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Ballistic charge transport through mesoscopic superconductor —normal-metal —superconductor
(SNS) microbridges is investigated within the framework of the Keldysh technique. At low voltages
we find a peak in the conductance G (l'; /2a)(1/Ro), where I;„ is the inelastic mean free path, 2a
is the normal layer thickness, and Ro is the Sharvin resistance. In this limit the dissipative current is
carried by quasiparticles which are trapped in the pair potential well of height 4, sufFering multiple
Andreev refiections and relaxing inside the N layer. For larger voltages eV (2a/I; )6 quasipar-
ticle are accelerated out of the N layer and relax in superconducting banks. The current-voltage
characteristic of the system in this regime is calculated both analytically and numerically. In the
intermediate voltage range V 4/e we analyze the subharmonic gap structure on the I Vcurve-
and show that this structure is most pronounced in the temperature range T 4/kn and vanishes

for both T ~ 0 and T ~ T~. We explain this behavior taking into account the contribution of
thermally excited quasiparticles with momenta opposite to the direction of total current Bow.

I. INTRODUCTION

Two superconductors (S) weakly linked by a normal

(N) or semiconducting (Sm) region in a wealth of differ-
ent geometrical sample configurations exhibit a number
of features in their experimental current —voltage charac-
teristics (CVC's) which cannot be described by the sim-
ple resistively shunted junction (RSJ) model. As listed
by Likharev these are the "excess current" at high volt-
ages eV )) 4, a high-low voltage conductance ("bump"
or "foot"), a "negative slope region on the I Vcurves" at-
low temperatures which may result in hysteretic V(I) de-
pendence, and "subharmonic gap structures" (SGS's) at
voltages V = 2b, /en, n an integer; b, is the pair potential
in the superconducting banks. After their measurement
in weak links with conventional superconductors most
of these features have also been observed in weakly linked
high-temperature superconductors. 9

An interpretation of these features based on the phe-
nomenon of Andreev re8ection at NS interfaces evolved
from the theory of Artemenko, Volkov and Zaitsevi4'is
of the excess current. Subsequent microconstriction stud-
ies of Klapwijk et aI, Blonder et al. , and Octavio et
aL, the latter combining the "generalized semiconduc-
tor model" of the former with a Boltzmann equation ap-
proach, showed that the SGS is directly related to multi-
ple Andreev re6ections at NS interfaces. The Boltzmann
equation approach allows the inclusion of elastic scatter-
ing at interface barriers. This elastic scattering enhances
the number of quasiparticles with momenta opposite to
the current direction by inverting the momenta of the
quasiparticles accelerated out of the condensate by the
electric field. Thus, more quasiparticles which cause the

SGS because of multiple Andreev scattering are trapped
in the pair potential well and the SGS is enhanced by
elastic scattering at the interfaces. In this paper, where
inelastic scattering is taken into account only, we will
show that increasing the temperature up to T b, /ks
has a similar effect. Elastic scattering in a semiconduc-
tor, coupling a superconductor to a reservoir, can also en-
hance the number of Andreev reQections and the difFeren-
tial conductance of the sample. A review of mesoscopic
superconductor-semiconductor heterostructures has been
given recently by Klapwijk. 0

The quasiparticle trajectories in the clean normal re-
gion of a SNS junction under the in6uence of an elec-
tric field and multiple Andreev reflections have been
described in Ref. 21 by accelerated wave packet solu-
tions of the time-dependent version of the Bogoliubov —de
Gennes equations. Subsequently this approach has been
extended to describe the response of the superconduct-
ing condensate to the charge and momentum transfer due
to Andreev scattering processes. Based on the acceler-
ated wave packet solutions CVC's were calculated
with inelastic scattering being taken into account by a
phenomenological relaxation time. This model allows for
a simple physical interpretation of the above mentioned
features in the CVC in terms of multiple Andreev re8ec-
tions. A deficiency of the phenomenological approach
is the necessity to make assumptions about the quasipar-
ticle distribution. The simplest thing to do, and done
in Ref. 23, is to assume in a Drude-like model that af-
ter each relaxation cycle all quasiparticles return to their
initial (equilibrium) energy distribution. On the other
hand —perhaps except for the cases in which the linear
response theory can be applied —in the presence of an
external electric field inside the N layer the distribution
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function of a SNS junction essentially deviates from its
equilibrium value. Such nonequilibrium effects cannot be
described within the phenomenological description and
a more general technique is needed.

The general method which allows for a self-consistent
quantum statistic description of nonequilibrium phenom-
ena is the Keldysh technique. With this technique,
adapted to superconductivity, one can treat the prob-
lem without making ad hoc assumptions about quasipar-
ticle distribution and initial states. Within the frame-
work of the Keldysh formalism the problem of nonsta-
tionary and nonequilibrium ballistic charge transport
through clean SNS microbridges was 6rst studied in Refs.
26, 27 in which the general expressions for the Green
functions of clean SNS structures and CVC's were cal-
culated. For small ac voltages the expression for the
current was found within the linear response approxi-
mation, and microwave stimulation of the dc Josephson
current was studied. In the limit of large voltages it was
shown that (in contrast to dirty systems2s'2s) the ballistic
excess current is completely independent of the normal
layer thickness and coincides with that found by Zaitsev
for short superconducting microconstrictions. For NS
microjunctions noise and current Huctuations due to An-
dreev reHections at voltages of order of the gap have been
discussed by Khlus. M

The complicated structure of the expressions for the
Green functions found in Refs. 26, 27 makes it quite
difBcult to evaluate the current due to ballistic charge
transport for the intermediate voltage range as well as
for small dc voltages. In this paper we present a formal-
ism which allows us to avoid these technical difhculties
by a factorization of the Green functions as products of
wave 6elds depending on one time variable only. With
the aid of this technique we provide a complete descrip-
tion of the system behavior for any value of the external
voltage. We demonstrate that within the framework of
our model this behavior is essentially determined by the
competition of two processes: acceleration of quasipar-
ticles due to multiple Andreev reflections in the electric
field and their relaxation due to inelastic electron-phonon
scattering inside the N layer. For a given voltage V across
the weak link a quasiparticle accelerated from the Fermi
surface suffers n 6/eV Andreev reHections until it
reaches the top of the pair potential well. It means that
a quasiparticle spends the time of order w 2an/v~ in
the N layer and then escapes from the pair potential well
into a superconducting bank. Provided this time exceeds
the inelastic relaxation time 7 )) v;.„or, equivalently, in
the limit eV (( (2a/vga;„)4 quasiparticles cannot reach
the energy 4 and remain trapped in the N layer. This
results in a substantial increase of the low voltage conduc-
tance G (v~v;„/2a)(l/Ro) over the normal state con-
ductance 1/Bo. For larger voltages eV ) (2a/v~7; )4
inelastic relaxation inside the N layer plays no role and
quasiparticles are &eely accelerated out of the N layer.
The current-voltage characteristic of the system in this
regime is expressed by a sum of the standard Ohmic term
and an additional term caused by multiple Andreev re-
Hections. The last term weakly depends on V in a wide
voltage interval and coincides with the excess current

