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We have performed microwave measurements at 60 GHz of the surface impedance (Z, = R, —iX,)
on superconducting Nb and Pb. The temperature dependence of the complex conductivity (o =
oi + ioq) is inferred from the data down to T/T, ~ 0.25 for both materials. The imaginary part,
oq(T), gives the temperature dependence of the superconducting gap and the real part, oi(T),
exhibits the predicted conductivity coherence peak below T,. The 6ndings are compared with the
expressions calculated by Mattis and Bardeen to describe the electrodynamics of weak-coupling BCS
superconductors. Furthermore, we calculate the complex conductivity within the framework of the
standard Eliashberg electron-phonon theory of superconductivity. The experimental results obtained
on Nb are in good agreement with the BCS weak-coupling theory while the data on Pb are analyzed
in the anomalous (Pippard) limit and show deviations &om BCS laws, accounted for only by the
Eliashberg strong-coupling description of the electrodynamics of the superconducting state.

I. INTRODUCTION

The observation of coherence factors by ultrasonic
attenuation and by nuclear spin relaxation has pro-
vided important confirmation of the BCS theory of
superconductivity. ' Those two experiments illustrate in
a dramatic way the pairing mechanism in superconduc-
tors. The coherence factors are fundamental because
they are derived purely from symmetry arguments. The
fact that the electrodynamic response reflects also the
coherence factors was confirmed in 1967 by Tinkham
and co-workerss for pair breaking processes where the
photon energy, hen, is larger than twice the single par-
ticle gap, 2b, . The low temperature study (T « T,) of
the infrared (10—200 cm i) conductivity spectrum of Pb
by Palmer and Tinkham, 4 and by other groups, 5 led to
the observation of the slow and monotonic increase of
the conductivity (with increasing frequency) at the gap
edge and provided convincing evidence that optical ab-
sorption processes in superconductors are governed by
case 2 coherence factors. Their 6ndings were in excel-
lent agreement with the expression developed by Mattis
and Bardeen. '

In addition, it is known that the mechanism for su-
perconductivity in conventional superconductors is the
electron-phonon interaction. This interaction is mani-
fested in the electromagnetic spectrum by structure in
the absorption due to phonon scattering with a particle-
hole pair, known as Holstein structure. In superconduc-
tors such as Pb, this structure occurs in the in&ared
spectral range. In the superconducting state, with the
opening of the energy gap, the structure is shifted by

2b, . The magnitude of the Holstein structure depends
on the strength of the electron-phonon coupling and the
cleanness of the sample. Nams's first set forth a the-
ory of the conductivity demonstrating the Holstein effect
in the calculated conductivity of Pb. He used a gener-
alization of BCS theory known as Eliashberg theory, io

which incorporates the complete details of the retarded
electron-phonon interaction. This theory is known to
describe the physical properties of conventional super-
conductors to within a few percent. Experimentally,
Holstein structure has been found in the electromagnetic
absorption of Pb by Palmer and Tinkham and Joyce
and Richardsi2 with very good agreement between ex-
periment and theory. ' This has been taken as im-
portant confirmation of the electron-phonon interaction
giving rise to the superconductivity in conventional su-

perconductors.
Several early experiments focused on the frequency

range u « 6/h. In 1958, Khaikinis studied the
electrodynamic properties of Cd at 9 GHz or 0.3
cm i (hu/2E 0.3). A few years later, in 1964,
Waldram measured the surface impedance of Sn at 3
GHz (hu/2b, 0.01). Both experiments successfully
compared their results with the microscopic BCS the-
ory. Subsequent studies by Lehoczky and co-workers
were based on measurements of the microwave (24—70
GHz) transmission and refiection coeKcients for thin su-
perconducting films of Pb, ' and the inferred i(To)
was interpreted in terms of Buctuation efFects. More re-
cently, microwave studies at 5 GHz were published by
Halbritter on the surface resistance of Pb and Nb. He
evaluated carefully R, at low temperatures (T « T,)
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and studied impurity effects. Again, the data were in
good agreement with the existing theory. The coherence
efI'ects, however, were never measured at microwave fre-
quencies. The reason for this (as will be discussed later)
is clear: In order to extract o.q, both components of the
surface impedance have to be measured to high accuracy.

In this paper we report our surface impedance mea-
surements on the conventional superconductors Nb and
Pb. By careful evaluation of both components of the
complex impedance, we obtain the two components of
the complex conductivity 0 = o.

q + i@2 at a ft. equency

f = 60 GHz (hu/2b, 0.1), well below the gap fre-
quency for both materials. In the two cases, we Gnd a
peak in oi(T) which is analogous to the Hebel-Slichter
peak found in the nuclear spin lattice relaxation rate,
Tq. The organization of this paper is as follows: In Sec. II
we will present the current theoretical understanding of
the electrodynamics of superconductors. Section III gives
a description of the experimental setup. In Sec. IV, we

present the results of our measurements and in Sec. V
we compare them with theory. Finally in Sec. VI we give
our conclusions.

