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The nature of bunched fluxons on coupled long Josephson junctions is investigated theoretically
by means of a coupled set of sine-Gordon equations. For cases of inductive and capacitive coupling
between the junctions, we analyze the stability of the bunched states for different velocities and
perturbation parameters, damping and bias. The internal oscillation frequency is found for the
bunched modes and the origin of the stability is discussed for the different types of bound states.
Extensive numerical simulations are carried out in order to validate the analytical results against the
dynamical behavior of the full system. Excellent agreement between the analysis and the simulations
is obtained for all values of coupling parameters and velocities. Finally, we demonstrate numerically
that the stability of the bound states can persist even when the two systems are not exactly identical,
and we conclude that both inductive and capacitive coupling can give rise to large-locking regimes
in synchronization experiments on coupled Josephson junctions.

I. INTRODUCTION

Various mechanisms coupling long Josephson junctions
have proven to synchronize and phase-lock fluxon modes
under certain conditions. ® Regardless of the specific
coupling mechanism, phase locking is an important phe-
nomenon for Josephson technology, since the emitted
power from a single oscillator is extremely small.! An ar-
ray of synchronized oscillators can dramatically enhance
the emitted power while maintaining the low linewidth
of the signal.! Theoretically, phase locking has demon-
strated many novel phenomena of nonlinear dynamics.
In particular systems of long Josephson junctions cou-
pled by spatially distributed coupling mechanisms have
shown many interesting phenomena, such as phase lock-
ing between fluxon modes,®%7 1% mode-dependent char-
acteristic velocities,*1! and hyperradiance.?%12 The cou-
pled system is typically modeled by a set of coupled
sine-Gordon equations,*'3715 where a magnetic fluxon
is represented by the topological kink soliton solution
to the unperturbed coupled system. Using the model
of Refs. 13, 14, Kivshar and Malomed!® demonstrated
that bound states could form between fluxons on differ-
ent junctions. It was later demonstrated? that this bound
state could explain phase locking in sets of Josephson
junctions with a mutually inductive-capacitive coupling.
Those studies were all based on simple energy balance
perturbation techniques. However, more rigorous stabil-
ity analysis of the bound states revealed more exotic sta-
ble states in this system. In Ref. 8 it was demonstrated
that the energetically unfavorable bound state of unipo-
lar fluxons could be stable if a certain critical velocity
was exceeded.

In this paper, we extend the analysis of Ref. 8 to cover
both inductive and capacitive coupling mechanisms. We
use the present analysis to investigate the stability prop-
erties of all possible bound modes, and we find the inter-
nal oscillation frequency of the stable states for all values
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of the translational velocity and for all values of coupling
strengths. Numerical experiments on the coupled sine-
Gordon model are carried out and the agreement with
the analytical analysis is excellent for all the obtained
results.

The stability analysis is performed for two identical
junctions; i.e., the system is symmetric with respect to
the two junctions. However, in real experiments it is im-
possible to obtain this ideal situation. We have therefore
performed numerical experiments in order to determine if
the stability of the bunched unipolar mode is an artifact
of the ideal system. Representing differences between
the junctions by a difference in a single parameter (in
this case 1), we demonstrate that the bunched states are
indeed stable for both inductively and capacitively cou-
pled systems. Further, we show the range of difference
in parameters (the locking range) for which the bunched
state still exists as a stable object.

The model under consideration is,%13.14

bze — P — sing = ag, — N — Arthee — Aoty
wza: ~¢tt_5in¢:a¢t_n¢ _Al¢mm—AC¢tt 3 (1)

where the variables ¢ and 1 represent the quantum me-
chanical phase differences over the two junctions. The
spatial dimension (z) is normalized to the characteris-
tic Josephson length Ay, and the temporal dimension (t)
is normalized to the inverse plasma frequency w, of the
junction (see Ref. 4). The dissipative terms ~ a repre-
sent tunneling of quasiparticles, and the torques 74 and
7y Trepresent the applied bias currents through the junc-
tions. The inductive and capacitive coupling parameters
are denoted A; and Ac, respectively, where 0 < Ay <1
and 0 < A¢ < 1 for coupled Josephson junctions.*!* As
described in Ref. 4, the system can also be described with
negative coupling parameters, if one of the variables ¢ or
9 (and its bias value) changes sign.
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II. ANALYTICAL ANALYSIS

The fundamental bunched soliton solution to the un-
perturbed Eq. (1) (i.e., for @ = 54 = ny = 0) is given
by*

¢ P =4ta _1[ exp{’y( 1_UACu)
O'¢ :‘0’,¢, = n ot —\/1:—____—
+oAg
T — ut

x——————m}} , (2)

where g4 = %1 and oy, = %1 are the polarities of the
kinks in the systems, and o0 = 040y. The Lorentz con-
traction factor is given by v~ 1(u) = v/1 — u2, u being the
translational velocity of the solution.

