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Bunched Huxons in coupled Josephson junctions
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The nature of bunched Huxons on coupled long Josephson junctions is investigated theoretically
by means of a coupled set of sine-Gordon equations. For cases of inductive and capacitive coupling
between the junctions, we analyze the stability of the bunched states for diHerent velocities and
perturbation parameters, damping and bias. The internal oscillation frequency is found for the
bunched modes and the origin of the stability is discussed for the diferent types of bound states.
Extensive numerical simulations are carried out in order to validate the analytical results against the
dynamical behavior of the full system. Excellent agreement between the analysis and the simulations
is obtained for all values of coupling parameters and velocities. Finally, we demonstrate numerically
that the stability of the bound states can persist even when the two systems are not exactly identical,
and we conclude that both inductive and capacitive coupling can give rise to large-locking regimes
in synchronization experiments on coupled Josephson junctions.

I. INTRODUCTION

Various mechanisms coupling long Josephson junctions
have proven to synchronize and phase-lock Quxon modes
under certain conditions. Regardless of the specific
coupling mechanism, phase locking is an important phe-
nomenon for Josephson technology, since the emitted
power &om a single oscillator is extremely small. An ar-
ray of synchronized oscillators can dramatically enhance
the emitted power while maintaining the low linewidth
of the signal. i Theoretically, phase locking has demon-
strated many novel phenomena of nonlinear dynamics.
In particular systems of long Josephson junctions cou-
pled by spatially distributed coupling mechanisms have
shown many interesting phenomena, such as phase lock-
ing between fluxon modes, ' ' mode-dependent char-
acteristic velocities~4, 11 and hyperradiance. ' ' The cou.-

pled system is typically modeled by a set of coupled
sine-Gordon equations, ' where a magnetic Huxon
is represented by the topological kink soliton solution
to the unperturbed coupled system. Using the model
of Refs. 13, 14, Kivshar and Malomed demonstrated
that bound states could form between Quxons on differ-
ent junctions. It was later demonstrated that this bound
state could explain phase locking in sets of Josephson
junctions with a mutually inductive-capacitive coupling.
Those studies were all based on simple energy balance
perturbation techniques. However, more rigorous stabil-
ity analysis of the bound states revealed more exotic sta-
ble states in this system. In Ref. 8 it ~as demonstrated
that the energetically unfavorable bound state of unipo-
lar Huxons could be stable if a certain critical velocity
was exceeded.

In this paper, we extend the analysis of Ref. 8 to cover
both inductive and capacitive coupling mechanisms. We
use the present analysis to investigate the stability prop-
erties of all possible bound modes, and we find the inter-
nal oscillation &equency of the stable states for al/ values

of the translational velocity and for all values of coupling
strengths. Numerical experiments on the coupled sine-
Gordon model are carried out and the agreement with
the analytical analysis is excellent for all the obtained
results.

The stability analysis is performed for two identical
junctions; i.e., the system is symmetric with respect to
the two junctions. However, in real experiments it is im-
possible to obtain this ideal situation. We have therefore
performed numerical experiments in order to determine if
the stability of the bunched unipolar mode is an artifact
of the ideal system. Representing differences between
the junctions by a difference in a single parameter (in
this case rt), we demonstrate that the bunched states are
indeed stable for both inductively and capacitively cou-
pled systems. Further, we show the range of difference
in parameters (the locking range) for which the bunched
state still exists as a stable object.

The model under consideration is,

where the variables P and g represent the quantum me-
chanical phase differences over the two junctions. The
spatial dimension (x) is normalized to the characteris-
tic Josephson length A~, and the temporal dimension (t)
is normalized to the inverse plasma frequency ~„of the
junction (see Ref. 4). The dissipative terms n repre-
sent tunneling of quasiparticles, and the torques gy and

gy represent the applied bias currents through the junc-
tions. The inductive and capacitive coupling parameters
are denoted Al and Ac, respectively, where 0 & Al ( 1
and 0 ( A~ ( 1 for coupled Josephson junctions. ' As
described in Ref. 4, the system can also be described with
negative coupling parameters, if one of the variables P or
g (and its bias value) changes sign.
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II. ANALYTICAL ANALY'SIS
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where 04, ——+1 and oy ——+1 are the polarities of the
kinks in the systems, and a = cr@ey. The Lorentz con-

traction factor is given by p ~ (u) = gl —u2, u being the
translational velocity of the solution.