II. ELECTRODY'NAMICS
OP SUPERCONDUCTORS: A SHORT SUMMARY

At microwave frequencies, the response of a highly
conducting specimen is usually measured by the com-
plex surface impedance, Z, = R, —iX„where B, is
the surface resistance and X, is the surface reactance.
The surface impedance is defined as the ratio of the
electric and magnetic fields at the surface of the metal
Z, =

E~~/H~~, where the ]] sign indicates the field compo-
nent in the plane of the surface. It is a unitless quantity,
independent of the surface geometry and normalized by
the impedance of the vacuum, Zo ——4m/c = 377 0, where
c is the speed of light. The "surface" impedance measures
in fact the bulk properties of the sample as the Geld pen-
etrates in the material on a length scale, 1/Im(k), where

k is the wave vector inside the material. This length

( 0.5 pm) is either the skin depth in the normal state
or the penetration depth in the superconducting phase.

For a superconductor, the relation between the surface

impedance and the conductivity depends on the ordering
of three length scales: the mean free path, 8, the co-
herence length, (, and the penetration depth, A. These
parameters are in general interdependent quantities and
all vary with temperature and impurity concentration.
The labeling of the difI'erent limits is a point of confu-
sion in the literature, as the words are interchanged to
describe similar limiting expressions. For clarity, we Grst
define our vocabulary. It is customary to introduce the
zero temperature values of A and ( in the London (clean)
limit:

hv~
z.A(0)

'

where vz is the Fermi velocity and id~ ——4z'n, e /m is the
plasma &equency. Depending on which is the smallest
length scale, a superconductor can be described as falling
into one of the three following cases.

(i) The loca/ limit, is where E « (, A (independently of
whether it is a type I or type II superconductor). More
commonly it is also referred to as the dirty limit defined
by I./( —i 0.

In the opposite, so called clean limit, E/( ~ oo, it is
necessary to distinguish the following two cases.

(ii) The Pippard or anomalous limit, defined by the
inequality A « (, E (a clean type I superconductor).

(iii) The London limit for which ( « A, E (a clean type
II superconductor) .

The important result is that the reduced quantity
Z, /R„equals ~2(io/o„) i~2 in both the local and
London limits. s The subscript n indicates the value
just above T, . In the anomalous limit Z, /R„
2(—a/o„) i~s. Finally, it has also been shown that
the reduced conductivity o/0„ is identical in both the
anomalous and the local limits.

The qualitative frequency and temperature depen-
dence of oi/o„ in the superconducting phase can be in-
ferred from the symmetry of the pairing (time reversal)
solely, where the answer is classified by the coherence
cases. In calculating the matrix elements of an absorp-
tion rate by the quasiparticles, one has to take into ac-
count that the ground state is occupied by pairs. In
the condensed phase, the different states that belong to
the same symmetry class interact coherently and give
rise to interference effects that would be completely ab-
sent in the normal state (independent summation). For
time-reversal symmetry, each class is doubly degenerate
(Kramer's theorem) and the interference is either de-
structive (case 1) or constructive (case 2). Experirnen-
tally there are two ways to distinguish between the two
cases. One can study the low temperature (T « T,)
spectrum of the absorption rate near the gap edge (id &

26/h) or measure the temperature dependence of the
absorption rate at low frequency (v « 2b, /h). The for-
mer experiment was done by Tinkham and co-workers
and gave evidence that electromagnetic absorption is gov-
erned by case 2 coherence factors. However, the conduc-
tivity coherence peak predicted by the BCS theory was
not established before.

In 1958, Mattis and Bardeen investigated the electro-
dynamics of superconductors in the Pippard regime, us-
ing the approximation that ~ && h/A & A/v~ to simplify
the algebra. When ~ m oo the conductivity expression
simplifies to

0 2 1
[f(u) —f (u+ ld)]g{u)du+ — [1 —2y{u+ &d)]g{u)du,

CT~

where

(2)

f{u) = 1/[1+ exp(u/T)].