Defining the total energy of the system as*

H = / [%d)i + %(bf +1 —cos¢>] dz
+/ [-;:1/;: + %gbtz +1-— cosw] dz
+AI/¢z¢zdm_AC/¢t¢tdm, (3)

we can insert the solution, Eq. (2), and obtain the energy
of the traveling wave as

4)

Vv1—-0cA
Hyynched = 16 1+0AI 7( 1-0ac ) .

\/1+0'A1u

Note that the expressions Egs. (2)-(4) are exact for all
values of Ar and A¢. Equation (4) shows how the energy
of the traveling wave decreases (increases) for antipolar
(unipolar) kinks as Ay and/or A is increased. If the two
solitons are well separated in space, the wave profiles and
their energies can be found (to first order in Ay and A¢)
from Egs. (2) and (4) for A; = A¢ = 0.* For the in-
ductive coupling, this means that two antipolar solitons
(0 = —1) will have higher energy when separated in space
than in the bunched state, whereas two unipolar solitons
(o = 1) will have lower energy when separated in space
compared to the bunched mode. However, it was shown
in Ref. 8 that for bunched states traveling at high speed
it is possible to obtain stable unipolar states. The origin
of this stability can be found in the double characteristic
velocity nature of the coupled equations. These veloci-
ties can be immediately identified in the exact solution
Eq. (2), where we find the asymptotic velocities for the
bunched state to be given by

2 _1+AI

u+1—1_A021f0r0=1, (5)
2 I_AISI foro=-1. (6)

u—1=1+Ac

Writing the equations for the sum, p = (¢ +)/2, and
the difference, v = (¢ — 9)/2, we obtain

14+ An)pee — (1 — Ag)pe — sinpcosv

1
= aps — 5(% +ny), (7)

(1 — Ar)vze — (14+ Ac)vye —sinvceos p
1
=oave— (s =my), (8)

where we find the two fields p and v to evolve on different
time scales given by the characteristic velocities, Egs. (5)
and (6), respectively. Using the solution, Eq. (2), for
0 =1 [0 = —1] in Eq. (7) [Eq. (8)], we can apply the
adiabatic perturbation technique!? and obtain the steady
state velocity of the bunched state for given perturbation
parameters,

2 (1+0An (/40
T 14+ (1 -0Ac)(mn/da)?’

(9)

where 7 = n¢ = ony.

Since the exact solution, Eq. (2), is a solution of the
unperturbed Eq. (7) [Eq. (8)] for ¢ = 1 [0 = —1], we
can then perform linear stability analysis for the unipolar
[antipolar] solution by linearizing Eq. (8) [Eq. (7)].

Assuming that we are dealing with the unperturbed
system (a = 7y = 1y = 0), we can write the linearized
equation for the deviation o(~) as

(1-0ADeZ) — (1+08c)ey) — o) cos o™ =0,
1 1 (10)
o =2+ 0¥), 8= (b-0v).

The characteristic scales for the bunched mode give us
the new variable

{:

r — ut

V1+oA;— (1 -oAc)u? ’

(11)

Inserting Eq. (11) into Eq. (10) and using the identity
cos o(t) = 1 — 2sech¢, we obtain the eigenvalue problem

Aee — (K — 2sech®¢)¢ =0, (12)
where

C(g) = Q(_)(ma t) exp(sf - i“Jt) ) (13)
(1-0A)(1+0Ac) w2

=1-—

" 1-0Ar— (14 0Ac)u? (14)
_ 1—0’A1—(1+0’Ac)u2 (15)
T 140A1—-(1-0Ac)u?’

T¥oA — (1= 2
e =iuw(l + 0Ag) V1+oAr—(1-0Ac)u (16)

1-0Ar—(14+0Ac)u?