Defining the total energy of the system as4
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we can insert the solution, Eq. (2), and obtain the energy
of the traveling wave as

The fundamental bunched soliton solution to the un-

perturbed Eq. (1) (i.e., for a = q4, = q~ = 0) is given
by4

(1 —b, r)v —(1+b, c)vtq —sinvcos p
1= ~v~ —
2

(~~ —n~) (8)

where we find the two fields p and v to evolve on diferent
time scales given by the characteristic velocities, Eqs. (5)
and (6), respectively. Using the solution, Eq. (2), for
0 = 1 [0 = —1] in Eq. (7) [Eq. (8)], we can apply the
adiabatic perturbation technique and obtain the steady
state velocity of the bunched state for given perturbation
parameters,

(1+0 &r) (7rg/4~)'
1+ (1 —oh, c)(7rg/4~)'

'

where g = g4,
——ops.

Since the exact solution, Eq. (2), is a solution of the
unperturbed Eq. (7) [Eq. (8)] for a = 1 [0 = —1], we
can then perform linear stability analysis for the unipolar
[antipolar] solution by linearizing Eq. (8) [Eq. (7)].

Assuming that we are dealing with the unperturbed
system (n = rip

——gy = 0), we can write the linearized

equation for the deviation g~ l as

(1 —oAr)g~ l —(1+abc)gI, l —g~ lcosg~+l = 0,
(10)

g~'l = (~+ ~)-, g'-' = (~ ~)--1 1
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(4)
The characteristic scales for the bunched mode give us
the new variable

Vl+ g

1+Al ) 1 forcr =1,+'

u ~
= &1 form= —l.

(5)

(6)

Note that the expressions Eqs. (2)—(4) are exact for all
values of b, r and Ac. Equation (4) shows how the energy
of the traveling wave decreases (increases) for antipolar
(unipolar) kinks as b, r and/or Ac is increased. If the two
solitons are well separated in space, the wave profiles and
their energies can be found (to first order in b, r and b,c)
from Eqs. (2) and (4) for b, r = b,c = 0. For the in-
ductive coupling, this means that two antipolar solitons
(0' = —1) will have higher energy when separated in space
than in the bunched state, whereas two unipolar solitons
(o = 1) will have lower energy when separated in space
compared to the bunched mode. However, it was shown
in Ref. 8 that for bunched states traveling at high speed
it is possible to obtain stable unipolar states. The origin
of this stability can be found in the double characteristic
velocity nature of the coupled equations. These veloci-
ties can be immediately identified in the exact solution
Eq. (2), where we find the asymptotic velocities for the
bunched state to be given by

A(gt —(~ —2sech ()( = 0, (i2)

where

t,"(()= g~ l (z, t) exp(e( —i~t),
(1 —a&r)(1+ abc)

1 —+br —(1+o'bc)u2
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1+~~r —(1 —o&c)u' '

gi+ ~b, r —(1 —~~c)u'
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(14)
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From Eqs. (15) and (16) we see that the condition) 0 must be fulfilled in order to ensure stability of
the bunched mode. The eigenvalue problem, Eq. (12),
has the only localized solution

hg) 2 (Qs/%+1 —1)

x —ut

gi + anr —(1 —~ac)u'

Inserting Eq. (11) into Eq. (10) and using the identity
cos g~+l = 1 —2sech(, we obtain the eigenvalue problem

Writing the equations for the sum, y, = (P+ g)/2, and
the difference, v = (P —@)/2, we obtain

(1 + Ar) p~~ —(1 —Ec)hatt.
—sin p cos v

1= ~r ~
—2{~~+n~) (7)

when
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and unstable otherwise. Inserting this threshold condi-
t' to the power balance expression, Eq. «, t 'E . ~9~ we o tainion o

es willa threshold in the bias such that larger bias values wi
result in stable bunched states; i.e. , the bunched state is
stable when

2K2 1 —&I
~il~ ) i1. = a (20)

and unstable otherwise. From the above expression we

can now derive the minimum coupling between the two

mode can be stable. This is obtained from the fact tha
the kinks only can be stable if ~il~ ( 1, i.e. , if