II. METHOD

Nonequilibrium effects in superconducting structures
represent a nontrivial combination of quantum mechani-
cal and kinetic phenomena. A general self-consistent de-
scription of both these parts of the problem can be pro-
vided within the framework of the Keldysh technique.
Applied to superconductors this technique yields a sys-
tem of Gor'kov equations for the Keldysh matrix Green
functions. A significant simplification of the formalism
was achieved by Larkin and Ovchinnikov2s who combined
the Keldysh technique with the Eilenberger quasiclassi-
cal approach and formulated the system of equations
for quasiclassical Green functions:

hvar%'G + o'35 G+ 5 Go'3 + H(r, t)G —GH(r, t')
Bt Bt'

Here G = G(v~, r, t, t') is the 4 x 4 matrix in Keldysh
space,

GR Ga
(2)

It consists of energy-integrated retarded, advanced, and
Keldysh Green functions G+, G+, and G~. They depend
on one space and two time coordinates as well as the
Fermi velocity v~. Each of these matrices in turn is a
2 x 2 matrix in the Nambu space, defined by

(P&,A, K)+ GR, A, K

The matrix G obeys the normalization condition

in the limit eV » A. As we already discussed in the in-
termediate voltage range V b, /e the I V-curve has
the so-called subharmonic gap structure which manifests
itself in a set of upwards peaks in the differential junc-
tion resistance at voltages V„= 2A/en, where n is a
positive integer number. Our calculation shows that this
structure is most pronounced in the temperature range
T 6/k~ and vanishes for both T -+ 0 and T + Tc
We demonstrate that both the presence of SGS's and
its nontrivial temperature dependence can account for
the contribution of thermally excited quasiparticles with
momenta opposite to the direction of the total current
flow.

The structure of the paper is as follows. Section II
is devoted to the description of the formalism. In Sec.
III we specify the model of the voltage-biased clean SNS
junction, calculate the new wave 6elds, and construct
the expressions for the retarded, advanced, and Keldysh
Green functions. The dc current-voltage characteristic
and di8'erential resistance are calculated in Sec. IV. Em-
phasis is put on the analytic description of current en-
hancement by multiple Andreev reflections and the tem-
perature dependence of the SGS. Discussion of our results
and comparison with experiment are presented in Sec. V.
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GG = ib(t —t') (4)

H(r, t) = —i[U(r, t)l+ (e/c)vpA(r, t)os+ 6(r, t)j (5)

contains the scalar potential U(r, t), the vector poten-
tial A(r, t), and the complex pair potential b, (r, t) in the
matrix

1 is the»~it matrix. The self-energy matrix Z describes
scattering of electrons, e.g. , by impurities and phonons.
It has the same structure in Keldysh-Nambu space as the
matrix G; u;, i = 1, 2, 3, are the Pauli matrices.

Products of G functions and Z are integrals over the
internal time variable. The matrix

Here integration over the internal time coordinate is
again implied in products of u functions with the self-
energy terms

u Z
R(A) "~(~)

+oo
dt) u (vp, r, t))Z (vp, r, ti, t) (12)

and

R(g) +R(A)

+oo
dt] Z (vp, r, t, tj) ic+ (vp, r, ti). (13)

)' 0
0 (6)

Let us furthermore de6ne the four-component functions

All information about physical quantities is contained in
the Keldysh Green function G~. The quantities we are
interested in are the current density

j(r, t) = — (dO„ /4x) SposvpG (vp, r, t, t) (7)4~h3

and the scalar potential

(u+ )
iA ))

which satisfy the set of equations

hv p V'u + fi u(Ts ——uH(r, t) —iuZ = 0,t

(i4)

(15)

U(r, t) = —— (dO„, /4n ) SpG (v~, r, t, t).) 4 (8)
hvFVu++ &s Fe u++ H—(r, t)u++iZu+ = 0.

t (i6)

The integral over dO„R represents the average over all di-
rections of the Fermi velocity v~ and Sp is the trace of the
matrix. The system of equations (1)—(8) together with
Maxwell equations and the self-consistency equations for
the pair potential b, and the self-energy Z determines
completely the behavior of inhomogenous superconduc-
tors in arbitrary, time-dependent electromagnetic fields.

Although the system of equations (1) turns out to
be much simpler to deal with than the system of exact
Gor'kov equations, the structure of the Green functions
G still remains quite complicated, because these func-
tions depend on two time variables. Further simpli6ca-
tion of the formalism was achieved in the work of Pa-
nyukov and one of the authors. s2 Following Ref. 32 let us
introduce the two-component time-dependent wave fields

+oo
G(v~, r, t, t') = )

o=+1

x M (s, v~, r, t'),

(ds/2x) Ll+ (s, vg, r, t)

(i7)

where M and M are 4 x 4 matrices,

&+ &Q+ i+ i
0 M+

Q i)
~ o u (19)

It was shown in Ref. 32 that the solution of the system
of equations (1) for the matrix Green function G can be
expressed in terms of the u and v functions of Eqs. (9)—
(16) as follows:

+ R(A) (u+ R(A)

+ R(A)
R(A) )( R(A) R(A)

tL iV )V
R(A) ~ ~ R(A)The 2 x 2 matrices M+, M+, M, and M consist of

the solutions of Eqs. (10)—(16):

(u+ )
(v+

u =(u;v). (9) ~+ ' ' = (u+ ' '
o) (20)

R(A)

M
R(A) /V ,

R(A) +R(A)The u and u+ obey the equations Cr+ = (u+; o), (21)

R(A) ig R(A) R(A)
hvar%'u + 5 uos —u H(r, t)—

iu Z = 0, (10)—
+R(A) g +R(A) ~ +R(A)

hvar 7'u+ + os h—u+ + H(r, t)u+
Bt

The index cr in Eq. (17) labels two independent solutions
of Eqs. (10)—(16). In the stationary case e' determines
the time dependence of the solutions of Eqs. (10)—(16)
according to

