite
relaxation time v.(co). One may appreciate the fact that
we have surface coHective modes in our theoretical ener-

gy loss spectrum by comparing the location of the loss
peaks in Fig. 4(a) with those in Fig. 5. For the high-
frequency mode, the peak in our model of Im[F(co)]
occurs at 68 meV, while the corresponding feature in the
electron loss spectrum is upshifted to 80 meV.

While the experimental spectra were taken at the tem-
perature of 47 K, well below the superconducting transi-
tion, there is no evidence of a superconducting gap in the
data. There are several possibilities for the absence of
such a structure. First, the gap feature would reside
within the "phonon forest" evident in Fig. 2, and thus
just may be difficult to extract from the full data. It is
also possible that these samples are not superconducting
in the near vicinity of their surface. However, photo-
emission experiments have detected the energy gap, and
these experiments study electrons whose mean free path
is only a few angstroms. Moreover, recent infrared re-
sults for both Bi 2:2:1:2 (Ref. 18) YBazCui07 (Ref. 19)
have demonstrated that the optical conductivity is gap-
less in the bulk of these materials. Hence there is a
strong evidence which suggests that the surface proper-
ties deduced from our electron-energy-loss data reQect
the intrinsic properties of high-T, materials in their su-
perconducting state.

It is possible that the nature of the superconducting
state in these materials is such that the structure in cri(co)
is more subtle than expected for an isotropic s-wave state
where, as discussed by Persson and Demuth, there
should be a strong signature in the electronic background
(provided this is not obscured by a strong phonon loss).
If, however, the pairing is of d-wave character, the ener-

gy gap has zeros on the Fermi surface, and is thus very
anisotropic. Very likely the structure in oi(co) would
then be much less pronounced than for the isotropic s-
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wave case. Similar remarks may apply to s-wave pairing

models which yield a highly anisotropic gap. The ab-

sence of structure in crl(to) may then be evidence, albeit

indirect, for a pairing scenario that leads to a highly an-

isotropic gap. It would be of great interest to see explicit
calculations of o ~~(co) for such models of the cuprate su-

perconductors.

WCXNOWr, EDGMEN'rS

The research of D.L.M. was supported by the Depart-
ment of Energy, through Grant No. DE-FG03-
84ER45083, while that of R.B.P. and L.L.K. was sup-
ported by the Department of Energy through Grant No.
DE-F602-84ER45 147.

For example, see L. H. Dubois, G. P. Swartz, R. E. Camley,
and D. L. Mills, Phys. Rev. B 29, 3208 (1984); B. N. J.
Persson and J. E. Demuth, ibid. 30, 5968 (1968); H. Liith,
Surf. Sci. 168, 773 (1986).

2D. L. Mills, Surf. Sci. 48, 59 (1975).
3H. Froitzheim, H. Ibach, and D. L. Mills, Phys. Rev. B 11,

4980 (1975); also H. Ibach and D. L. Mills, Electron Energy
Loss Spectroscopy and Surface Vibrations (Academic, San

Francisco, 1982), Chap. 3. We wish to call the reader's atten-

tion to the discussion of multiple scattering effects by Persson
and Demuth in the paper cited in Ref. 1.

4J. E. Demuth, B. N. J. Persson, F. Holtzberg, and C. V. Chan-
drasekhar, Phys. Rev. Lett. 64, 603 (1990); B. N. J. Persson
and J. E. Demuth, Phys. Rev. B 42, 8057 (1990);Y. Li, J. L.
Huang, and C. M. Lieber, Phys. Rev. Lett. 68, 3240 (1992);
Y. Li, J. Liu, and C. M. Lieber, ibid. 70, 3494 (1993).

5R. B. Phelps, P. Akavoor, L. L. Kesmodel, A. L. Barr, J. T.
Markert, J. Ma, R. J. Kelley, and M. Onellion, this issue,

Phys. Rev. B 50, 6526 (1994).
R. Franchy, B.Decker, J. Masuch, and H. Ibach, Surf. Sci. 55,

303 (1994).
A. Zibold, M. Diirrler, A. Gaymann, H. P. Geserich, N.

Nucker, V. M. Burlakov, and P. Muller, Physica C 193, 171
(1992).

R. E. Camley and D. L. Mills, Phys. Rev. B 29, 1695 (1984).
S. R. Streight and D. L. Mills, Phys. Rev. B 35, 6337 (1987).
Burl M. Hall and D. L. Mills, Phys. Rev. B 44, 1202 (1991).
For example, see Fig. 3 of the paper by Li, Liu, and, :Lieber cit-
ed in Ref. 4, and the associated discussion.
See H. Ibach and D. L. Mills in Ref. 3.
B. C. Webb, A. J. Sievers, and T. Mihalisin, Phys. Rev. Lett.
57, 1951 (1986).

~E. Evans and D. L. Mills, Phys. Rev. B 5, 4126 (1972).
C. C. Toradi, J. B. Parise, M. A. Subramanian, J. Gopalak-
rishnan, and A. W. Sleight, Physica C 157, 115 (1989).
V. Agranovich and V. E. Kratsov, Solid State Commun. 55,
373 (1985).
S. Anderson and B. N. J. Persson, Phys. Rev. Lett. 50, 2028
(1983).
D. Mandrus, M. C. Martin, C. Kendziora, D. Koller, L. For-
ro, and L. Mihaly, Phys. Rev. Lett. 70, 2629 (1993).
M. J. Sumner, J. T. Kim, and T. R. Lemberger, Phys. Rev. B
47, 12 248 (1993).