Case o. = 1: It is easy to see that for all velocities
0& u (u i, we ave~h ve ~ ~ 0 and hence an unstable

suggesting marginal stability for u = u i. For velocities
u ) u i, there exists no confined solution to the eigen-
value problem, even though a bunched soliton state is
known to exis . ist. Th' phenomenon is easily understoo
in terms of the two characteristic velocities present in the
system. A small deviation between two unipolar solitons,
traveling with u ) u i, will be described by Eq. (10) and,
hence, travel wi u = ul 'th = u i e. the difference between
two solitons canno ral t travel as fast as the solitons t em-
selves, and the stability of the bunched unipolar solitons
is then ensure y ed b th difI'erent characteristic velocities,
since any deviation between the fields will decay as a
result of (classical) Cherenkov radiation.

tA'e conclude that the bunched unipolar state is stable

III. NUMERICAL ANALYSIS AND DISCUSSION

Numerical simulations of the full system, Eq. (1), have
been performed in order to verify our analytical results.

~ ~The simulations were carried out using an explicit secon
ace of E s.

(7) and (8). Since we intend to approximate an in ni e
system size, perio icd boundary conditions were impose
on the system,

P(o, t) = P(I„t)+2~~~, g(O, t) = g(I„t)+2~~~,
(22)

w ere ih I is the normalized system lengt
u of theIn Fi . 1 we show the normalized velocity u o e

unipo arnipolar bound state (o = 1) as a function of the nor-
malized bias current, g = g~ ——gy. The system parame-
ters for this simulation have been chosen to be o, = 0.1,
I = 40, Al ——0, and A~ ——0.2. For the same simulation

initiated with high bias g & g„high velocity u ) u„
and with a distance dx = 0.05 of separation between the
soiitons. er al' Aft transient time of 1600 norma ize time

easured the steady state velocity o t e wounits, we measur
b h =10, wesolitons. Then, changing the bias g by

came unstable. As is clearly seen from Fig. 1, bias values
greater t an a cer ainth tain critical value sustain soliton prop-
aga ion wi at' 'th asymptotic velocity u+i, given by q.
This is a clear indication of the presence of the unc e

&I+ &c
(21) 1.0

It is worth noting that since the stability of the fast
traveling unipo ar unc el b h d state is related to Cherenkov

~ ~

associated with the stability; i.e., q.associ
' ' ' ' i.e. E . ~18~ is only valid

~ ~

Case o = —1: Since the propagating bunched antipolar
state canno rat ot travel with velocities excee ing u i, given

y Eq. (6), it is obvious that A ) 1 for all relevant va ues
of u. Prom this it is then straightforward to see that

stable for allthe bunched antipolar state of solitons is s a e
relevant velocities.

ori inates fromUnlike the unipolar case, this stability originates om
the fact that the binding energy of the bunched state is

h th t of two separate solitons (see ec. III .

An internal frequency Oo is therefore associate wi e
bunched mode and its value is given by q. ~

l d for all relevant—1. Note that this expression is va.i or al

0&A (l, and0&A~(1. Foru= and&—i) I
(( 1, the internal frequency is given yI) C

esult obtained2AI 3, which is in agreement with the resu
in Ref. 4.

0.5

.0

—0.0
—0.0 0.2 0.4 0.6 O.B 1.0

FIG. 1. Normalized soljton velocity u au as a function of the
. Parameters are

A —0.1)
The dash-dotted line indicates the asymptotic velocity u+I
for the bunched traveling wave solution, Eq.
The dashed lines indicate the boundary ffor the stability of
the bunched mode, as given by Eqs.s. 19 and 20). The inset

'venb E . 3.shows the total energy of the system, as give y q.
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unipolar mode, given by Eq. (2) for o = l. In fact, using
the power balance expression Eq. (9) for the velocity as
a function of the bias, we would find a curve in Fig. 1
with no detectable deference &om the numerical result
for u ) u q. Decreasing the bias, the bunched state is
lost at the critical value g„given by Eq. (20). This tran-
sition f'rom the bunched to the separated state is clearly
seen in Fig. 1 as a jump in the velocity. Once separated,
the two solitons stay with an internal distance of L/2,
even when the bias is increased above the critical value

g, . The asymptotic velocity for this state is given by u
since the v field is nonzero for this state [see Eq. (8)j. The
inset in Fig. 1 shows the measured energy of the system
as calculated &om the dynamical simulation. We find
that the total energy for the bunched (capacitively cou-
pled) state has loiter energy than the separated state for
the same bias value. Even at the transition point g„
we find that the total energy jumps up when the system
lets the bunched state transform to the separated. This
phenomenon is different from the usual behavior, where
the total energy seeks a minimum (as is the case for the
inductively coupled systems).