R(A)u, u exp( —i ct/5),

+iZ u+ = 0. (11)
+R(A)u, u+ exp(+i st/h). (22)
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) oM+ (s)x Ll (s)=1, (23)

the normalization condition (4) for the Green functions
is satisfied automatically. It is sufficient to check the
validity of the normalization condition (23) only in the
part of the system in which the quasiparticle distribution
function does not deviate &om equilibrium, e.g. , deep in
the superconductors. As this condition represents the
first integral of Eqs. (10)—(16) it will be then automati-
cally satisfied for the solutions of these equations. Due to
that it is also not necessary to define extra normalization
conditions for u+ and u. In equilibrium these functions

+A R
are linked to the u+ and u functions by means of the
equations

u+(s) = —tanh
~

I

u+ (s),
(2kir T

( Z ) „R
u (s) = +tanh

~
~

u (s).
(,2kIiT )

(24)

Equations (9)—(24) allow one to reduce the problem of the
calculation of the Keldysh Green function (which in the
nonstationary case depends on two times rather than on
the time difFerence only) to the much simpler problem
of the solution of Eqs. (10)—(16) for wave fields which
depend only on one time variable. We will follow this
formalism in the analysis presented below.

In a stationary case the structure of the equations
resembles that of the Bogoliubov —de Gennes equa-
tions reduced within the &amework of the quasiclassical
approximation. Note however that in the nonstation-
ary case the u and v functions (9) also contain informa-
tion about the distribution function of the problem and
by no means can be interpreted as coefBcient functions
of the Bogoliubov transformation for the BCS Hamilto-
nian. Corresponding equations can be formulated also
for a nonquasiclassical situation.

In the nonstationary case, e characterizes the solutions—
presented in Sec. IIIA—according to their asymptotic
boundary conditions. These conditions, valid at all
times t and t', are given by the Fourier transform of
G(v~, r, t, t') with respect to t —t', with r being deep
in the superconducting banks where G(v~, r, t, t')|(t t'—) is the well-known Green function of the homoge-
neous, field-free superconductor. Provided the solutions,
Eq. (20), satisfy the normalization condition

bulks (S). We shall mostly concentrate our attention on
the description of SNS microbridges and constrictions. In
the low voltage limit (see below) our analysis can be also
applied to planar SNS structures and sandwiches. We as-
sume very low concentration of impurities so that elastic
scattering can be neglected and inelastic scattering oc-
curs only via electron-phonon interaction. Furthermore
we disregard any differences in Fermi energies and effec-
tive masses in the normal (N) and the superconducting

(S) regions and suppose perfect transparency of the NS
interfaces. Thus the only scattering process at the in-
terfaces considered is Andreev reflection. We choose the
direction of the z axis perpendicular to the NS interfaces
and assume translational invariance in the z and y direc-
tions. For the sake of simplicity we stick to the standard
square well pair potential, the absolute value of which is
given by

&(z) = »(lzl —a) (25)

U(z) = eV
2

0(—z —a) + Uiv(z)O(a —
~z~)

eV
O(z —a),

2
(26)

where Uiv(z) is, at the moment, an arbitrary function.
According to the Josephson equation we have a phase
difFerence A4 = (2eV/h)t between the right and the left
superconductors. Within these approximations our prob-
lem becomes effectively one dimensional and we have

As already mentioned we focus on a voltage-biased situa-
tion where there is a constant voltage drop V between the
two superconducting bulks. We assume that the electric
field does not penetrate into the superconductors. This
assumption is valid in systems where we have thick su-

perconducting bulks connected via a normal conducting
region of small cross section area. Beside this we solve our
problem without any further assumptions on the field dis-
tribution in the normal layer. Below we shall show that
the expression for the current is essentially independent
&om the particular choice of such distribution. What
matters is the energy which quasiparticles acquire dur-

ing the process of multiple Andreev refiections in the nor-

mal layer. This energy depends only on the total voltage
V applied to the system being insensitive to its spatial
distribution in the junction. Explicit forms of the field
distribution in this layer will be presented in Sec. V. Ne-

glecting the magnetic field from the current through our
junction and choosing the gauge V'A = 0 we can put the
vector potential equal to zero. Then the scalar potential
can be written in the form

III. QUASIPARTICLE DYNAMICS
IN CLEAN WEAK LINKS

i9
vga' w sv, ~—,s = +1, v, y

Oz
(27)

We consider SNS junctions, i.e., systems which con-
sist of a normal layer (N) between two superconducting

In the relaxation time approximation ' the self-energy
has the form

Ezz~( z, , t, t') = 'f (dE/2e) S(z, t)ee' 't" t (z, E)e ' 't"Sz(z, t'),
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where where terms of the form exp(X&s) are defined as

(z, E) = (&(z, E) o's + (2(z, E) i(r2 ———( (z, E), (29)
& -R

(z, E) = 2tanh
~ ~

( (z, E),
(,2kRT )

(30)

with (i,2(z, E) = )i/2r) 2(z, E); T) 2»e relaxation times
due to inelastic electron-phonon scattering and

exp(X(T ) =
~

(exp(X) 0
0 exp —X p

(32)

t' .eV t
S(+)(z, t) = exp

~

i —o's
~
0(—z —a)((+) 2 g )

+exp
I

+ iU')v(z) (rs
I
O(a —~z~)(—)

( .eVt „&
+exp

I

+ i -(rs
I
O(z —a),

2 5

A. u and e functions

In the superconductors appropriate linear combina-
tions of solutions of Eq. (10) from which the Green func-
tion of Eq. (17) can be built up are given by

+OO

u (s, a, v,F, z, t) = (dE/2') u (s, E, a, v, F, z)e ' "S+(z,t),

where

u (e, a, v, F, E, z) = A ( )(s, E, a, v,F)(1;p ( )(E))exp
~

+is z
~

VzF

g R(A) l+B-'"'( E ~ )(1 h"'"'(E)1 ') p
)iVzF )

(34)

with

and

~R(A) + ~ E (36)

I

the superconducting banks and by the boundary condi-
tions at the Ns interfaces. Because of the assumed high
transparency of the interfaces, the solutions have to be
continuous across them. In deriving Eqs. (33) and (34)
(q and (z were taken to be spatially constant.

