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We study two-dimensional frustrated arrays of Josephson junctions at nonzero voltage. There exists a
family of traveling-wave solutions characterized by a constant spatial phase shift. All spatially periodic
vortex configurations observed in numerical simulations are of this form, and can be parametrized in

terms of this single phase shift. We present the analytical form of these solutions at high voltages (or
high Josephson frequencies) and compute their I-V characteristics. We also report the numerical obser-

vation of relaxational fronts separating two regions with difFerent phase shift and frequency. These
fronts move in the direction of decreasing frequency (or voltage}.

I. INTRODUCTION

Two-dimensional arrays of Josephson junctions pro-
vide a rich laboratory in which to study the dynamics of
spatially extended systems. ' In addition to their theoreti-
cal interest, these arrays can be studied experimentally,
and have potential applications as coherent oscillators.

One example of the rich dynamics of these arrays is
presented by "giant Shapiro steps. "~ These voltage steps
correspond to a coherent phase locking of the Josephson
oscillations of the individual junctions of the array with
an applied rf field. These steps have been extensively
studied by experimental, numerical, and analytical tech-
niques.

We here study an intrinsically simpler, but less under-
stood, problem: the state of arrays subjected to dc but
not ac currents. We consider frustrated arrays, with
transverse applied magnetic fields. We find that, in the
limit where the voltage across the junctions is large, the
probletn simplifies considerably, because the dominant
oscillation of the super conducting phases is at the
Josephson frequency corresponding to this voltage, with
higher harmonics of this frequency suppressed. Thus a
single amplitude and two phases (for the dc and the ac
components of the superconducting phase difference)
define uniquely the state of each junction.

This relatively simple problem allows for an immediate
ansatz solution, in terms of one global phase 5, whose
value uniquely specifies the state of the array. The
overall current fiowing across the array is a function of 5,
so that there is a band in the I-V plot corresponding to
this family of states. The width of this band (in voltage)
is inversely proportional to the current at high current.
This approach can be easily generalized to lower volt-
ages, although computations become intractable as one
approaches the critical current, at which the voltage goes
to zero.

We compare our results to numerical simulations of ar-
rays with frustration parameters f=

—,', —,', and —', . This pa-
rameter measures the ratio of the magnetic fiux linked by
one plaquette of the array with the superconducting mag-
netic Aux quantum. A large class of observed states of

the array can be indexed by the parameter 5, as hy-
pothesized. However, an. additional phenomenon ap-
pears, in the form of fronts separating regions of different
5. These fronts move in from the boundary, moving al-

ways towards regions of lower voltage. They represent
the method by which systems relax their overall values of
5. We believe that the quantitative structure of these
fronts is the primary problem left unresolved by this

study; in this work we thus do not address the problem of
the selection of a particular value of 5 by the system.

In Sec. II we review the standard resistively shunted
junction (RSJ) model for overdamped Josephson junc-
tions. We then introduce a simpMed high-voltage form
of the equations of motion for this system. In Sec. III, we

present a family of traveling-wave solutions of these
equations, which have a combined spatiotemporal sym-
metry. This is the most spatially homogeneous solution
of these equations. In Sec. IV, we generalize these results
to moderate voltages, and in Sec. V, we present numerical
results. In particular, in this final section we discuss the
appearance of moving fronts separating regions of
different 5 and voltage. We hypothesize that these fronts
represent a principal means by which an array relaxes its
voltage.

II. THE MODEL AND ITS HIGH-VOLTAGE LIMIT

We consider a square array of overdamped resistively
shunted Josephson junctions in a transverse magnetic
field, with the Bux per unit plaquette being f (in units of
the superconducting magnetic flux quantum). If the
shunt resistance is R, and the critical current of the junc-
tions is ic, then the current from the ith to the jth (neigh-
boring) site of the array is

I, =(8;—8l )"+icsin(8, —
81

—
A;J ),fi d

2eR dt

where 8; is the superconducting phase on the ith site, and

gt A;J =2rrf, where the sum is about a plaquette. The
first term on the right-hand side of Eq. (I) is the normal
shunt current, while the second is the supercurrent. In
the overdamped limit, the sum of currents arriving at
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Q I a&;sin(P, )—a& .sin(p. )—v sin(ao, " ) I =(),
J