The fact that the energy of the capacitively coupled
bunched unipolar mode is lower than that of the corre-
sponding separated mode can be seen by inserting Eq.
(9) into Eq. (4) and thereby obtain the total energy as a

I

function of the bias g = g4,
——crgy,

(Xg) 2

IIt, t, i = 16/1+oAr 1+ (1 —otic)
~

—
) (23)

~ *+ ~
—&a ~ + (24)

Using the exact solution, Eq. (2), we obtain

(gi —otic l 1 —«cP=16 upi
t, pl+«r ) V'1+o'ar (25)

We now define the mass of the bunched mode as

M = /02-P2. (26)

For the bunched state we then find the mass from Eqs.
(4) and (25),

From this we find that the bunched unipolar mode in-
creases (decreases) the total energy for the inductive (ca-
pacitive) coupling. For the capacitive coupling, this is
somewhat against intuition, but in the following we will
show that the binding energy between the two solitons
behaves properly. The wave momentum for the system
is given by

f 41 —o.&c
Ms = 16/1 + ~b r p

& 41+ o'&r )
(1 —«c l
( 1+O'Ar j (27)

which is valid for all 61, A~, and u. The mass of the
separated state is given (to first order in the coupling
parameters) for small u by

M, =16, (28)

which is the usual mass of two solitons in an uncoupled
system. The binding energy is given by Mp —M„where
a positive binding energy implies that it is energetically
favorable to be in the separated state. From the above
expressions it is now easy to see that

Mg —M, )0 for 0. =1,
Mg —M, &0 for 0= —1.

(29)

(30)

The binding energy between the solitons is negative
for antipolar bunched states and positive for unipolar
bunched states, even when the total energy Eq. (23) in-
dicates otherwise (for the capacitive coupling). Thus, we
find that the nature of the stability of the unipolar mode
is not energetically based, since the binding energy of the
stable bunched mode is positive.

The stability limit of the bunched»@~polar mode has
been tested for many diferent values of system parame-
ters. In Fig. 2 we show the values g, and u, for which
the system switches &om the bunched to the separated
mode as a function of the coupling parameters. The re-
sults of numerical sixnulations are shown as markers and
the analytical predictions, Eqs. (19) and (20), as solid

curves. The open diamonds show the results for 61 ) 0
and A~ ——0, whereas the open squares represent results
for Al ——0 and L~ ) 0. Other system parameters are
L = 40, n = 0.05 (a), and a = O.l (b). Evidently, the an-
alytical results fit the numerical data almost perfectly for
both types of coupling mechanisms in the entire region
0 & 61 ( 1and0 & A~ & 1. Thisis not surprising, since
the basis of the analytical treatment is an exact solution,
valid for all values of coupling parameters. The minor
deviations between the dynamical data and the analyti-
cal results, seen in the inset of Fig. 2(a) for the inductive
coupling, is actually an artifact of a sensitive velocity
measurement, due to the finite step size in the bias (see
Fig. 1). The deviation between numerical and analytical
data seen in Fig. 2(b) for small coupling parameters is
due to the approximations in the adiabatic perturbation
method, used to obtain Eqs. (9) and (20). This method
assumes that the perturbation parameters o. and g are
relatively small. For small coupling parameters, the crit-
ical value g, increases and the perturbation result for g,
therefore deviates &oza the true critical value. However,
the critical velocity u, is independent of this perturba-
tion error and therefore no deviations are detected in the
insets of Fig. 2 for small values of the coupling parame-
ters. We note that no internal oscillations were detected
in the numerical simulations shown in Fig. 2. Any small
deviation between the positions of the two solitons de-
cayed exponentially in time. This is in agreement with
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h 1 t 1 t eatment in Sec. II, where Cherenkov ra-

this mode.
In real experimen s,1 t two adjacent Josephson junctions

have slightly diferent system parameters such as char-
acteristic eng s, c1 th haracteristic &equencies, critical cur-

ues. T is willrents, damping parameters, and bias values. T is wi
result in broken symmetry between the two junctions. In
the &amework of the coupled sine-Gordon model, this

bunched mode [Eq. (2)] on which we can base an ana-

1.0

0.8

0.4

—0.0
—0.0 0.2 0.4 0.6 0.8

1.0

0.8

0.6

0.4

0.2

—0.0
—0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Lower limit in bras current, g,~ ~ ~ ~ t as a function of
d A . Parameters are I =40-the coupling strengths Dy and

o = 1 (uni olar). The markers indicate the results
of numerical simulations:

ression E . (20). The insetslines represent the analytical expression q, ' ts
s ow ecoh th mparison between the numnumerical data (markers

locit E . 19):and the ana y ica exph 1 t 1 xpression for the critical ve oci y q. (
o = 0.05 (a), o. = 0.10 (b).