where
ui = sgn(u) gu

i gb, ' —u', —
, u2 ——Q(u + ur) 2 —0 2,
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Here, ~ = hu, T = kgyT, and 6—:BCS gap.
Figure 1 shows the temperature and frequency depen-

dence of oq/o„as derived from Eq. (2). It reproduces
the behavior predicted for case 2 coherence factors and
at low frequencies (bur « b, ), oz(T) has a peak below
T . Notice that the peak has completely disappeared for
hu & b,/5. For the purpose of clarity, the conductivity
below hu/b, & 0.01 is omitted in Fig. 1. It seems then
that the total area under the curve nq (u) changes below
T, . The oscillator strength sum rule, however, imposes
that the total spectral weight of o q(~) is a constant inde-
pendent of temperature. The "missing area" appears as
a b function at ~ = 0 (not shown), which physically rep-
resents the super8uid response to a dc Beld (the Meissner
efFect). It is clear that the amplitude of the b function
depends on the value of the gap. The section along the
frequency axis was compared to the infrared measure-
ments of Tinkham and co-workers. 4 We will compare our
microwave results, conducted at a single frequency, with
the sections along the temperature axis. The tempera-
ture dependence of the single particle gap corresponds to
the cusp in the surface.

The conductivity coherence peak, oz(T) at her « b„ is
characterized both by its width (the full width at oq/o„
=1) and its amplitude (o'q/o„). It can be shown
that a small increase of b, (e.g. , 10%%up) in Eq. (2) pro-
duces a noticeable decrease ( 10%%up) of the peak width.
One could model deviations from the BCS weak-coupling
theory by assuming 6(0)/k~T, to be a free parameter
and using the Mattis-Bardeen expression to analyze the
experimental results. Obviously such an approach ne-
glects many features of the strong-coupling limit. There-
fore, in the analysis below, we have used the full Eliash-
berg theory to account for strong-coupling effects and
kept the BCS coupling value [b (0)/k~T, = 1.76] in the
Mattis-Bardeen expression. The height of the peak de-
pends on the smearing of the singularity in the density
of states (a complete discussion can be found in Ref. 23,
p. 135). The smearing is parametrized by a lower cut-
off energy in the excitation density of states: It is the

probing frequency in the Mattis-Bardeen formula and
the amplitude (oq/o'„) ln(2b, /hu). The peak
height yields, in principle, the magnitude of the gap.
Note, however, that lifetime effects (as expected in a real
metal) would smear out also the logarithmic divergence
as ~ + 0, as is the case for the coherence peak in the
temperature dependence of the NMR relaxation rate. Fi-
nally, we recall that Hebel fit the coherence peak of the
NMR relaxation rate by assuming an anisotropy in the
gap distribution.

The corresponding expression for the conductivity in
the full strong-coupling Eliashberg theory is more com-
plicated than the BCS expression, with the main fea-
ture being that there is now a complex and frequency-
dependent renormalization function, Z(u) = Zq(ur) +
zZz(ur), and gap function, A(~) = 6~(~) + ib, 2(ur).
Here the energy gap b,o is de6ned from Ap = Ay(tat =
bo) and Zz(ur = 0) — 1 + A,„, where A,„ is the
electron-phonon mass renormalization parameter related
to the electron-phonon spectral density azE(ar) by A,„=
2 f~ dura Ii(u)/~. The weak-coupling BCS limit would
correspond to Z(u) = 1 and b, (u) = 60 up to some
cutoff energy of about ~D, the Debye energy, and zero
thereafter.

The method of solution for the Z(ur) and b, (~) is well
documented in the literature and therefore we will not
reproduce the lengthy details here. The basic proce-
dure involves a numerical solution of the nonlinear, cou-
pled Eliashberg equations. One can solve the real fre-
quency axis equations as was done originally, ' ~ or do
as we have done and solve the imaginary &equency axis
equations2s'2s for b, (iu„) and Z(iu„) and perform an an-
alytic continuationm to obtain E(u) and Z(u).

The optical conductivity is then calculated from an ex-
pression which is similar to the expression used by Nam,
and Swihart and Shaw, but allows for arbitrary impu-
rity scattering, a case of current interest in the literature.
Recent derivations can be found. '3 In this case the op-
tical conductivity is given as

P(u [1 —N((u) N(u + v) —M(ur)M(w + v)]0' v d(u tanh
8z v o 2 —ie(ur) —ie(u) + v) + 1/7.

~ tanh
P(ur + v) [1 —N'((u) N'(&u + v) —M'((u) M'(ur + v)]

0 2 —ze'((u) —ze'((u + v) —1/z.

P((u + v) P(u [1+N'(ur)N(ur + v) + M'(ur)M((u + v)]
ze'(u)) —ze(ur + v) + 1/z.