(4)

where the sum is over sites adjacent to site i. Note that
a&-~, which is consistent with our assumptions. Let us
write

a, ;cos(coJt+P; ) a, cos(coJ—t+P~. )=a;,cos(to~t+P—;, ),. .

each site of the array must equal zero.
Now let us consider such an array driven by a dc

current parallel to one of the axes (say, the horizontal
axis) of the square lattice. We expect that, on average,
the voltage drop across junctions parallel to the direction
of current flow will be u = V/N, where V is the total aver-

age across an N XX square array. Similarly, we expect
zero average voltage across junctions perpendicular to
the direction of current flow. Of course, these are
assumptions —we cannot exclude the possibility that in-

homogeneous average voltage differences may develop in
the network.

A further simplification appears if we consider high
voltages v &&ioR. In this limit, the normal current dom-
inates the supercurrent; effects of the latter are reduced
by factors of order ioR/v. We define a dimensionless

group ~= ioR—/u; this is the fundamental small parameter
of our approach.

The ac Josephson relation implies that a voltage of
magnitude v is accompanied by oscillations of the phases

I8;I of frequency toJ=2evlfi. These oscillations will

lead in turn to supercurrents, which may include dc com-
ponents, but will also certainly include ac components at
the frequency toj and all of its harmonics. We shall see
below that, at high voltages, the higher harmonics are
suppressed in amplitude by factors of order ~. Thus we
shall commence by writing

8 „=ao „+a, „cos(tozt+P „)+ntuzt,

for the site in the mth row and the nth column. The last
term on the right-hand side ensures that the average volt-

age increases by v as one moves one column to the right.
Note that typically we will index sites by a single index,
such as i The app. earance of two indices ntn in Eq. (2) al-
lows us to indicate separately the row and the column of
a particular site. It is also convenient to define a directed
phase difference au;J =+~au, —ao~ —

A;~~; the sign of
this phase difference is determined by always subtracting
the phase to the left from that to the right, on a horizon-
tal bond, or by subtracting the upper phase from the
lower phase, on a vertical bond.

For the three undetermined parameters ao, a, , and P,
we may write three equations at each site of the array.
Two of these arise from the cosine and sine components
of the currents at frequency coJ. Since we expect
a& „-~, in these equations we may neglect the effect of
the oscillating part of 8 „ inside the supercurrent term.
Simple algebra then yields the following equations:

Q I a&;cos(P; ) —a& .cos(P ) tc osc(a o) I
=—0,

J

thereby defining an effective amplitude and phase shift
for the oscillating part of the phase difference across the
(ij ) bond .We then can combine Eqs. (3) and (4):

T

g 'exp(iau;. ) — exp(iP; ).'=0 .
J K

(6)

III. THE TRAVELING-WAVE STATES

Now we turn to possible solutions of these equations.
It is clear from Eq. (7) that the gauge-invariant phase
difference ao; —ao j—A,-J -~ on vertical bonds. In fact,
in our numerical studies this quantity was exactly zero in
the observed spatially periodic solutions. If it were not
zero, then an average supercurrent would flow locally
perpendicular to the direction of mean current flow,
which would clearly break the translational symmetry of
the array. This numerical result thus suggests that we

may profitably restrict ourselves to the study of solutions
with combined translational and time-translational sym-
metry. In practice, this means (as will be seen below) that
translation of the solution by a time &=2m f/to& is

equivalent to a spatial translation by one lattice spacing
in the vertical direction (perpendicular to the mean
current flow), and a translation by the time ~=5/co& is

equivalent to a spatial translation by one lattice spacing
in the horizontal direction (parallel to the mean current
flow). We shall see that 5 is a free parameter.

For such solutions, not only will ao; —ao j A'j 0 on
vertical bonds, but we must also have all a, ; =a~ on all
horizontal bonds, so that the magnitude of the oscillating
currents on these bonds is the same. Siaularly, we expect
a&;j —=a v on all vertical bonds.

This leaves the phase shifts P;~. and the dc gauge-
invariant phase differences ao, —ao - —A," on the hor-
izontal bonds as the only relevant parameters. Note that,
if the difference on two adjacent horizontal bonds is indi-
cated by hH, then Eq. (7) implies that

bH(ao, —ao, —A;, )=&Hp;, .