From Egs. (15) and (16) we see that the condition
w? > 0 must be fulfilled in order to ensure stability of
the bunched mode. The eigenvalue problem, Eq. (12),
has the only localized solution

(= (sech{)%( V8/At+1-1) ) (7)
when
W= Q2= 1—-0Ar—u%(14+0A¢)

(1-0Ar)(1+0Ac)

x(%m—%)\—l) . (18)
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Case 0 = 1: It is easy to see that for all velocities
0 < |u| < u_y, we have w? < 0, and hence an unstable
bunched state. However, v — u_; implies Q2 — 0_,
suggesting marginal stability for u = u_;. For velocities
u > u_j, there exists no confined solution to the eigen-
value problem, even though a bunched soliton state is
known to exist. This phenomenon is easily understood
in terms of the two characteristic velocities present in the
system. A small deviation between two unipolar solitons,
traveling with u > u_;, will be described by Eq. (10) and,
hence, travel with u = u_;; i.e., the difference between
two solitons cannot travel as fast as the solitons them-
selves, and the stability of the bunched unipolar solitons
is then ensured by the different characteristic velocities,
since any deviation between the fields will decay as a
result of (classical) Cherenkov radiation.

We conclude that the bunched unipolar state is stable
if

(19)

and unstable otherwise. Inserting this threshold condi-
tion to the power balance expression, Eq. (9), we obtain
a threshold in the bias such that larger bias values will
result in stable bunched states; i.e., the bunched state is
stable when

2v2 1—A;

o A[-}-Ac7

ol > e = (20)
and unstable otherwise. From the above expression we
can now derive the minimum coupling between the two
sine-Gordon systems for which the unipolar bunched
mode can be stable. This is obtained from the fact that
the kinks only can be stable if |n| < 1, i.e., if

Ar+Ac >8(a)2 .

1-A; ™

(21)

It is worth noting that since the stability of the fast
traveling unipolar bunched state is related to Cherenkov
radiation, we can conclude that no internal frequency is
associated with the stability; i.e., Eq. (18) is only valid
for |u| < u_j.

Case 0 = —1: Since the propagating bunched antipolar
state cannot travel with velocities exceeding u_;, given
by Eq. (6), it is obvious that A > 1 for all relevant values
of u. From this it is then straightforward to see that
the bunched antipolar state of solitons is stable for all
relevant velocities.

Unlike the unipolar case, this stability originates from
the fact that the binding energy of the bunched state is
lower than that of two separate solitons (see Sec. III).
An internal frequency o is therefore associated with the
bunched mode and its value is given by Eq. (18) for o =
—1. Note that this expression is valid for all relevant
values of the velocity and the coupling parameters, |u| <
u_1, 0 < A; < 1,and 0 < A¢c < 1. For v = 0 and
Ar,Ac < 1, the internal frequency is given by Qo =~
v/2A1/3, which is in agreement with the result obtained
in Ref. 4.
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III. NUMERICAL ANALYSIS AND DISCUSSION

Numerical simulations of the full system, Eq. (1), have
been performed in order to verify our analytical results.
The simulations were carried out using an explicit second
order finite difference scheme in time and space of Egs.
(7) and (8). Since we intend to approximate an infinite
system size, periodic boundary conditions were imposed
on the system,

#(0,t) = ¢(L,t) + 270y , ¥(0,t) =(L,t) +2moy ,
(22)

where L is the normalized system length.

In Fig. 1 we show the normalized velocity u of the
unipolar bound state (¢ = 1) as a function of the nor-
malized bias current, n = 74 = 7. The system parame-
ters for this simulation have been chosen to be a = 0.1,
L =40, A; =0, and Ac = 0.2. For the same simulation
with A; = 0.2 and A¢c = 0, see Ref. 8. The system was
initiated with high bias > 7,, high velocity v > u,,
and with a distance dz = 0.05 of separation between the
solitons. After a transient time of 1600 normalized time
units, we measured the steady state velocity of the two
solitons. Then, changing the bias 5 by dp = 1073, we
introduced a small disturbance in the v field in order to
break perfect symmetry between the two lines. In this
way we were able to detect when the bunched mode be-
came unstable. As is clearly seen from Fig. 1, bias values
greater than a certain critical value sustain soliton prop-
agation with asymptotic velocity u41, given by Eq. (5).
This is a clear indication of the presence of the bunched
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FIG. 1. Normalized soliton velocity u as a function of the