In the N region the solutions of Eq. (10) are given by

R(A)
u~ (6', 8, VzF) Z) t)

dE 2x u e, E, s, v,F, z e ' '~, 37

A and B are integration constants wh. ch are de-R(A) R(A)

termined by the asymptotic boundary conditions deep in

I

where

(38)

u (e, E, a, v,F, z) = A (s, E, a, v F)(1z;0)exp
~

+ia „z~

- "(") R(A) . ( (-) "(1
hv, F )
E(+ i(g ) f @(z))+B ( (),s,Evs, )F( 01)exp~ is ' z

~
exp —is—

VzF ) ( VzF)

and 4(z) is the integral of the scalar potential U)v(z) in the normal layer,

Z

4(z) = dz' U~(z');
Zp

zo is associated with an arbitrary integration constant. To simplify our analysis we neglect (,'z and consider () to be
E independent inside the normal layer. This choice can be easily justi6ed, e.g. , for relatively thick normal layers in
which case we can neglect the proximity efFect while calculating the relaxation time vq ——v;n due to inelastic electron
phonon scattering. In this approximation r; reduces to that of a normal metal, v; haul&~/k~&T, where u~ is the
Debye frequency. Note that in the SNS structures considered here, with conventional superconductors and normal
layer thicknesses 2a of the order of the BCS coherence length (0, the inelastic mean free path E;„=vF7; is large
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compared to 2a [typical values are (E; /2a) 103—104]. The same is valid in the superconductors.
The solutions of Eq. (11) in the superconductors are

vi"' '(s, s, v, s, z, t) = f(dE/2v) S(z, )te+' t" v+"'"'( essv, , sz), (4o)

where

+R(~) R(„)u+ (s, E, s, v, F, z) = A (s, E, s, v F) R(&) l
exp

l
is z

~i--~"(")(E)&

R(~)
/' 1 i f . WR(~)

+B (s, E, s, v F)I R(~) ) I
exp

I

+is z (41)

In the normal region we have

+ (s. . .s, *,t) = f(dE/2v) e ' 't"ts+ (e, ss, v, s, z,), (42)

where

(s, E, s, v, F, Z) = A ( eE, s, v, F) l
exp

l

—is
+s(~) R(„) f1i )' . E(')i(i i

EO) & hv F )
R(„) )'0')) /' . E(+)i() 5 (. C(z) l+B ( sE sv F)~ i

exp~ +as ' ' z
i

exp is
(1) \ hvzF J ( hvzF )

(43)

Let us now calculate the functions u and u+. From Eqs. (15) and (16) we have

sev R ~g
hvFVu + h—v, 0'3 —uH(rt t') —iu Z = 'lu Z

t (44)

hvFVu++os h u++H—(r, t)u++iE u+ = —iE u+
t

Appropriate solutions of Eq. (44) are the superposition

Sp
u~(s, s, v~F, zt t) = u~ (ct s, vgFt zt t) + u~ (st s, vtF, z, t),

(45)

(46)

of a special solution of this equation,

+QQ
Sp R

u (St St Vt, F t Zt t) = dt's u(E St 'Vt,tF z, t] t) f (S viF tz ty tt)t, t (47)

and a solution u of the homogeneous equation (10). The distribution function matrix f(s, v, F, z, ti, t) has the simple

form

+oo
+;zl, s «& ;el s -+-

f(s, v, F, z, tg, t) = (dE/2vr) S(z, t))e+' '/ "tanh
~ ~

e ' / "8+(z, t)
—OO

2 RT

in the superconductors, whereas in the normal region it is given by

(48)

Here

with

/(sv, s, z, tzt) = /(,sv, s, z, t, —
,t) = f, (dE/te) e+ t" 'tt "f( e,'sz). sv, ,

( E )- - C 2a z„
f(s, v, F, E, z) = tanh

I I
1+8'f(s v F, E, z) exp

I

2s ('&
(2kaT j hv, F 2a

2G 2a z'
hf(s, v, F, E, z) = 2s (zd73 (dz'/2a) exp

I

—2s (,'z —(T3
hvzF hv, F 2a

/ t. t ( z, )
—t. t*( —,„'",'*')

(49)

(5o)

(51)
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zo has the same meaning as before, and u + is deter-
mined by the asymptotic boundary condition for u, Eq.
(24), and by the continuity condition of u at the NS
interfaces.

Calculation of the function u+ is completely analogous
to that of u. VFe again represent u+ as a sum,

straightforward to obtain the expressions for the Green
functions of our problem. In the normal layer the re-
tarded and advanced Green functions are

0 ats(t,s.vsz, t, t) = f (dE, /2s) f (dEt/2s) e+' "t"

+sp
u+(6't S, VEF 2 Z, t) = u+ (6'2 S, VEF 2 Z, t)

+H
+ut2 (st 82 vgF 2 zr t) 2

where

u (st s, vgF2 z, t)

(52)

with

xG"("'(8 v F z E, E,)e-' 2'~"

(54)

+OO

Cty f (8, VEFtZt tt t) )uG (St 82 VEF2 Zt tl)
2a z. )G"("'(s,vgF, Z, E)., E2) = exp

I

—is
FcvgF 2a

(53)
x b, (a, vgFtEgtE2)o's

is a special solution of Eq. (45), and u is a solution of
the homogeneous equation (11).

B. Green functions

+b,"' '(S, V.F, RtEZ)i02

2a z
x exp

I
is E2 osl .—.

Av F 2G j

Making use of the solutions for the u and v functions
given in the preceding subsection and Eqs. (17)—(23) it is

The coeflicients bi and b2 for the retarded and ad-R(A) R(A)

vanced Green functions are defined by

oo 2n

bi (st v F gE)t, E2) = (+) b'(E) —E2) (+) 2) exp
I

(+)i (E)(z) —sleV + aeV/2(+)i())
I( —) ~ 1.... ((-)

(Ettzt —eteV+ seV/2))b(Ettzt —s2neV —Ezttt)
~ ~ ~

l=1
(55)

and

( . 2a
exp

I

+ i (E)(2l —aleV+ aeV/2 + i(i) I(( ' RV,F (—) )

n ~ ~ ~

l=1

oo 2n —1

b (
(b'av, ,FE, E)2=,+,2)

n=1 /=1
2n —1

x p (Ei(2l —aleV+ aeV/2) / b(Ei(zl —8(2n —1)eV —E2(i&). (56)