Turning now to the dc part of the current, we see that
the supercurrent flowing along the vertical bonds must
balance the average supercurrent flowing along the hor-
izontal bonds. The latter appears because of the influence
of the oscillating phase difference inside the supercurrent
term, as in the analogous theory of supercurrent flow
with rf voltage driving. We can easily obtain

g sin(ao; —ap J A
~

)

Jy

+ g J,(+a,, )cos(ao; —ao, —A;, —P;, ) =0, (7)

jul

where J, is the Bessel function, and ji,j~ indicate respec-
tively the neighbors in the horizontal and vertical direc-
tions (respectively, the directions parallel and perpendic-
ular to the mean current flow). The minus sign of the
Bessel function argument is taken for the bond to the left,
and the plus sign is taken for the bond to the right.

We now continue our process of motivating the choice
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of a particular family of solutions to Eqs. (6) and (7).
Since ao, —ao~

—A; =0 on all vertical bonds, the con-

straint

g (ao; —ao j.—A;1 }=—2n f
P

(9)

while those on vertical bonds have the form

with fH and f~ periodic functions with period 2m. In the

high-voltage limit, we are approximating fz and f~ as

harmonic functions; the more general case is treated in

Sec. IV below. The phase difFerences Q on the bonds

connecting the m, n to the m, n + 1 or m +1,n sites of the
lattice obey

(12)

implies that [ao, —ao~ —A,"] on horizontal bonds differ

by 2n f upon translation by one vertical lattice spacing.
%e may recall that, in the zero-current case, array

ground states have a q Xq symmetry, where f=p/q. It
is natural to suppose that this symmetry is preserved in

the direction perpendicular to the current in the case
where current flows across the array. This suggests that
perhaps the oscillating phase shifts P,J [from Eq. (5)]
change by 2n f as well on translation by one lattice spac-

ing in the vertical direction. In addition, we suppose that
these phase shifts change by 5 upon translation by one
lattice spacing in the horizontal direction, as do the dc
phase difFerences tzo; —no 1

—A; on horizontal bonds.

Alternatively, we can derive this from the constraint of
translational plus time-translational invariance (see Fig.
1).

This state can also be described by saying that the
phase differences on horizontal bonds (ij ) have the form

(10)

and

~H =~V (14)

aHsin(mf )+a~sin(5/2) =0 . (15)

Now consider four bonds coming into one node. On
the two horizontal bonds, the phase shifts of the oscillat-
ing parts can be written as P,"=I'++8+5/2, while the
oscillating phase shifts on the two vertical bonds can be
written as P,"= I ~+86m f. Here again I H and I ~ will

depend on the particular node. Equation (14) implies
that these quantities at a node will obey

~a =~v

The nonoscillating phase shifts on the horizontal bonds
will be ao; —ao —A,, =I H 25/2, where the phase

differences are defined in the same sense on the two
bonds. Now such a state automatically satisfies the cri-
terion Eq. (7), so the dc current component is conserved
at the node. For the ac current to be conserved, we ob-
tain the following criteria (note that terms of order z are
ignored inside the supercurrent term):

Equations (10}—(12) confirm that our solutions are essen-

tially traveling-wave solutions.
Let us consider the oscillating part of the sum of phase

difFerences around a plaquette. Because the phase shift of
the two horizontal bonds difFers by 2n f, according to our
assumption above, we can write these two phase shifts as
P;J=I'H+rrf, where I H differs from plaquette to pla-

quette. Similarly, since phase shifts increase by 5 in mov-

ing to the right, we have that on the vertical bonds bor-
dering this plaquette we can write p,j =I ~+5/2. Thus,
since the sum of the oscillating part of the gauge-
invariant phase difference about the plaquette must be
zero, we have

aH [cos(rozt+ I'H+ rrf ) cos(r—ozt+ I'H mf}]—

+a ~[cos(rvzt+ I ~+5/2) cos(r—ozt+ I' ~ 5/2)—]
=0, (13)

which immediately implies

and

=0, (17)

aH sin(5/2) —a ~sin(m f )—a. sin(5/2) =0, (18)

where again lr =ioR/v. Com—bining with Eq. (15}we ob-
tain

FIG. 1. In the high-voltage traveling-wave state, the phase

differences have Sxed phase shifts with respect to neighboring

phase differences. The average current in this Sgure Sows paral-

lel to bonds 1, 4, and 5. Phase 4 has a nonoscillating component

which is that of phase 1 increased by 5. The oscillating com-

ponents of phases 4 and 6 are phase shifted by 5 with respect to
those of phases 1 and 3, respectively. The nonoscillating com-

ponent of phase 5 is shifted by a phase 2rrf with respect to that

of phase 4, as are the oscillating components of these phases.