P(~ + v) [1 —N*(ur) N'(u) + v) —M'(~)M'(u) + v)]f cku tanh
2 ((al) —ze (la) + v) —1/7

[1 + ¹ ((u) N (ur + v) + M' ((u)M ((u + v)]+
ze'((u) —ze((u + v) + 1/z. (3)
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FIG. 1. Temperature and &equency dependence of the
conductivity ni(T, ~) ss evaluated from the Msttis-Bardeen
expression, Eq. (2). The coherence peak exists only at low
frequencies hu/2b, (0) ( 0.1. The cusp in the surface is the
energy gap.

where P = 1/T, e(er) = r/er —6(w), e)—w) = —e'(w),

with (d =—(dZ((d), A((d)—:Z((d)6((d), N()d) = )d/e(CV),

and M(u) = A(ur)/c(u). The parameter 1/v is the elas-
tic impurity scattering rate which we will take to be infj.-
nite here as this gives the correct limit for Nb (local limit,
as discussed below) and Pb (anomalous limit, which as
indicated above is equivalent to the local limit for this
quantity). In addition, it has already been shown that
unless the impurity scattering is very small, approaching
the very clean limit, the calculation will give the dirty
limit result for o/O„.ss s4

III. EXPERIMENTAL METHOD:
CAVITY PERTURBATION

To measure the surface impedance, we have used a
cavity perturbation technique. A recent review of the
subject can be found in the article of Portis et al. 5 or
Klein et al. , and the references cited therein. The cavity
resonance is characterized both by the center &equency,
fp = )do/2', and width I' (or quality factor Q = fo/I') of
the power absorption spectrum:

(4)

The Lorentzian spectrum is expressed in the time domain
by a complex resonance frequency )d = )do —i)do/2Q,
where all Gelds have a time dependence of the form
exp( —i)d t) .

The resonator used in this study is a cylindrical copper
cavity working in the TED&z mode; its height is equal to
4.77 mm and its diameter is 7.15 mm. The advantage
of this mode is that it has only circumferential currents
and thus it minimizes contact problems between the re-
movable end plates and the cavity body. Although the
highest Q resonators are achieved with undercoupled cav-
ity in which the refiected signal is detected, the base line

distortions due to standing waves become so large at 60
0Hz that we employ a transmission cavity where an iso-
lator is inserted in front of the Shottky diode (detector).

Most techniques using resonant cavities measure the
in8uence of a foreign body on the characteristics of the
resonator. For metals, the variation of the complex &e-
quency (measured from the notional perfect conducting
state of the sample; i.e., the same body is a loss-&ee ob-
ject: Z, = 0 or ~0

~

-+ oo) is, at first order, proportional to
the surface impedance of the specimen b,u/)d—:—ivZ„
the proportionality constant v is called the resonator
constant. ss To measure fo and I', we use a source with
narrow bandwidth (significantly smaller than I' of the
cavity) that operates at the central frequency of the cav-
ity. The coupling of the source frequency F to fo is
achieved by modulating the source &equency around I";
a detection of the in-phase amplitude of the transmit-
ted signal at the modulation frequency will measure the
derivative of the cavity absorption spectrum, and be pro-
portional to the error e = (E —fo) at first order. Then
e is fed back into the source. This arrangement is sim-
ilar to the AFC (automatic frequency control) used, for
example, in electron spin resonance methods. Here, we
measure both fo with a frequency counter and the band-
width F by measuring the value of the transmitted power
at fo, I" is proportional to the inverse square root of the
absorption curve maximum and thus A(fo) oc I' . To
measure A(fo), we have the microwave power chopped
and we use another phase-sensitive detection to analyze
the signal transmitted. The chopping frequency is three
orders of magnitude higher than the f'requency of mod-
ulation to avoid mixing contributions induced by higher
order nonlinearities. A schematic layout of the setup is
shown in Fig. 2.

The measurement configuration used the so-called end
plate technique, where one of the Cu end plates of the
cavity is replaced by the sample. This scheme has the ad-
vantage over other possible experimental configurations
in that no assumption is needed on the sample size or
geometry (no depolarization factor is involved), which
simpli6es the analysis. Our experiments have been per-
formed with a bulk sample of Nb and Pb cut in a Bat
disk of 10 mm diameter and 5 mm height, with a pol-
ished face that replaced the copper end plate and formed
a wall of the cavity. For the TEDqq mode, the resonator
constant of the end plate is given by the expression
v = (csvr2)/(hs&us) = 0.0458, where 6 is the height of
the cavity.