The 6rst and the second indices in E1(2) or E2(1) and analogous the upper and the lower signs of "(+)" refer to the
coeKcients of the retarded and the advanced functions, respectively. To evaluate the Keldysh Green function we make
use of the solutions of Eqs. (10)—(16) which in combination with Eq. (17) yield

G~ (s, v,F, z, t, t') = Gf (8, v,F, z, t, t')

+GH (82 VgF 2 Z, t, t ), (57)

where Gs contains the special solutions (47) and (53) of the inhomogeneous equations (44) and (45). In the normal
layer it has the form

Gs (s, v,z, z, t, t') = f(dgz/2z)f (dgs/2z) e+' ' "
(G ( v, sz, s, E)staEnzh

~ (2kgyT j
—tash~~

~

G ( v, sz, Ez, )z) Eez
(2Ic~T )

(58)
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rv

Here we have neglected small terms of order 2a/v~w;„&& 1. Gg contains the functions u and u+ . In the normal
layer it is given by

GH(s, v,~, z, t, t ) = (dEq/27r) (dE2/2m) e ' ' exp
~

is— (Eq + i(q) —o's
~

g/rt ( 2a z. )

hv, s 2a )
x b, (s, v,~tE»E2, (73+ b2 (s, v, ptEl, E2)io2 exp

~

is (E2 —i(&) —rrs
~

e ' ' ". (59)
hv, p 2a

The coefficients b1 and b& are defined in the Appendix.
Note that our solution for the Keldysh Green function (57)—(59) can be also expressed in the standard form (see,

e.g. , Ref. 25),

G (vr, r, tt) = j, tttz (G (vrr, tt, )tlt,/(v rr, t tt') —JV(vr, r, ttt)G (,vr, r, ttt) j,, (60)

where N represents the matrix of the distribution func-
tions. This matrix obeys the kinetic equation which fol-
lows from Eq. (1). In the situation considered here, this

J\

kinetic equation does not contain G and G+ functions,
and the matrix JV can be easily expressed in terms of the
solutions of Eqs. (10)—(16) for the u and v functions.

Keldysh Green function (57)—(59) into Eq. (7) multiplied
by the cross section A of the junction. Then we obtain

I, (t, V) = I, (V) + ) [Iq „(V)cos(2neVt/h)
n=1

+I2 „(V)sin(2n eVt/h)], (61)

IV. CALCULATION OF THE CURRENT

In order to calculate the current I, (t, V) in the junction
as a function of the constant voltage drop V between the
two superconductors we substitute the expressions for the

where the time averaged current I, is

I, (V) = + IAR(V),
V

0
(62)

with Ro ——4vr2FP/(e2p2&A) being the Sharvin resistance
and

IAR(V) = ) I~ „(V),
n=1

(63)

1 +OO

IA „(V) = — d(v, F/vs)(v, g/v~) dE e+
2eBP 0 —OQ

x ) se " A„,(E+ seV/2)hf(s, v, F, E+ seV/2 —sneV)
s=+1

(64)

is the current due to multiple Andreev reflections. Here n = (2a/l;„N )(vs /v, s), where E;„~= vs T; ~ ls the inelastic
mean free path in the normal layer,

A„,(E) = A(E —sl eV), (65)
v ~ s

l=1

A(E) = ~"(E)~"(E) {66)

is the probability for n-fold Andreev reflection of quasiparticles moving in (s = 1) and opposite (s = —1) to the
current direction, and

(E —seV') (E —seV/2)
b,f(s, v, s, E) = 2 tanh

i i

—tanh
i i

e
(t, 2k~T ) ( 2k~T j

E
tevh

~ ~

—fz(s, v, r, F —seV/2, z = —se) );(2k~T g
(67)
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A. Current enhancement
due to multiple Andreev reflections

In the limit of low voltages eV « (2a/E;„)6 Eq. (62)
for the current can be evaluated analytically. In this
limit relaxation prevents the quasiparticles from being
accelerated out of the pair potential well. Therefore they
are trapped in the normal layer giving the dominating
contribution to the current. For simplicity we neglect
Andreev reflection for energies IEI & b, . Then we have
from Eqs. (66) and (35)

A(E) = 1-
I

— '"'
I

e(&- IEI)
( u ~in, S ) ~in, N

(68)

where A (o and E;„s are the effective quasiparticle
penetration depth and the inelastic mean free path in
the superconducting banks, respectively. The deviation
of A(E) from 1 is due to inelastic relaxation of quasiparti-
cles with energies IEI & 6 penetrating into the supercon-
ductors over a distance of order A. For the low voltages of
interest the expression for b,f simplifies considerably and
the integral over dE can be calculated analytically. Then
the sum over n reduces to a geometrical series which can
easily be evaluated. Finally we get

I,(V) = GV, (69)

where

tanh(6/2k~ T) (70)u+ inN inS

is the junction conductance in the small voltage limit.
The explicit form of the electric field in the normal layer

fq is the 11-component of the f matrix defined in Eq.
(50). The factor e in Eq. (64) describes energy re-

laxation by inelastic scattering within the normal layer.
Note that the distribution of the electric 6eld in the nor-

mal layer enters only in a small term of order o. (( 1 in

the function fq , se.e Eq. (51). In the following we will

concentrate ourselves on the dissipative current of Eqs.
(62)—(67).

appears only in small terms of the order 1/Ro which have

been neglected here. For relatively thick normal layers
2a » (0(l; N/E; s) charge transport is determined by
relaxation within this layer and the low voltage conduc-
tance will be proportional to E;„N/2a. In the opposite
limit 2a « (o nonequilibrium quasiparticles with ener-

gies below the gap penetrate into the superconductors
and relax there. In this case the conductance will be
proportional to E;n s/2a A. s I;n N~s && 2a, the low volt-

age conductance G (70) is high and yields a steep rise of
the current at small V which is shown in the inlet of Fig.
1. Such efFect (the so-called "foot" on the I Vcu-rve)
has been observed in many experiments with supercon-
ducting bridges and SNS junctions; see, e.g. , Refs. 2—12.
Note that for superconducting bridges close to T~ this
eH'ect has been interpreted in terms of the supercurrent
stimulation due to Josephson oscillations of the order pa-
rameter inside the bridge (see, e.g. , Ref. 33). The ac field
stimulation of the supercurrent also takes place in SNS
structures. ' In both these systems such nonequilib-
rium stimulation efFect is pronounced at T T~ and
becomes unimportant at lower T. Thus we believe that—at least for temperatures somewhat below T~ (see,
e.g. , Refs. 5, 6, 8—10, 12) —there is another physical
reason for a steep rise of the current at small V. Accord-
ing to our analysis it lies in the combination of multiple
Andreev reBections and inelastical relaxation of quasi-
particles trapped in the weak link. Before any of these
quasiparticles are inelastically scattered inside the junc-
tion it undergoes n E;„/2a Andreev reflections giving
an n times larger contribution to the current than a quasi-
particle which crosses the junction only once.