The oscillating component of phase 3 is shifted by 2m f with

respect to that of phase 2.

&H=
1+[sin (of )/sin (5/2)]

For this state, the total current flowing per bond is

(19)

v v. 0i=—+i J (a )=—1+K
R ' R 2

(20)

where the approximation to the Bessel function is
justi6ed by the fact that the above computations ignore
terms of higher order in sc.
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Equation (20) can be viewed as a quadratic equation for
the voltage given a fixed current i. Solving for v, we ob-
tain

that led to Eqs. (14) and (1S),we obtain

(26)

v= —iR+ (iR }—1

2

2(ioR )

1 —[sin {nf)/sin {5/2)]

' 1/2 and

ak Hsin(k~f )+a„vsin(k5/2) =0 . (27)

(21)

l
iR — (iR )—2

2

As i ~ ao, we obtain

2(ioR )

1+sin m f (22)

l lAv=
1+sin m f (23)

so that the width of the band of allowed voltages goes in-

versely with the current i at large current.

IV. GENERALIZATION TO MODERATE VOLTAGE

The minimum and maximum voltages are obtained, re-
spectively, for 5=m and 0. Thus the width of the band of
allowed voltages is

b, u =—u(5=0) —v(5=~)

The reader will note that Eq. (27}yields selection rules on
the harmonics of coJ that appear for rational values of f
or 5/m. For example, if f=

—,', all of the even harmonics
of co& are missing from the oscillating phase differences
on the vertical bonds (unless 5=m.). The observation of
the validity of these selection rules in numerical simula-
tions is a sensitive test of the appearance of these special
states (see Sec. V below).

The imposition of the constraint that the ac currents be
conserved at every site is quite tedious in general. We
will outline the procedure. Let us suppose that the dc
phase differences on the two horizontal bonds
attached to a site are ao; —ao —A;J=I H+5/2. The
oscillating phase shifts on the horizontal bonds are
tI}k;J= I H +8k +k5/2, and the oscillating phase shifts on
the vertical bonds are pk, =I t,

+8k+kerf.

From Eq.
(26) we see that I'tt =I'V. The supercurrent term can be
expanded in harmonics of the frequency coJ ..

Once we move away from the limit of high voltage, we
must take into account higher-order effects in ~. This im-

plies in turn that we must include the effect of phase os-
cillations at higher harmonics of the Josephson frequency
coJ. We proceed in analogy with the argument of Sec. III.
First, we write the phase on the mn site as

i csin coI t +5 /2+ g ak icos( k co& t +8k +k 5/2 )
k=1

=io au+ g a&sin(lcojt+ /&+15/2)
1=1

(28)

n ao, + X ak, m cos(kcojt+4k, n )+ncoJ
k=1

(24)

for a site in the mth row and nth column. On the (ij )
bond, we can write

ak, cos(kcojt+pk;) —ak Jco( skcot j+tktJ)

=ak, J sc(ok tco+p ; k).J(25)
As in Sec. III above, we restrict ourselves to states with a
combined translational and time-translational symmetry.
This implies that all ak, are the same on horizontal (or
vertical) bonds, defining ak & and ak v, respectively.
Again, we expect that the quantity ao; —ao —A; =0 on
vertical bonds, and its value on horizontal bonds incre-
ments by 2vrf if one moves one lattice spacing in the vert-
ical direction. The phase shifts pk;J, by contrast, must
increment by 2~kf upon translation by one lattice spac-
ing in the vertical direction, in order that the combined
translational and time-translational symmetry of the
high-voltage state be maintained. We also expect that
translation by one lattice spacing in the horizontal direc-
tion adds k5 to the phase differences pk;, and adds 5 to
QO t Go,j ~ij

The sum of the oscillating phase differences about a
plaquette must equal zero. Suppose that the phase shifts
pk;J=I'k H+mkf on the horizontal bonds bounding a
plaquette, and pk, =I k v+k5/2 on the vertical bonds
bounding a plaquette. Then following the same reasoning

where we have absorbed I 8 into the origin of t as well as
into the phase shifts [Sk }.The coefficients [at } and the
phase shifts 1(, are complicated (but, in principle, calcul-
able) functions of [ak H} and [Sk}, but they are not
functions of 5.