The measurement protocol has been conducted as fol-
lows. The frequency of resonance fo and the half-width
I are measured as a function of the temperature in two
separate runs one before and one after the replacement
of the copper (Cu) end plate by the sample (s). The
difference is related to Z„ the surface impedance of the
sample, through the relation

fw
—fcu . s — cu

(Z Z )fc~ 2fc~

where Z~„ is the surface impedance of the Cu end plate
only. We have calculated the ratio of the losses in the end
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plate compared with the total losses at all the other sur-
faces of the empty resonator, assuming that only Ohmic
efFects are important. This ratio is independent of the
conductivity of copper and is equal to 39%%uo for our cylin-
drical cavity:

r. —0.6~rC„ = VRg.
Cu

Radiative losses through the coupling hole give an addi-
tional loss. In the analysis, after the subtraction of the
Cu impedaace, a small ofFset (less than 5'%%uo) is left as
a &ee parameter to account for this additive term such
that R, of the superconductor is adjusted to be zero at
the lowest temperature.

Also one cannot make an absolute measurement of 6f
in the form defined by Eq. (5), as the ead plate must
be removed between the runs. Since the frequency is
proportional to the volume of the cavity, it is extremely
sensitive to the precise position of the walls. Due to
mechanical uncertainties, it is not possible to place the
end plate exactly in the same position after each removal,
and the &equency shift f, —fc„can be measured only
up to a aumerical additive constant f Because of .the
unknown f, some assumption had to be made for either
the properties of the aormal or superconducting state
(see the discussion below).

IV. EXPERIMENTAL RESULTS

We discuss the results obtained in Nb and in Pb sep-
arately. As will be shown later, the electrodynamics of
these two materials is somewhat di8erent. The Nb used
in this study was a bulk piece of 99.9'%%uo purity. In the
preparation, the metal piece was etched with nitric acid,
in order to remove the oxide layer at the surface and one
surface was polished using a diamond polishing cream
down to 0.3 pm. The Pb of 99.99%%uo purity had its acid
etched surface (used as the wall of the cavity) &eshly
polished down to 0.05 pm, using an alumina permanent

suspension abrasive cream. We took care that the surface
of our sample is fiat on the scale of 1/Im(k).

A. Nb

10

io0

1O'-

10
CC

10

10

Nb
~ R /R

X Rn

~a
~0

CP
Tao ~

o

0

1.00

— 0.75

— 0.50

— 0.25

10
0 0.25

I

0.50

T/T

0.75 1.00

FIG. 3. Temperature dependence of the surface resistance
B, and the surface reactance X, of Nb. The surface resistance
is displayed on a logarithmic scale while the surface reactance
is plotted on a linear scale.

In Fig. 3 the temperature dependence of both R, and
X, is shown down to T/7.', 0.25. The data are nor-
malized to the normal state value (givea below). For
the analysis, we have assumed that the specimea was
in the local limit, as supported by earlier measurements
of Blaschke and Blocksdorf in 1982.M In this case the
Beld decays exponentially as it penetrates in the sam-
ple and the surface impedaace is the refractive index,
Z, = g~/4vrio In the. normal state, o'q )) o'z in the
mm-wave range, and 1/Im(k) is called the classical skia
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depth, deGned as

Above T the surface resistance has the simple form

Cd 8
Ra =X8

c 2
(8)

X, (0) 2A(0)R„b (9)

This result gives a penetration depth A(0) = 440 L, a re-
sult in good agreement with the value measured by Max-
field and McLean40 (470 A). Using the Fermi velocity mz
= 0.15 x10s cm sec i (Ref. 38) and the plasma frequency
~J = AL, /c (see London penetration depth value below),
we estimate from ai the mean free path E 200 A. at
T = 10 K. From the London penetration depth value
Al. = 330 A (Ref. 38) and the BCS coherence length,
(o = 380 A. , where the BCS gap b.(0) = 1.4 meV (see be-
low) in Eq. (1), one can calculate the penetration depth
in the local limit, including mean &ee path corrections.
This gives A = AI. Q(0/E = 450 A. in good agreement
with our earlier evaluation.

and we use the latter equality to evaluate the unknown
frequency offset f In. the normal state we find that R,
and X, have the same temperature dependence, conGrm-
ing the validity of the assumption, Eq. (8), in the entire
measured temperature range.

Using the measured value of the half-width, we have
calculated the normal state surface resistance R„
0.0538 0 at T = 10 K. This result leads to a conduc-
tivity u„(10 K) = 0.85 x 10sO icm i, a value 3 times
lower than the conductivity measured on single crystals
(o„= 2.9 x 10sA i cm '),ss implying that our sample
is well into the local limit. Using this conductivity, the
skin depth at 10 K is 6 = 2270 A. The surface resistance
R, (T) drops rapidly with decreasing temperature and it
is plotted on a logarithmic scale in Fig. 3. The scatter
of data, 0.05 mO, is independent of the temperature and
the value gives the resolution of our measurement con-
figuration. We have subtracted a positive constant of 2
mA from the R, data; this offset is attributed to the cou-
pling losses not taken into account by Eq. (6). Careful
measurements of the residual surface resistance were ob-
tained with a different setup. Instead of using the end
plate techmque we have placed a small Nb superconduct-
ing sample at the bottom of the same Cu cavity (anti-
node of the magnetic field). In this configuration, Eq. ,

(5) is modified and the right-hand side is simply equal to
ivZ, . It was foun—d that the residual R, at T/T, 0.25

was 0.2 mO. There is a further uncertainty in the mea-
surement of the absolute value of the loss: It originates
from the dismantling of the cavity end plate after each
run. This gives a reproducibility of O.l mA.