The result (69) and (70) is valid as long as the number
of Andreev reflections n is limited by inelastic scattering
in the junction. For voltages eV & (2a/E;„)2b, a quasi-
particle gains enough energy to leave the pair potential
well before it gets scattered. Then inelastic relaxation in
the N region plays no role and the effective number of
Andreev reflections becomes of order n = 26/eV. Thus
we can neglect ot in every term in Eq. (64) and (67), and
the current becomes completely independent of the Geld
distribution in the normal layer. Neglecting also Andreev
reflection for energies IEI & b, we can proceed analyti-
cally in the evaluation of Eqs. (63) and (64) and get the
expression

2k~T (4+ eV) ( 4 ) f 4 —n,oeV )
IAR(V) = n, o ln cosh

I

—(A o —1) ln cosh
I I

—ln cosh
IeRo ( 2k&T y

'
i,2k&T] q 2k&T

(71)

where n,o ——[1+26/eV] is the maximum number of pos-
sible Andreev reBections. In the limit of kgyT (& A, eV
Eq. (71) yields

2L
IAR(V) =

eRp
(72)

Note that strictly speaking it is legitimate to neglect the
contribution of Andreev-re6ected quasiparticles with en-
ergies IEI & b only provided the voltage V is inside the

window (2a/l;„) 6 « eV « E. However, it is easy
to check that also for larger voltages quasiparticles with
such energies give no signi6cant contribution to the cur-
rent IAR and the results (71), (72) remain valid apart
&om a numerical factor of order 1. Indeed coming back
to the exact expressions (62)—(64) in the limit eV » b,
we reproduce the well-known result for the excess current

I,„,= tanh(eV/2kT),
8A

(73)
3eBp
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previously derived in Refs. 15, 26, 27. At eV &( k~T this
result diff'ers from (72) only by a numerical prefactor of
order 1. Our analytic arguments are supported by exact
numerical calculation of Eqs. (62)—(64) presented in Fig.
1. This calculation demonstrates that at temperatures
T « 6/Ic& the current IJ,R shows only a slight depen-
dence on V reaching the value (73) in the limit eV » 6.
It is also interesting to point out that for eV » (2a/E;„)6
the current I~it (63) does not depend on the thickness
2a of the normal layer. This means that the result (62)—
(64) remains valid also in the limit a ~ 0, i.e, for a short
superconducting constriction without any normal metal
inclusions. %e will come back to that in Sec. V.

B. Subharmonic gap structure

At T = 0 K the only contribution to the current
through our system comes &om quasiparticles acceler-
ated out of the condensate; see Fig. 2. At finite temper-
atures quasiparticles with energies above the supercon-
ducting gap provide an additional essentially negative
contribution to this current. Due to that the subhar-
monic gap structure (SOS) appears in the current-voltage

characteristic. This structure manifests itself in a set of
upward peaks in the differential resistance at voltages

2AV„=, n = 1,2, 3, ..., (74)

and has been detected in many experiments; see, e.g. ,

Refs. 2—7, 9, 10, 12. These peaks have been also obtained
by the Boltzmann equation approach of Octavio et al.
within the "generalized semiconductor model. " Here we

describe them by means of a rigorous quantum statistical
analysis and provide a transparent physical interpreta-
tion of this phenomenon. Making use of Eqs. (62)—(64)
we calculate the differential resistance (dV/dI)(V) nu-

merically. The corresponding results for various temper-
atures are presented in Fig. 3. These results clearly show
upward peaks of (dV/dI) at the voltages V„of Eq. (74).
To evaluate the heights b, (dV/dI) (V„) of these peaks and
their temperature dependence let us for simplicity neglect
again Andreev reflection at energies ~E~ & A. Then the
(dV/dI) curves become discontinuous at V„, and their
jumps are roughly a measure of the height of the peaks in
the continuous (dV/dI) curves of Fig. 3. With the defin-
itio b, (dV/dI) (V„) = (dV/dI) (V„—0) —(dV/dI) (V„+0)
we get from Eqs. (62) and (71)

A(dV/dI) (V„)

n Ro

(75)

4.0
~ A

F(z)

2.0

1.0

'8.0 0.5 1.0
Voltage(mV)

2.0

FIG. 1. The solid curves represent the current-voltage
characteristics of a SNS junction at difFerent temperatures
(the lowest temperature corresponds to the uppermost curve),
f.;„/2a = 10 . The lower and the upper dashed lines represent
the Sharvin current and the extrapolation of the excess cur-
rent at T = 0 K to V = 0, respectively. The arrows indicate
the subharmonic gap structures at voltages V„= 2b, (T)/ne,
n = 1, 2, 3. The inset shows the steep rise of the current
at voltages V &( (2a/8;„)b, /e corresponding to the high-low
voltage conductance of Eq. (70), T = 0 K.

FIG. 2. Trajectory of a quasiparticle which is accelerated
out of the condensate by the electric field suffering multiple
Andreev renections. The trajectories of the quasiparticle wave
packets (for a constant electric field in the N region) have been
calculated in Ref. 23. In this formalism quasiparticles with
negative energies represent the condensate. At T = 0 K these
quasiparticles yield the only contribution to the current IAR.
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T = 0.999Tc
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FIG. 3. Differential resistance at different temperatures,
8;„/2a 10 with subharmonic gap structure at voltages
V„=24(T)/ne, n = 1, 2, 3, . . . .

The amplitude of the main peak n = 1 reaches its max-
imum at T 1.26/k~ whereas it vanishes for T ~ 0
K and T ~ Tc. The amplitudes of other peaks have a
similar temperature dependence.