lytical stability analysis. %e have therefore performed

t e equa ions.h t' . These simulations also relate to experi-
ments on p ase oc ing,h 1 k where the range in difference
between system parameters (typica yll the bias current
for which the soliton oscillators are synchronized is stud-
ie . n ig. we

&
in bias as a function of the bias1ange 2'gi = gy —'gy ln

' t = ( + )/2, for the unipolar bunched mode.
olar so-For given system parameters the bunched unipo ar so-

1 t' initiated with gq
——0. Increasing t e ias

ether
the system was still in the bunched state after a tran-
sient time o a ew of f thousand normalized time units. is
procedure was repeated until the bunched mode ro e

sent the largest value of the bias de'erence qi for which
the bunched unipolar mode still existed (straight lines
are drawn between markers, representing the same cou-

ling parameters). Not surprising y,1 we find the generalpin
trend that larger couphng parameters give

'
give rise to larger

locking ranges in bias. By comparing g .Fi s. 3 a and 3(b)
we hand that increasing the damping parameter g ymeter ener ally

Ref. 4. In fact, except for small values of the bias poin
(the translational velocity) the locking ranges for the uni-

d anti olar bunched modes look quite similar, even
though the mechanisms for their stabihty are i
The optimal bias point for obtaining the largest locking
range for a given set of coupling parameters is seen to
be somewhere in the center of the scale (depending on
the amping o; . n.

' ', oo asd
'

~ I tuitively this can be understoo as
follows. Increasing the bias point qo will increase the cou-

p ing streng1 th between the traveling solitons, since faster
traveling so i ons wi1' 1't ill I orentz contract and there y en-

. However, ocaizehance the coupling term, e.g. ,
n onl existo jec sina c-b' t '

dc-driven sine-Gordon system can y
le bias1. This condition limits the possible iasfoi'

I'QADI,

I'gy 4 . i
i erencepi od'ff for a given bias Point rlo to be ~rlq & —~rlo~.

Th' 1 't '
shown in Fig. 3 as dashed diagona ines. oris Iml is s

n t atthear er values of the coupling parameters we n t a e

function of t e ias poin .n b' ' t Detailed investigation revea ed
that t is is cause d b& strong Cherenkov emission om
te unce mh b hed mode when ~rh~ ) 0. Even for long systems
of I = 160 this radiation was still strong enoug
terfere with soliton propagation in the periodic system.
However, increasing the dampi g p

~ ~

in arameter suppresses
the effect of the radiation [see Fig. 3(a)].

s of Fi . 3 show the internal distance dx be-
tween the positions of the two solitons at t e cri ica

itive and the inductive coupling as wee as for di erent
cases studied, the critical in-

nentiall witternal distance was found to decrease expo y
increasing bias point.

f hIn Fi . 4 we show numerical measureme ents o t e in-
ternal oscillation frequency of the energetica y stable an-
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tipolar mode. The perturbation parameters a, gy, and

gy were set to zero. For o = —1, L = 40, and given cou-

pling parameters, the system was initiated with Eq. (2)
as the wave profiles. In order to detect an internal fre-
quency the two initial solitons were separated by dx = 0.1
in normalized space units before the first time step. The
oscillation &equency, measured over the first two to ten
periods, is displayed in Fig. 4 for different velocities and
coupling parameters as markers. Along with the results
of the dynamical simulations are solid lines, represent-
ing the analytical expression for the frequency, Eq. (18)
(u = —1). The analytical result is clearly in almost per-

feet agreement with the numerically obtained data for
all values of translational velocities and coupling param-
eters, even large velocities and coupling parameters. The
vertical dashed lines indicate the asymptotic velocity of
the antipolar bunched mode for the given coupling pa-
rameter.