Far below T„ the temperature dependence of the sur-
face reactance, X„is directly proportional to the temper-
ature dependence of the penetration depth A(T) Using.
Eq. (8), we can deduce from Fig. 3 the zero temperature
value of the penetration depth

B. Pb

Pb is a type I superconductor with ((0) ) A(0).
Critical magnetic Geld measurements have given a ra-
tio ((0)/A(0) 2, suggesting that the material is not
strongly in the Pippard limit; nevertheless we have used
this limit to analyze the data; this approximation was
also suggested by Nam. The analysis in the local limit
was published previously. In the normal state of the
anomalous limit,
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FIG. 4. Temperature dependence of the surface resistance
R, and the surface reactance I, of Pb. The surface resistance
is displayed on a logarithmic scale while the surface reactance
is plotted on a linear scale.

X, 2vru f c2E

C ( 27CAITild j
and the skin depth expression becomes.2e

2%&1014)

The factor a was computed by Reuter and Sondheimer
in 1948 (Ref. 43) for both specular scattering (cx

3 ~ z/128 10) and diffuse scattering (a = 4vr/~3
7). A simplified picture is to suppose that only a fraction
a6/8 of the electrons are effective in the conductivity.

We display in Fig. 4 the surface impedance in the su-
perconducting phase. The onset of the surface resistance
drop is at 7.2 K, the transition temperature. This value is
in agreement with the onset temperature of the shielding
diamagnetism in our measurement of the ac susceptibil-
ity. First, we note that the normalized value of both
the surface resistance and the surface reactance of Pb
are larger than what was obtained in the case of Nb,
although the single particle gap and the &equency are
comparable. At T = 8 K, R„= 0.0421 0 and this
value gives a conductivity 0.„=1.4 x 10 0 cm and
thus a skin depth, b = 1780 A, using Eq. (11). The
same consideration about errors that we made on the
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TABLE I. Electrodynamic properties of Nb and Pb measured at 60 GHz; the vz values are
after Refs. 38, 3.

T, [K] R [0] rr„[O cm ] b [A] A [A] v~ [cm sec ] g [A] $(0) [A] A [meV]

Nb

Pb

9.3

7.2

0.0538

0.0421

0.85 x 10

1.40 x 10

2270 440 0.15 x 10 200 380

1780 380 0.42 x 10 2000 830

1.4

1.3

Nb behavior of R, (T) applies here. Our measured con-

ductivity is much higher than the value obtained by
Lehoczky and Briscoe (0„3x 1040 icm i),i but
comparable to the value listed by Blaschke and Blocks-
dorf (0„=1.1 x 10sO icm i).s

Using the optical value of the plasma frequencys we

estimate E = 4xo„vF/u„~ 2000 A. just above T, We.
have used a Fermi velocity e~ ——0.50 x 10 cm sec
after Ref. 41 (p. 243) or Ref. 38. This indicates that the
sample is at the border of the clean limit, with E/z ((0)
1.

(12)

From the saturation value of the surface reactance at low

temperature we estimate A(0) = 380 L, comparable to
the value observed by Faber and Pippard (A = 390 jt).

To conclude this section, we have listed the measured

(60 GHz) electrodynamic properties of Nb and Pb in Ta-
ble I.

In the limit T « T„ the surface reactance X,(T) is

proportional to the penetration depth A(T) in the Pip-
pard limit, but in the normal state X, is not simply re-

lated to the skin depth. It can be shown that in the
anomalous limit

X,(0) 4.5A(0)

AL,

A ((0) '

where 8 is given by the following expression:

&(T) „~&(T)
6(0) 2k~T (14)

or

oz xD(T) 4(T)
0'rr hid 2kgy T (15)

By inverting the last expression one can deduce the tem-
perature dependence of the BCS gap. We display the re-
sult in Fig. 6, and compare it with the BCS self-consistent
gap equation (solid line). Again, the agreement between
the measurement and the theoretical prediction is ex-

We have displayed on the same figure the temperature
dependence of the imaginary part of the conductivity.
From this measurement one can evaluate the temperature
dependence of the superconducting gap. Using Nam's
results in the local limit we find thats

V. ANALYSIS

A. Nb
2.0—

Nb

— 20

Using the measured value of R, and X„we have eval-
uated the temperature dependence of the complex con-
ductivity in the local limit. We display the results in
Fig. 5. The real part of the conductivity 0 i shows a peak
that we attribute to the case 2 coherence factors. The
position of the maximum is well below T, where R, is
already several orders of magnitude lower than its nor-
mal state value at the peak maximum, and therefore the
increase of a~ is clearly not due to the normal state or
fIuctuation efFects.