normalized bias current density n = 74 = ny. Parameters are
a=0.1,Ac =02, A; =0, L = 40, and o = 1 (unipolar).
The dash-dotted line indicates the asymptotic velocity w1
for the bunched traveling wave solution, Eq. (5), for o = 1.
The dashed lines indicate the boundary for the stability of
the bunched mode, as given by Egs. (19) and (20). The inset
shows the total energy of the system, as given by Eq. (3).
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unipolar mode, given by Eq. (2) for 0 = 1. In fact, using
the power balance expression Eq. (9) for the velocity as
a function of the bias, we would find a curve in Fig. 1
with no detectable difference from the numerical result
for u > u_;. Decreasing the bias, the bunched state is
lost at the critical value 7., given by Eq. (20). This tran-
sition from the bunched to the separated state is clearly
seen in Fig. 1 as a jump in the velocity. Once separated,
the two solitons stay with an internal distance of L/2,
even when the bias is increased above the critical value
7«. The asymptotic velocity for this state is given by u_1
since the v field is nonzero for this state [see Eq. (8)]. The
inset in Fig. 1 shows the measured energy of the system
as calculated from the dynamical simulation. We find
that the total energy for the bunched (capacitively cou-
pled) state has lower energy than the separated state for
the same bias value. Even at the transition point 7,
we find that the total energy jumps up when the system
lets the bunched state transform to the separated. This
phenomenon is different from the usual behavior, where
the total energy seeks a minimum (as is the case for the
inductively coupled system?).

The fact that the energy of the capacitively coupled
bunched unipolar mode is lower than that of the corre-
sponding separated mode can be seen by inserting Eq.
(9) into Eq. (4) and thereby obtain the total energy as a
J

M, =16 1+0’AI‘7(

\/1+0'A[u

which is valid for all A;, A¢c, and u. The mass of the
separated state is given (to first order in the coupling
parameters) for small u by

M, =16, (28)

which is the usual mass of two solitons in an uncoupled
system. The binding energy is given by M, — M,, where
a positive binding energy implies that it is energetically
favorable to be in the separated state. From the above
expressions it is now easy to see that

My—M,>0 for 6=1, (29)
My— M, <0 for 0 =—-1. (30)

The binding energy between the solitons is negative
for antipolar bunched states and positive for unipolar
bunched states, even when the total energy Eq. (23) in-
dicates otherwise (for the capacitive coupling). Thus, we
find that the nature of the stability of the unipolar mode
is not energetically based, since the binding energy of the
stable bunched mode is positive.

The stability limit of the bunched unipolar mode has
been tested for many different values of system parame-
ters. In Fig. 2 we show the values 7, and u, for which
the system switches from the bunched to the separated
mode as a function of the coupling parameters. The re-
sults of numerical simulations are shown as markers and
the analytical predictions, Egs. (19) and (20), as solid

V1—-0Ac )/’y(l—aAc

1+0‘A1u
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function of the bias n = 1y = oy,

Hiotal = 161/1+ 0A; [1 +(1-0Ag) (:—Z)Z] . (23)

From this we find that the bunched unipolar mode in-
creases (decreases) the total energy for the inductive (ca-
pacitive) coupling. For the capacitive coupling, this is
somewhat against intuition, but in the following we will
show that the binding energy between the two solitons
behaves properly. The wave momentum for the system
is given by

P=- / [¢'t¢z + ¢t¢z - AC(¢t¢z + ¢t¢z)] dz . (24)
Using the exact solution, Eq. (2), we obtain

1—-0Ac
VitoAr’

o) -

P =16
u’y(\/l—{-o’AIU

We now define the mass of the bunched mode as

M =+/H?— P2, (26)

For the bunched state we then find the mass from Egs.
(4) and (25),

). (27)