Since ao is independent of 5, provided that all other
constants are held fixed, the dc supercurrent into a site is
the same as that out of a site. Conservation of the oscil-

lating currents into a site leads to the criterion

[ak H sin(k5/2) —ak k sin(km f ) ]cos(kcoJ t +8„)
——aksin(k5/2)cos(kcoJt+fk ) =0 . (29)

K

In practice, Eq. (29) may be solved order by order in ~.
Thus, for instance, we know that to lowest order in K,

8,=0 [see Eq. (17) above]. This allows the lowest-order
term [of O(tc)] in gz to be computed from Eq. (28). This
in turn allows the computation of the lowest order in 02
and a2 H or a2 ~ to be computed from Eqs. (27) and (29).
This procedure can be continued until the patience of the
researcher, or that of his symbolic manipulation pro-
gram, is exhausted.

V. NUMERICAL RESULTS

This system can also be numerically integrated. The
method is standard —the condition of current conserva-
tion at the site i is first written as a matrix equation
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Mi =F(j8; —8; I ), (30)

C)
C

ED
lV

C)

27T QJ

where i' denotes a neighbor to site i. The matrix M is
then inverted, yielding a set of coupled first-order
differential equations, which can be integrated by means
of, e.g., the fourth-order Runge-Kutta method. We nor-
mally fixed the currents at the left- and right-hand sides
of an N XN array, and studied the consequent phase dy-
namics far from the boundaries of the array. In the
direction transverse to current Bow, we used periodic
boundary conditions. We also normally used lattices of
size 60X 60, although some runs were performed with lat-
tices of size 30X30. Most of our simulations were per-
fortned with initial conditions corresponding to zero-
voltage ground states. Typically, these states reproduci-
bly relaxed to traveling-wave states. At any current, we
only ever observed a single value of 5 to be stable for long
times.

Figure 2 shows the typical behavior of the gauge-
invariant phase differences for f= ,' The—.phases for
neighboring bonds differ by 2n. /3 for bonds separated by
one vertical lattice spacing, and by a fixed value 5 for
bonds separated by one horizontal lattice spacing. This

behavior is observed throughout the array, except im-
mediately in the vicinity of the boundaries. This confirms
our ansatz for the form of the solution. This behavior
has also been observed over a wide range of currents for
the values of the frustration f= ,', —,'—,and —', .

These states can be visualized by their vortex
configurations. The sum around a plaquette of the in-
stantaneous gauge-invariant phase differences obeys

g(8; —8, —3;, ) =2m(n„f ),—
P

(31)

with n„an integer, where the phase differences are re-
stricted to lie between Err (if we do not impose this re-
striction, n„=0). We term n„ the vorticity of the pla-
quette. The sign of 5 determines the orientation of the
vortex configuration. In the traveling-wave state, the
vorticities of the plaquettes are out of phase by 5 along
the horizontal direction and are out of phase by 2mf
along the vertical direction. In a particular plaquette, the
vorticity is 1 during a fraction f of the period 2n /roz and
zero during the rest of it. Thus each vortex moves verti-
cally q times per period. The vortex configuration is
periodic with period q along the vertical direction; the
configuration along the horizontal direction is deter-
mined by 5.

Figure 3 shows the vortex configurations obtained for
various values of 5 for f= ,'. 5 =+2m —/3yields the vortex
configuration of the "staircase state, " in which stripes of
vortices run along the diagonals of the lattice. This is
known to be the form of the zero-voltage ground state for
this value of f. For general f, the staircase-state vorticity
can be obtained by choosing 5=+2m f.