The solid curves are the Mattis-Bardeen weak-coupling
[b,(0)/k~T = 1.76] calculation of the complex conduc-
tivity for a superconductor where no fitting parameter
has been used. Note that the agreement between the
solid curve and the experimental data points is good on
the entire temperature range, indicating that Nb falls in
the weak-coupling limit. The error bars in Fig. 5 do not
refIect the scatter of data points but rather the system-
atic error caused by the change of the residual B, value,

2 mO (estimated in the previous section).

1.5— — 15

1.0— +~- 10

0.5—

0—

0.25

l

0.50

T/T
0.75

rrrrrrrurr r r- 0

1.00

FIG. 5. Temperature dependence of the complex conduc-
tivity o = cr~ + icr2 of Nb as evaluated from the surface
impedance measurement. The solid curves are the weak-
coupling Mattis-Bardeen prediction (Ref. 6). The dashed
curves are the strong-coupling Eliashberg prediction, as dis-
cussed in the text.
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2.0— 2,0—

1.5—
BCS, T =9.3K

1.5—

~ &r /(r
1 n

1.0—

~ Og

1.0— PD
~iqey+gee

0.5—

0.5—

0— ~icrrrr~ 0

0—
I I

4 6

Temperature [K]

10

FIG. 6. Temperature dependence of the superconducting
gap of Nb as evaluated using Eq. (15). The solid line is the
gap, b, (T), obtained in the weak-coupling BCS limit with T,
= 9.3 K.

0.25

I

0.50

T/T

0.75 1.00

FIG. 7. Temperature dependence of the complex conduc-
tivity a = 0.

& + ioz of Pb as evaluated from the surface
impedance measurement. The solid curves are the weak-
coupling Mattis-Bardeen prediction (Ref. 6). The dashed
curves are the strong-coupling Eliashberg prediction, as dis-
cussed in the text.

cellent. From our data, we infer a value for the single
particle gap of Nb b, (0) = 1.4 6 0.1 meV.

Using Eq. (3), we also present in Fig. 5 the calculation
for the complex conductivity calculated within Eliash-
berg theory (dashed curves). The a2F(u) is derived
&om tunneling measurements on Nb, 4 and the Coulomb
pseudopotential is p* = 0.182. One Gnds the result is
not very different &om the weak-coupling BCS Mattis-
Bardeen result, as expected for Nb. There does appear to
be a slightly better fit to the data, which is expected as
the Eliashberg calculation is an exact calculation which
incorporates the modest strong-coupling eKects in Nb.
Again there are no &ee parameters in this calculation.

B. Pb

In Fig. 7 is shown the temperature dependence of
the complex conductivity calculated &om the surface
impedance measurement using the Pippard limit. A
peak is observed in the temperature dependence of aq,
the maximum being well into the superconducting phase
ruling out fluctuation effects [fluctuations are expected
to be larger in Pb (Ref. 5) than in Nb]. The temper-
ature (T ) at the maximum of oi is well below T,
and R, (T ) is an order of magnitude lower than B„
Microwave transmission and reQection studies on thin
films of superconducting Pb performed by Lehoczky and
Briscoe lead to the estimation that, at 60 GHz, the
real part of the conductivity oi at T, exceeds by 4'%%uo the
normal state value and the eKect is attributed to Huc-
tuations. In our experiment, Buctuations are within our
measurement error and are much smaller than the height
of our peak. The solid curve is the Mattis-Bardeen con-
ductivity computed for Pb with T, = 7.2 K. We observe

a large discrepancy between the theoretical and the mea-
sured temperature dependence. The width of the mea-
sured conductivity peak is significantly smaller than the
predicted weak-coupling BCS value, indicating that Pb
has a stronger coupling constant than the BCS one (cf.
discussion in Sec. II).