[

curves. The open diamonds show the results for A; > 0
and Ac = 0, whereas the open squares represent results
for Ay = 0 and A¢ > 0. Other system parameters are
L =40, a = 0.05 (a), and o = 0.1 (b). Evidently, the an-
alytical results fit the numerical data almost perfectly for
both types of coupling mechanisms in the entire region
0 < Ar<1land0 < A¢ < 1. This is not surprising, since
the basis of the analytical treatment is an exact solution,
valid for all values of coupling parameters. The minor
deviations between the dynamical data and the analyti-
cal results, seen in the inset of Fig. 2(a) for the inductive
coupling, is actually an artifact of a sensitive velocity
measurement, due to the finite step size in the bias (see
Fig. 1). The deviation between numerical and analytical
data seen in Fig. 2(b) for small coupling parameters is
due to the approximations in the adiabatic perturbation
method, used to obtain Egs. (9) and (20). This method
assumes that the perturbation parameters a and 7 are
relatively small. For small coupling parameters, the crit-
ical value ), increases and the perturbation result for 7,
therefore deviates from the true critical value. However,
the critical velocity u, is independent of this perturba-
tion error and therefore no deviations are detected in the
insets of Fig. 2 for small values of the coupling parame-
ters. We note that no internal oscillations were detected
in the numerical simulations shown in Fig. 2. Any small
deviation between the positions of the two solitons de-
cayed exponentially in time. This is in agreement with
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the analytical treatment in Sec. II, where Cherenkov ra-
diation was argued to form the basis for the stability of
this mode.

In real experiments, two adjacent Josephson junctions
have slightly different system parameters such as char-
acteristic lengths, characteristic frequencies, critical cur-
rents, damping parameters, and bias values. This will
result in broken symmetry between the two junctions. In
the framework of the coupled sine-Gordon model, this
means that we do not have an exact solution of the
bunched mode [Eq. (2)] on which we can base an ana-
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FIG. 2. Lower limit in bias current, 7., as a function of

the coupling strengths A; and Ac¢. Parameters are L =40-
80 and o = 1 (unipolar). The markers indicate the results
of numerical simulations: O, Ay = 0; &, Ac = 0. The solid
lines represent the analytical expression Eq. (20). The insets
show the comparison between the numerical data (markers)
and the analytical expression for the critical velocity Eq. (19):
a =0.05 (a), a = 0.10 (b).
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lytical stability analysis. We have therefore performed
numerical simulations with different bias values of the
two systems, in order to break the perfect symmetry of
the equations. These simulations also relate to experi-
ments on phase locking,® where the range in difference
between system parameters (typically the bias current)
for which the soliton oscillators are synchronized is stud-
ied. In Fig. 3 we show numerical results of the locking
range 27y = (ng — 7y) in bias as a function of the bias
point, 70 = (14 + 1y)/2, for the unipolar bunched mode.
For given system parameters the bunched unipolar so-
lution was initiated with 7; = 0. Increasing the bias
difference 7; in steps of 67 = 1073, we detected whether
the system was still in the bunched state after a tran-
sient time of a few thousand normalized time units. This
procedure was repeated until the bunched mode broke
into the separated mode. The markers in Fig. 3 repre-
sent the largest value of the bias difference 7; for which
the bunched unipolar mode still existed (straight lines
are drawn between markers, representing the same cou-
pling parameters). Not surprisingly, we find the general
trend that larger coupling parameters give rise to larger
locking ranges in bias. By comparing Figs. 3(a) and 3(b)
we find that increasing the damping parameter generally
decreases the locking range. This is consistent with the
locking-range studies of the antipolar state performed in
Ref. 4. In fact, except for small values of the bias point
(the translational velocity) the locking ranges for the uni-
and antipolar bunched modes look quite similar, even
though the mechanisms for their stability are different.
The optimal bias point for obtaining the largest locking
range for a given set of coupling parameters is seen to
be somewhere in the center of the scale (depending on
the damping «). Intuitively, this can be understood as
follows. Increasing the bias point 7o will increase the cou-
pling strength between the traveling solitons, since faster
traveling solitons will Lorentz contract and thereby en-
hance the coupling term, e.g., Ac¢;:. However, localized
objects in a dc-driven sine-Gordon system can only exist
for |ngl,|ny| < 1. This condition limits the possible bias
difference 7, for a given bias point 7o to be |n1| < 1—|no]-
This limit is shown in Fig. 3 as dashed diagonal lines. For
larger values of the coupling parameters we find that the
locking range can give rise to nonsmooth behavior as a
function of the bias point. Detailed investigation revealed
that this is caused by strong Cherenkov emission from
the bunched mode when |7;| > 0. Even for long systems
of L = 160 this radiation was still strong enough to in-
terfere with soliton propagation in the periodic system.
However, increasing the damping parameter suppresses
the effect of the radiation [see Fig. 3(a)].

