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Calculation of the singlet-triplet gap of the antiferromagnetic Heisenberg model on a ladder
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The ground-state energy and the singlet-triplet energy gap of the antiferromagnetic Heisenberg model
on a ladder is investigated using a mean-field theory and the density-matrix renormalization group.
Spin-wave theory shows that the corrections to the local magnetization are infinite. This indicates that
no long-range order occurs in this system. A flux-phase state is used to calculate the energy gap as a
function of the transverse coupling, J,, in the ladder. It is found that the gap is linear in J, for J, >>1
and goes to zero for J, —0. The mean-field theory agrees well with the numerical results.

I. INTRODUCTION

The antiferromagnetic (AF) Heisenberg ladders (two
coupled spin chains) are relevant to the understanding of
how the physics evolves from the purely one-dimensional
(1D) to two-dimensional (2D) systems. Also, the S=1
Heisenberg model on the ladder can model the magnetic
properties of systems such as the vanadyl pyrophos-
phate,! (VO),P,0,. The calculation of the thermodynam-
ic properties of this material will be addressed in a forth-
coming work.? The relevance of the transverse coupling
J, for ground-state properties is examined in the present
work.

From the theoretical point of view, two main reasons
are behind the increasing interest in the Heisenberg
ladder. The Haldane conjecture® is that the energy gap
of the elementary excitations of chains depends on
whether the spin is an integer or a half integer. It is well
known* that the spin-one-half 1D Heisenberg model is
gapless. However, it is not clear how the gap behaves
when a transverse coupling J, is turned on between the
two chains of the Heisenberg ladder. In Ref. 5 the au-
thors reported that a finite transverse coupling J,. ~0.4
is required to get a finite gap. Later on, Barnes et al.®
concluded that the critical value vanishes at J,,=0. The
second reason is the discovery of high-critical-
temperature superconductors (HTCS’s). The interest for
these systems is due to the belief that the 2D Heisenberg
model describes the AF interactions in the undoped
copper-oxygen planes of HTCS’s. The ladder problem
can help us understand the crossover from 1D to 2D sys-
tems (this question is related to the stability of the Lut-
tinger liquid).

Strong and Millis” have also recently used this type of
model to investigate the competition between magnetic
ordering and the Kondo effect in heavy-fermion systems.
Since the work of Doniach,? it is widely believed that spin
excitations of heavy fermions can be modeled by such a
model. The major weakness is that the real Kondo effect
is lost; only the spin compensation effect is shown.

The problem of a plane of coupled spin-1 chains was
studied by Azzouz’ who found within a mean-field ap-
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proximation that once J, is nonzero, long-range AF or-
der appears in the system. The gap remains zero because
of the broken symmetry due to long-range order. For the
ladder, no broken symmetry is expected to occur because
of the 1D nature of the system. Indeed, the finite size in
the transverse direction will bring different physics than
the two-dimensional Heisenberg model. We believe that
the gap starts to be nonzero for any finite J, due to the
finite size in the transverse direction.!” In the limit of
large J, the system is equivalent to weakly coupled
singlets, and the gap is given in leading order by the
singlet-triplet energy separation. The first term of the
gap is linear in J,. When J, becomes of the same order
as the parallel coupling the situation becomes more
difficult to analyze.

In this paper, the ladder problem is investigated using
a mean-field approach and exact diagonalization. The en-
ergy gap is found to be nonzero for any finite J,. Com-
parison with the exact diagonalization, which is based on
the density-matrix renormalization group!! (DMRG) is
reported. The agreement between these approaches is
very good.

II. MEAN-FIELD TREATMENT

The Heisenberg model on the ladder is denoted as fol-
lows:

H=J1 2 S,'SJ+J 2 S,-'Sj > (1)
(i), (i,

where the sums run over first-nearest neighbors (i, >||
along the chains and (i,j), perpendicular to the chains.
J and J, are AF coupling constants. In the following J is
set equal to unity and periodic boundary conditions are
imposed. Simple limits of this model can be analyzed.
The first obvious one is realized for J, >>1 as mentioned
in the Introduction. In this case, one gets weakly coupled
(by J=1) singlets and the first excited state has an energy
gap behaving as J, in leading order. This excitation is
obtained when the state of a single pair of spins changes
from singlet to triplet. The second limit, less obvious, is
J,=0. The two chains can be treated separately. It is
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known from the exact results of des Cloiseaux* that the
1D Heisenberg model has an energy spectrum of the
form

e(k)=12’—|sink| , )

which shows a zero gap. The intermediate regime
(J,~1) is quite interesting and is the most complicated
one. The dependence of the energy gap, hereafter denot-
ed E,(J,), on the transverse coupling is investigated here
using the same mean-field theory as in Ref. 7.