However, calculating the conductivity with Eq. (3) us-

ing the tunneling a2F(ur) and p,
' = 0.139 of Pb (Refs. 46,

11) in a strong-coupling Eliashberg calculation greatly
improves the agreement between theory and experiment,
providing excellent confirmation of the strong-coupling
effects in Pb. Once again this calculation has no free pa-
rameters. In particular, we note that due to the rapid
opening of the gap (which is 2.25k~T, at T = 0 K com-
pared to the BCS value of 1.76k~T, ), oi decays faster
with reducing temperature than the BCS weak-coupling
limit. Likewise, o'2 demonstrates a lower zero temper-
ature limit: Strong coupling increases the zero temper-
ature value of the penetration depth (o2 oc A ). The
Eliashberg penetration depth exceeds by 8%%uo the weak-
coupling limit assuming the same value of the gap in
both limits.

Nam extended the Mattis-Bardeen work for impure su-
perconductors near the strong-coupling limit. The pen-
etration depth in the Pippard limit is given by the ex-
pression

3~2 ~,
4 ((0)

(16)

where S is given by Eq. (14).
Using the previous equation, we have evaluated b, (T)

for Pb and plotted the result in Fig. 8. For comparison,
we display on the same figure the BCS gap equation ob-
tained for T, = 7.2 K. At low temperature the measured
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~ I 1 0
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BCS, T =7.2K

0.2—

0.1—

0--

-0.1—

-0.2—
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BCS (Pij)pard)—Yosida I,London)
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. + ~ $
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/

/

/

I I
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Temperature [K]

10 0.2
I I

0.4 0.6

t.=T/T
0.8 1.0

FIG. 8. Temperature dependence of the superconducting

gap of Pb as evaluated using Eq. (16). The solid line is the
gap, E(T), obtained in the weak-coupling BCS limit with T,
= 7.2 K.

0.2—

0.1—

--- Eliashberg (local)
BCS (local)———Yosida (London)

-0.1—

Nb

-0.2—

gap of Pb exceeds by several tenths of meV the weak-
coupling limit. From the data, we extrapolate the zero
temperature value of the gap, h(0) =1.3 meV, leading to
a coupling constant b (0)/k~T, = 2.1. The result is also
listed in Table I.

Finally, the temperature dependence of the penetra-

FIG. 10. Temperature dependence of the penetration
depth for Pb. We have plotted the deviation of [A(0)/A(T)]
from the two-Suid form, 1 —(T/T, ) . The dot-dashed curve
is the BCS Yosida function, the dashed curve is the result
obtained for strong-coupling superconductors, and the solid
curve is the BCS weak-coupling result in the Pippard limit.

tion depth of Nb (A oc 1/Im[(io)~/z]) and Pb (A oc

1/Im[( —o')~/sj) is displayed in Figs. 9 and 10, respec-
tively. The data are shown as a deviation from the phe-
nomenological two-fiuid4r expression. This empirical for-
mula is used to approximate the electrodynamic response
of strong-coupling superconductors. 24 We observe that
neither of the results on Nb nor Pb are in agreement with
the BCS weak-coupling Yosida function, p& 8fb/Mb,
where E& is the energy of a quasiparticle of momentum
k and fn is its corresponding Fermi probability. Indeed,
it is necessary to introduce the full strong-coupling cal-
culations and the correct local or Pippard limit to ac-
count for our findings. The zero frequency, temperature-
dependent penetration depths for Nb and Pb were cal-
culated from an imaginary-frequency-axis formulation of
the local and Pippard penetration depths, respectively,
as given in Ref. 11. We also include the corresponding
weak-coupling BCS curve for the local and Pippard limit.
Clearly the data, particularly for Pb, are in better agree-
ment with the strong-coupling result.

0.2
I I

0.4 0.6

t.=T/T
0.8 1.0

VI. CONCLUSION

FIG. 9. Temperature dependence of the penetration
depth for Nb. We have plotted the deviation from the two-
Suid form, y(T/T, ) = [A(0)/A(T)] —[1 —(T/T, ) ]. The dot-
dashed curve is the BCS Yosida function, the dashed curve is
the result obtained for strong-coupling superconductors, and
the solid curve is the BCS weak-coupling result in the local
limit.

We have reported results on the evaluation of the com-
plex conductivity of Pb and Nb in the microwave range
(60 GHz or 2 cm ~) down to T/T, 0.25. The con-
ductivity is inferred &om the measurement of the two
components of the surface impedance. Our experiments
provide evidence for the existence of a peak in the con-
ductivity below T, a signature of case 2 coherence fac-
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tors. While Nb is in the weak-coupling local limit;, for
Pb strong-coupling corrections and nonlocal effects are
evident. In the case of Nb, the temperature-dependent
gap A(T) is in agreement with the BCS prediction. We
have also demonstrated the necessity of using Eliashberg
theory to describe strong-coupling superconductors, such
as Pb.
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