The insets of Fig. 3 show the internal distance dz be-
tween the positions of the two solitons at the critical
points shown in Fig. 3. It is evident that the internal
distance is always relatively small, both for the capac-
itive and the inductive coupling as well as for different
damping parameters. In all cases studied, the critical in-
ternal distance was found to decrease exponentially with
increasing bias point.

In Fig. 4 we show numerical measurements of the in-
ternal oscillation frequency of the energetically stable an-
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tipolar mode. The perturbation parameters a, 74, and
1y Were set to zero. For 0 = —1, L = 40, and given cou-
pling parameters, the system was initiated with Eq. (2)
as the wave profiles. In order to detect an internal fre-
quency the two initial solitons were separated by de = 0.1
in normalized space units before the first time step. The
oscillation frequency, measured over the first two to ten
periods, is displayed in Fig. 4 for different velocities and
coupling parameters as markers. Along with the results
of the dynamical simulations are solid lines, represent-
ing the analytical expression for the frequency, Eq. (18)
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fect agreement with the numerically obtained data for
all values of translational velocities and coupling param-
eters, even large velocities and coupling parameters. The
vertical dashed lines indicate the asymptotic velocity of
the antipolar bunched mode for the given coupling pa-
rameter.

IV. CONCLUSION

We have performed a comprehensive linear stability
analysis of bunched solitons in coupled sine-Gordon sys-
tems, where the coupling terms represent mutual induc-
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the translational velocity u of the bunched antipolar mode
(0 = —1). Markers indicate results of dynamical simulations,
and solid lines represent the analytical expression Eq. (18)
for 0 = —1. Vertical dashed lines indicate the asymptotic
velocities u—;. Parameters are a =04 =7y = 0, L = 40, (a)
Ac =0, and (b) A; =0.

tance and capacitance between long Josephson junctions.
We have demonstrated that the antipolar bunched mode
is always stable in the case where the two sine-Gordon
systems are identical, and the internal oscillation fre-
quency has been calculated. Dynamical results confirm
this frequency expression for all relevant values of the
coupling parameters as well as the translational veloc-
ity of the bunched mode. This almost perfect agreement
should not surprise us, since the analytical results are

based on a single assumption, namely, that the solitons
are unchanged when separated slightly in space. No other
assumptions are made regarding the velocity or the cou-
pling parameters. The stability of the antipolar bunched
state has been considered in Ref. 4 in the case of small
coupling parameters and different bias values of the two
systems. We have demonstrated that the energetically
repulsive unipolar state of solitons can be stable for both
inductive and capacitive coupling if the translational ve-
locity is higher than a critical velocity in the coupled sys-
tem. This stability has been shown to be a result of (clas-
sical) Cherenkov radiation. The velocity criterion has
been verified by dynamical simulations and almost per-
fect agreement has been found between the analysis and
the numerical data for all values of coupling parameters.
The existence of the unipolar bunched state as a stable
object in nonperfect systems has been verified by simu-
lating the system for different values of the bias parame-
ter in the two systems. These simulations have revealed
a large range in difference between the two bias values
for which the bunched state still exists. The bunched
modes discussed in this paper are different in nature from
bunched states studied in single sine-Gordon systems.'®
Bunching between fluxons of the same sine-Gordon sys-
tem is typically caused by details in the friction forces,
whereas bunching in the coupled system has been ex-
plained here in terms of double characteristic velocities
for the unipolar state and a negative binding energy for
the antipolar state. For coupled long Josephson junctions
this implies that phase locking between two junctions op-
erated in their fluxon modes can be obtained over some
interval of the system parameters. In fact, three different
types of phase locking can be expected for both inductive
and capacitive coupling: the attractive antipolar mode,
where the bias currents have opposite signs in order to
drive the fluxons in the same direction;®* the separated
repulsive unipolar mode, where the bias currents have
the same signs and the asymptotic velocity of the mode is
1_1;>7 and the bunched unipolar mode discussed in Sec.
II, where the locking range is as shown in Fig. 3. The
latter mode can be distinguished from the other modes
by the asymptotic velocity u;. The present analysis has
been performed for two interacting sine-Gordon systems
(Josephson junctions). It would be interesting to inves-
tigate the stability and phase-locking nature of a system
with many interacting soliton oscillators.
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