A. Review of the flux-phase and Néel-flux-phase states

The 2D generalization of Wigner-Jordan transforma-
tion of Ref. 7 can be easily implemented in the case of the
ladder. One gets, following the notation of Fig. 1,
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FIG. 1. The ladder system.
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i—1

i
2 nt > N
=0
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S, =c exp i 4)

for the chain 2. The indices i run along the chains. The
Hamiltonian is now written in this fermion representa-
tion. One finds the following spinless interacting fermion
Hamiltonian:

_—=J —i®, o) ¢ —i®,  6(2) 4 —J t
H——Z Dleipe T s teie T el ]t ) >
06 ;

+J 3 (ny; =1/, —1/2)4T, 3 (0 —1/2)(n,,—1/2) . (5)
ij=1;2,8 i

The phases ® are as follows:
D (D)=mny @ (D)=—mn_y, @ n2)=mn1,,, @, 2)=—mn;,, (©6)

and § refers to the first-nearest neighbors of a given site. The mean-field solutions studied here are the flux phase,'?
with zero magnetization, and the Néel-flux phase with finite magnetization m EZ(ni, j ) —1. The flux due to the XY
term [the first and second terms in Eq. (5)] of the Hamiltonian is taken to be 7 per plaquette on average. For the Ising
term [the last two terms of Eg. (5)], ome chooses (ci,jciT+5,j )= !(c,v,jc,La,j Ye ui+s ang (ci,jcﬂtj% )
=, ¢l 180 le G+ (j=1,2). In the following, we set l<ci,jciT+6,j YI=Q and I(ci,jcifj+5 Y|=P. The
sum over &’s around one plaquette is also taken to be 7 on average. The bipartite character and the different phases on
each link of the system are summarized in Fig. 2. Despite the fact that a finite magnetization in a system like the ladder
is not possible because of its smallness, we will discuss the Néel-flux phase and compare its physical meaning with the
more physical flux-phase state.

B. Results and discussion

The mean-field Hamiltonian is written as follows:

H=L 3 (clie e, 11 el sci_1atehacisratelse e 1o+ 3 (ehenn+elenn)
2 D (eie Moy teici e e e ey ) 2 2 (eiycicinc,
i i

J
+% > (mn,-,j—-mn,-ﬂ-,,j+m2/2)+—2i S (mn,,—mn,,+m?*/2)
ij=12,8 i
+J 3 (QciTle '“’c,-+1,1+Qc§1c,-_1,1+Qc22c,-+1’2+chzei”ci_1,2+Q2)+J1 > (PciTlCi,2+PciT2ci,l+P2) » (D
ij=1,2 i
where a bipartite lattice due to AF correlations is used, T n J
Fig. 2 (the local magnetization is staggered: m=m ,
= —my, where A4 and B are two adjacent sites). We get 7,
H=S E,.(K)a] ;o + 8)
< T T T

in k space, where the fermionic operator a; is obtained FIG. 2. The flux per plaquette is equal to 7 on average.
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from ¢, through the diagonalization of the Hamiltonian
(7). The dispersion relation is given by

E . (K)=%[mX1+J, /2)*+(1+2Q)*sin’k,
+(1+2P)*(J, /2)* cos’k,]'/*, 9)

where J, is divided by a factor 2, since the periodic
boundary conditions used in the transverse direction
count J, twice. The minimization of the free energy with
respect to m, Q, and P gives a set of three self-consistent
equations, which become

m= [(d*/k /2m)m(1+J,/2)/E, (k) ,
0= [(d% /2m)(14+2Q)sin’k, /E , (k) , (10)
P= [(d% /27)(1+2P)J, /2) cos’k, /E , (k)

at zero temperature. The integration is over the first
Brillouin zone. By definition, we write f d*k /2
= f(dkx /2w 1/2)2ky, where k, can take two values: 0

or 7. One easily notes that m =0 is a solution. An in-
teresting feature shown by such a solution is that when
J, =0 the k dependence of the dispersion relation yields

E ., (k)=+(1+2Q)lsink| . (11)

The ground state corresponds to the situation, where the
lower band is fully occupied and the upper band is empty.
A fermion a created in the upper band produces the ele-
mentary excitation in the system and the corresponding
energy excitation is given only by the dispersion relation
of the upper band, namely,

e(k)=(1+2Q)|sink| . (12)