As already indicated the SGS in the current-voltage
characteristic is caused by quasiparticles with energies
above the superconducting gap. Depending on the direc-
tion of the velocity of such quasiparticles they can gain
or lose energy in the electric field in the normal layer; see
Fig. 4. This has been analyzed in detail by the accel-
erated wave packet methods of Refs. 21, 23. As a result
part of the quasiparticles becomes trapped in the pair
potential well and sufFer multiple Andreev reflection. Be-
cause the momentum direction of such quasiparticles is
opposite to that for the quasiparticles accelerated out of
the condensate (see Figs. 2 and 4), they give a negative
contribution to the current. At relatively low tempera-
tures the initial energy e„of such quasiparticles is close
to the superconducting energy gap A. The efFective num-
ber of Andreev reflections for these quasiparticles is given
by the integer part of 2A/eV. This number changes at
V = V„, given by Eq. (74), resulting in a rapid change
of the current; and difFerential resistance peaks at these
values of the applied voltage. At kBT « 6 the number
of thermally excited quasiparticles above the gap is expo-
nentially small and the amplitudes of the resistance peaks
are negligible. With increasing temperature the number
of such quasiparticles grows and the SGS peaks become
more pronounced. On the other hand at temperatures
k~T &) 6 quasiparticles with different energies above the
gap (and not only at s~ b, ) contribute to the counter
current; see Fig. 5. For different quasiparticle energies

I

l~
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I(z)

FIG. 4. Thermally excited quasiparticles above the gap A
which move from the superconducting banks to the NS inter-
faces. Depending on their momentum direction they can gain
energy in the electric Seld (quasiparticle from the left) and
just cross the normal layer, or they can lose energy (quasipar-
ticle kom the right) and become trapped in the pair poten-
tial well sufFering multiple Andreev renections; these quasi-
particles yield a negative contribution to the current. The
efFective number of Andreev reflections of any one of these
quasiparticles with initial energy e„A changes at voltages
V = 2E/ne, n = 1,2, 3, . . . , and the current changes cor-
respondingly. This causes the subharmonic gap structure in
Fig. 3.

FIG. 5. For temperatures T )) b, /Izs there are many ther-
mally excited quasiparticles at all energies c„)A. Their
effective number of possible Andreev reflections changes at
difFerent voltages so that the subharmonic gap structure van-

ishes for T -+ T~.
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the effective number of Andreev reflections changes at
different values of V and the integral contribution to the
current does not contain SGS peaks. Therefore the am-
plitudes of SGS peaks should reach their maximum values
at k~T A. This is what our calculations yield indeed.

The vanishing of the SGS for temperatures T
0 K is tied to the fact that we have perfect An-
dreev reflection at the NS boundaries. Due to in-
terface barriers or a mismatch of Fermi velocities,
e.g. , in superconductor-semiconductor-superconductor
(SSmS) junctions, ss s@ normal refiection at the phase
boundaries appears. Such inhomogeneities can be taken
into account within the framework of the quasiclassi-
cal approach by effective boundary conditions for Green
functions4o or the u and v functions. s2 Qualitatively nor-
mal reHection at the interfaces will enhance the number
of quasiparticles with momentum opposite to the cur-
rent direction by inverting the positive z momentum of
the quasiparticles accelerated out of the condensate by
the electric field. This has a similar effect as increasing
the temperature and leads to an enhancement of the SGS
even for low temperatures.

of the normal layer 2a and, therefore, can be also applied
to short superconducting constrictions a ~ 0 without
normal metal inclusions. In other words, even at T = 0
and eV (( 6 a dissipative current can flow through a
part of a supe@conducting system in which a nonzero ex-
ternal electric Geld is present. The possibility of such an
effect has been first pointed out in Ref. 26. The physi-
cal meaning of this —at the first sight counterintuitive—result can be easily understood with the aid of Fig.
6 in which we present typical diagrams describing the
dissipative contribution to the current in SNS junctions
[Fig. 6(a)] and short superconducting constrictions [Fig.
6(b)]. In SNS systems an electric field leads to an acceler-
ation of quasiparticles due to multiple Andreev reflection
mechanism. As a result even for eV (( 6 such quasipar-
ticles gain the energy 2A and leave the pair potential

N

V. DISCUSSION

In this paper we have evaluated the Green functions
for SNS systems without any assumption about the spa-
tial variation of the scalar potential U~(z) in the nor-
mal layer. Fiirthermore, it turns out that the current
through our junction is essentially independent of the
field distribution inside the N layer. Making use of the
expressions for the scalar potential (8) and the Keldysh
Green function G+ (59) in the limit of small voltages
eV &( (2a/E;„)b, we get

a
U~(z) = eV —tanh

~ „~ . (76)
S'

From this equation we can read off that in the limit
kaT « 6 and (A/a) (E;„iv/E;„,g) &( 1 the complete
drop of the voltage V occurs linearly in the normal
layer: The quasiparticles are trapped in the pair poten-
tial well and relax due to inelastic scattering there. In
this case we can neglect the penetration of the electric
6eld into the superconductors independently of the con-
sidered geometry of small contact areas and our calcula-
tion also can be used for the description of planar struc-
tures and sandwiches. At higher temperatures k~T ) 6
when a considerable number of quasiparticles is above
the gap, our analysis is only applicable to microbridges
and constrictions in which case (part of) the voltage drop
V —U~(z = +a) + U~(z = —a) is due to the Sharvin re-
sistance and. takes place at the NS interfaces. For higher
voltages eV )) (2a/E;„)b, inelastic relaxation in the nor-
mal layer plays no role and the total potential drop oc-
curs at the two NS interfaces. ' In this case, neglecting
terms of the order 2a/E;„, we obtain from Eq. (8) that
U~(z) vanishes inside the normal layer.

As we already discussed, the expression for the cur-
rent, Eqs. (62)—(64), does not depend on the thickness