The value of 5 may be obtained by inspection of the
vortex configuration. For f= ,' and n/6&5&5—m. /6, the
configuration looks locally staircaselike, with "domain
walls" of two possible types, according to whether 5 is
greater or less than 2n. /3. However, these are not actual-
ly domain walls, since the nature of the solution at these
"walls" does not differ from that in the rest of the array.
If the average distance between these "walls" is L, 5 is
given by

2m' 11+—
3 L

(32)

C)

L
CLl) X X

x x x

2 YT/Ql J (a) (b)

FIG. 2. (a) Gauge-invariant phase differences of two neigh-
boring horizontal bonds along the horizontal direction; the
phase shift of 5 is constant. (b) Gauge-invariant phase
differences of two neighboring vertical bonds along the horizon-
tal direction; the phase shift between these two phase differences
is also 5.

FIG. 3. (a) Vortex configuration for f=
—,'; the value of

5=m/2. A "heavy" domain wall can be seen in the staircase
vortex configuration. (b) In this case, 5=0.7~; a "light" domain
wall can be seen in the staircase vortex configuration. (c) In this
case, 5=0.95m.. If 5=m. exactly, the vortices form undefected
horizontal zigzag lines.
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Q 2

FIG. 4. Power spectrum I'(co) of horizontal phase variations

for f=
—,
' and 5=it. The second and fourth harmonics of the

Josephson frequency are absent, in accord with the selection

rule from Eq. (27). Note that the sixth harmonic, which does

appear, is not excluded by this equation.
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X X X X

X X X Xx x x x
X X X X XX X X X

X X X X
X X X X

X X X X X
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X X X XX X X X
X X X Xx x x x x',

A 7C A 7C ÃiX X X X
K X X X XX X X X XX X X X

X X X X

)
X X X X XX X X X

X X X X X
X X X X XX X X X

K X X X
X X X X XX X X X X

X X X Xx X x xX X X X
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X X X X X
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X X X X
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2m.L
(33)

Here the sign of L indexes the type of domain wall ob-
served (see Fig. 3). A simple analysis shows that these
two types of "domain walls" move in opposite directions.
The apparent speed is

FIG. 5. Vortex configurations for f=
—,
' corresponding to a

front propagating from the left to the right. On the left-hand
side of the front, 6 =m, while on the right-hand side of the front,
5= 2m. /3.

The values of 5 obtained by inspection are in excellent
agreement with those obtained from the time series. In
terms of 5 we can describe the observations in Ref. 4 by
saying that for low currents 5 increases from a value a lit-
tle less than m. to m at a current per junction of i =0.7io.
Above this current 5 jumps to a value a little greater than
2m. /3 and then decreases as the current is increased.

An additional check on the appearance of the
traveling-wave state is to investigate the satisfaction of
the selection rules for harmonics of toj', we alluded to
these rules after Eq. (27}above. This may be done by tak-
ing the power spectrum of the phase oscillations on par-
ticular horizontal or vertical bonds; the results are in
agreement with the predictions from Eq. (27) (see Fig. 4).
We also found that Eq. (21) for the I-V relation as a func-
tion of 5 held to high accuracy in these simulations.

One of the striking features of these simulations was
the appearance of fronts, commencing at the boundaries,
separating regions with differing values of 5 and differing
voltages (see Fig. 5}. The fronts were parallel to the
boundaries at which current was injected, and were thus
perpendicular to the direction of mean current Aow.
These fronts always moved in the direction of decreasing
voltage, or Josephson frequency. Thus, as the front
moved by a particular bond, the average voltage on that
bond increased. Since the fronts moved at fixed speeds,
the overall voltage across the array tended to increase

linearly, and saturate at a higher value once the front had
passed across the entire system. The passage of these
fronts constitutes a means by which the system selects a
particular value of 5, and we expect that a quantitative
understanding of the front structure will assist in solving
the problem of which value of 5 is chosen by the system
at a particular current.

We also studied the role played by the symmetry of the
initial configuration in determining the boundary at
which the front develops. Reversing the sign of the mag-
netic field is equivalent to choosing the initial
configuration tilted along the other diagonal, with the
current fiowing in the same direction. This reversed the
boundary at which the front developed.

On the other hand, when we started with an initial
configuration with no preferred diagonal axis (i.e., with
5=0 or n), fronts developed at both boundaries. The
final configuration corresponded to a fixed front separat-
ing two regions of opposite 5 and the same voltage. We
observed relaxation through front propagation for
f=

—,', —,', and i at sufficiently low currents.
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