IV. CONCLUSION

We have performed a comprehensive linear stability
analysis of bunched solitons in coupled sine-Gordon sys-
tems, where the coupling terms represent mutual induc-
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—0.0 0.2 .0.4 0.6 0.8 1
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0

FIG. 3. Maximum value of the difference in bias, rIq = (qy —rI~)/2, for which the bunched unipolar (o. = 1) mode exists as
a function of the bias point, rfp —(rfy+ gy)/2. Markers indicate the numerical results obtained from simulations. The diagonal
dashed line indicates the limit ~rjq

~
( 1 —

~gp ~. Parameters are L = 40—160, (a) o. = 0.1 and Ec = 0, (b) o. = 0.2 and b,o = 0,
(c) n = 0.1 and Al = 0. Insets show the maximum value of the internal distance in position, Ch, of the two unipolar (a = 1)
solitons as a function of the bias point, gp = (rfy + rIy)/2.
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tance and capacitance between ion J hong osephson junctions.

~ ~

e have demonstrated that the t 1a e an ipo ar bunched mode
e wo sine-Gordonis a ways stable in the case where th t '

G
systems are identical and the t 1) e in ernal oscillation &e-
quency has been calculated. Dynamical r ltresu s confirm

cou lin
is equency expression for all relevant 1 f

p ng parameters as well as the translational veloc-
ity of the bunched mode. This a m
s o not surprise us, since the analytical results are

FIG. 4. Internal oscillation fre uenc 0y
a iona velocity u of the bunce nnched antipolar mode

ar ers indicate results of d
and l'd l' p heso i ines represent the

dynamical simulations
7

for o = —1.
he analytical expression Eq. (18)

or o = —1. Vertical dashed lines indicanes in &cate the asymptotic
i ies u q. arameters are 0; =

b, o = 0, and (b) Ai = 0.
=gy=gy=Q, L =40, (a)

5O

based on a sin legle assumption, namely, that the solitons
are unc anged when separated sli htle s ig y in space. No other

lin
assumptions are made regardin th 1r ing e ve ocity or the cou-

p ing parameters. The stability of thi y o e antipolar bunched
s a e has een considered in Ref. 4 in t e
cou lin

e . in t e case of small

systems.
p ing parameters and diferent bi 1n ias va ues of the two

sys ems. %'e have demonstrated that the ena e energetically
unipo ar state of solitons can he stabl f b h

inductive an
a e or ot

locit is hi
an capacitive coupling if the t 1i e rans ational ve-

tern
i y is ig er than a critical velocity

'
thyin ecoupeds s-

. This stability has been sh t b s-s own o e a result of clas-
sical) Cherenkov radiation. The velocit

feet a
ri e y ynamical simulations and l t

agreement has been found between the anal sis
a most per-

e existence of the uni o
o ject in nonperfect systems has been verified b

'
g ystem for different values of the bia

eri e y simu-

ter in the two s ste ' '
avwo sys ems. These simulations havave revea e

g range in difference between the t b'

for which th
e wo ias values

ic he bunched state still exists. The bunc

unc" e states studied in s'in sing'e sine-Gordon systems.
unc ing etween Huxons of the sa

' -G dsame sine- ordon sys-
ern is ypically caused by details in the fr' t'e ic ion orces,

as bunching in the coupled system has been ex-
plained here in terms of double h

' ' ' '
s

for the uni
ou e c aracteristic velocities

or e unipolar state and a negative bindin ene
o pl d long Josephson junctio

is implies that phase locking bete ween two junctions op-
era e in their Buxon modes can be obtained
interval of the s

e o aine over some
e system parameters. En fact, three difI'erent

types of phase locking can be expected for both '

i ive coup ing: the attractive antipolar mode
ve opposite signs in order to

rive t e uxons iri the same direction' ' th
pulsive unipolar mode where th b'

e separated

the same si ns an
ere e ias currents have

e same signs and the asymptotic velocity of the mode is
ar mo e iscussed in Sec.

, w ere t e locking range is as shown in Fi . 3. Th.
n be distinguished from the other modes

by the asymptotic velocit ub
'

y u+i. The present analysis has
een performed for two interaf '

eracting sine-Gordon systems
osephson junctions). It would be interes in

tigate th t b'1'
e in cresting to inves-

e s a i ity and hase-p -'ocking nature of a system
wit many interacting soliton oscillators.
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