FIG 6. Typica. l diagrams describing (a) multiple Andreev
refiectious in SNS junctions and (b) high order electron trans-
fer processes in tunnel junctions [the so-called bubble dia-
grams Ref. (34)j snd short supercouducting constrictions (b).
Both diagrams describe electron acceleration by the electric
6eld inside the junction and contribute to a low voltage sub-

gap conductance in the G channel. Analogous diagrams can
be drawn for the F channel. Note that the diagrams (s) snd
(b) are essentially identical in the limit of zero normal layer
thickness 2a ~ 0;:--G and( = F.
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well giving a dissipative contribution to the current. In
the case of superconducting tunnel junctions and short
superconducting constrictions quasiparticles can be vir-
tually created under the gap. This process is described by
the "many bubble" diagrams depicted in Fig. 6(b) (see
also Ref. 34). In the region of a weak link (be it a tunnel
junction or a short constriction) such quasiparticles are
accelerated by the electric field and gain the energy neV
where n is the diagram order (or, in other words, the
number of times a quasiparticle crosses the weak link).
For n ) 26/eV this process results in pair breaking and
causes a dissipative contribution to the current. For tun-
nel junctions between two superconductors such a contri-
bution is proportional to D" where D is a (small) trans-
parency of a tunnel barrier and n 2b, /eV. Therefore
at T &( 6 and eV && 6 this contribution is negligi-
ble for superconducting tunnel junctions with D « 1
and remains finite for superconducting constrictions with
D 1. Let us also note that this pair breaking effect in
superconducting weak links is to much extent analogous
to the effect of vacuum polarization by the electric field in
quantum electrodynamics. As for superconducting tun-
nel junctions high order vacuum polarization diagrams
are small because of the small electromagnetic coupling
constant. In contrast to that for a superconducting con-
striction with D —1 all high order diagrams are of the
same order and their summation leads to the I Vcurve-
calculated above.

In this paper a quantum statistical analysis of ballistic
charge transport has been carried through to the point
where the current has been calculated for all values of the
dc voltage externally applied to the SNS junction. A sub-
stantial simplification of the problem was achieved due
to the factorization of the Green functions in terms of the
u and v functions obeying equations which structure for-
mally resembles that of the Bogoliubov —de Gennes equa-
tions. We calculated CVC's and differential resistance
curves both analytically and numerically. In the limit of
small voltages eV « (2a/E;„)6 the current is carried by
quasiparticles which are effectively localized in the pair
potential well due to multiple Andreev refiections and in-
elastic electron-phonon scattering. These quasiparticles
yield the high-low voltage conductance. At higher volt-
ages, eV )) (2a/E; )b„ the quasiparticles gain enough
energy to leave the pair potential well and relax in the
superconductors. The change in the number of multi-
ple Andreev refiections with voltage of those thermally
excited quasiparticles which yield current contributions
opposite to the direction of the total current Bow ex-
plains the subharmonic gap structure and its tempera-
ture dependence. The differential resistance computed
by us agrees qualitatively and quantitatively with the
one of Octavio et OL except for the low voltage regime.
Here the current contribution of quasiparticles originat-

ing Rom the energy range ~E~ & 6 is important. Tak-
ing into account this contribution results in a slower de-
crease of current with voltage and thus a higher differen-
tial resistance than in the case where this contribution is

omitted.
As we already mentioned in the Introduction, some ex-

periments, especially measurements at low Ohmic SNS
junctions, at relatively low temperatures T ( 0.5T~
show at voltages V & 6/e a hysteretic behavior for in-
creasing and decreasing currents ' or negative differen-
tial conductance. s'~P Such features do not (and cannot)
appear in our calculations carried out within the voltage
biased model in which case the supercurrent contribution
to the I-V curve is absent. Self-heating effects in the con-
tact area ' ' might serve as a simplest explanation
for these features in SNS junctions. Another possible ex-
planation for a hysteretic behavior of SNS junctions can
be obtained within the framework of the current-biased
model taking into account the effect of capacitance renor-
malization (see, e.g. , Ref. 34). Although the geometric
capacitance of SNS junctions C is usually very small (see,
e.g. , Ref. 1) their effective capacitance C,g can be large
enough to provide a hysteretic I-V curve similarly to that
for a simple current-biased RSJ model. Indeed analo-
gously to the case of tunnel junctions3 making use of
the nonlocal in time current-phase relation I[@(t)j one
can easily obtain an estimate

C,g = C+bC, bC 5/ARp, (77)
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Rp is the Sharvin resistance. Substituting this esti-
mate in the expression for the McCumber parameter
P = 2eIcRpC, fr/5 and taking the supercurrent I~ to
be of order Ic 6/eRp (this is legitimate at relatively
low temperatures and not very thick N layers) we get
P 1. This is a standard criterion for hysteretic behav-
ior of the current-biased RSJ junctions. We can also add
that the stray capacitance of external leads can cause an
extra renormalization of t,g making the tendency to the
hysteretic behavior even more pronounced. A more de-
tailed discussion of this problem goes beyond the scope
of the present paper.

APPENDIX: COEFFICIENTS OF THE KELDYSH GREEN FUNCTION IN THE NORMAL LAYER

The coefficients b~ and b2 in Eq. (59) are given by

(s~ vzF i E11E2) [b] (sl vzF ~ E11E2)4Eg b] (si vzF i El ~ E2)~EEL j
20

xe ""*~ 'hq(s, v, ~, z = +sa, E —seV/2, E) + N(s, v, y, Eq, E2) (Al)
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20
b2 (s, v, F, El, E2) = b2 (s, v, F, El, E2)e ""*~ 'h2(s, v,F, z = —sa, E2 —seV/2, E2)

20—b2 (s, v, F, El, E2)e ""*& ' hl (s, v,F, z = —sa, El + seV/2, El)
~ (E V/2)

i (E—2 e—ev/2 i—Q ) „„

x b, (s, v, F, El, E2 —seV)4, E. ..v—~2
—b, (s, v, F, El, E2 —seV)bE E,+..v~2

R A

20
x e ""*~ 'hl(a, v, F, z = +sa, E —seV, E —seV/2)

20—e '"*~ 'hl(s, V,F, z = —sa, E, E —seV/2)

+p (E2 —seV/2)e
' ' " ' ' ""*&X(s, v, F, El + seV/2, E2 —seV/2),

where the coefficients bl and b2 are given in Eqs. (55) and (56). We have used the abbreviations

t' E,
hl 2(Sl VgF ) Zl El ) E2) = tallh

I „ I

—fl 2(s) v&F l z 1 E2)
2k&T

(A2)

N(s, v F, El, E2) = ) e'" ' '+ ' ' ""*~ x A„,, (El, E2)Af (s, v, F, El —sneV, E2 —sneV), (A4)

6f (s, v, F, El, E2) = bl (s, v, F, El —seV/2, E2 —seV//2)hE E,
—bl (s, v, F, El —seV/2, E2 —seV/2)8E E,

x e ""*~ 'hl(s, v, F, z = +su, E —seV, E —seV/2)
20—e ""*~ 'hl(s, v, F, z = —sa, E, E —seV/2)

and

A„,(El, E2) = p (El —sleV)p (E2 —sleV). (A6)

The functions fl and f2 are the ll- and the 22-components of the right-hand side of Eq. (50).
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