One can calculate Q and finds 1+2Q =1.63. This result
compares well with 7/2=1.57 in the exact solution of
Eq. (2). The interesting feature is that one recovers
smoothly the 1D limit of the dispersion relation by taking
m =0. The energy gap E,(J, =0) is then equal to zero.
When J| is nonzero, the gap has the form

E,(J)=E [k=(0,7)]
=[mX1+J,/2)*+(1+2P)%(J, /2)}]'?, (13)

which reduces to

(1+2P)
2 Ju

for m =0. Equation (13) is obtained by calculating the
difference between the ground-state energy

E,(J))= (14)

2 2
m 1 rd%k
Ee=JO? P2+ ;o e
gs=JQ*+J, (J+J)) 7] 2f Py E_ (k),
and the first excited state energy.
2 m2
Epx=JQ +JLP2+(J+JL)—4

_1 d*k 1 _
2 Yyx0,m 27 E.(k)+ 2E+[k—(0,1r)] .

For m =0 the results of the numerical calculation for the
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FIG. 3. The parameters Q and P as a function of J, for
m=0.

set of Egs. (10) are displayed in Figs. 3 and 4. The pa-
rameters Q and P show no simple dependence on J,. The
energy gap, which is displayed in Fig. 4, has a linear
behavior in J, >>1. This is in good qualitative agreement
with the simple limit J, = . It has a more complicated
dependence for intermediate transverse coupling because
of the J, dependence of P (Fig. 3). For small J,, E,(J,)
has a simple power-law form

E,(J)=c(J) 8, (15)

where the constant ¢ =0.76 and the exponent g=1.15.
This result compares qualitatively well with that of
Strong and Millis’ who studied this problem in the case
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FIG. 4. The energy gap as a function of J,. The full and
dashed lines are, respectively, from our mean-field treatment
(m =0) and the result of perturbation theory of Ref. 6. The +’s

are the result of the DMRG calculation.
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FIG. 5. The parameters of the nonzero magnetization solu-
tion of the mean-field approximation (plotted as a function of
Jy).

of z anisotropy in the parallel Heisenberg coupling.

The Neéel-flux-phase state has a nonzero m for
J,<1.76. The different parameters of this state are
displayed in Fig. 5. The gap is found to go to a finite lim-
it when J, —0. The finite magnetization in this state im-
plies broken rotational symmetry. Gapless collective
modes related to spin-wave excitation would then exist in
the gap. The spin-wave theory goes beyond the mean-
field approximation. For nonzero m, the quantum fluc-
tuations due to spin wave excitations would have drastic
repercussions on the value of m. As in 1D, these fluctua-
tions destroy long-range order. Indeed, for the ladder,
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FIG. 6. The ground-state energy as a function of J,. The full
and dashed lines correspond, respectively, to zero and nonzero
magnetization. The +’s are the result of the DMRG calcula-
tion.

M. AZZOUZ, LIANG CHEN, AND S. MOUKOURI 50

the corrections to the local magnetization in the standard
spin-wave theory can be calculated and are found to be
logarithmically singular

ik’i~-oo. (16)

A(S?) ~
This implies that spin wave theory is not self-consistent,
and no long-range order can occur at zero temperatures.
So the flux-phase solution, m =0, is more adequate to de-
scribe the AF correlations even if its ground-state energy
is slightly higher than that of the Néel-flux-phase state as
shown in Fig. 6. All the physical information the
nonzero solution contains is that the AF correlations are
more important for 0<J, <1.76 as we see on Fig. 5 be-
cause the magnetization is zero for J, > 1.76, but, to our
opinion, these correlations are not strong enough to in-
duce long range order (imagine that we can solve exactly
this problem, then one would find a zero magnetization
for any value of J|). The Néel-flux-phase and flux-phase
states give the same dispersion relation for J, > 1.76.

III. NUMERICAL INVESTIGATION WITH THE DMRG

We have used the recently introduced density matrix
renormalization group method!! to find the ground-state
energy of the Heisenberg ladder. Our Fortran codes are
written with the version of the infinite lattice method
with open boundary conditions. We first find the
ground-state wave function of the finite 2 X7 system and
start the renormalization process by keeping 80 states in
each block. Unlike the one-dimensional version suggest-
ed by White,!! we insert only one pair of new sites in the
middle of the two blocks to form the new superblock in
each renormalization procedure so that the size of the
Hilbert space is kept within our computer’s capacity. We
find this works reasonably well for the ground-state ener-
gy shown as crosses in Fig. 6. For the singlet-triplet ener-
gy gap, however, it works less well. Nevertheless, the gap
we obtain numerically shows convincingly that it van-
ishes only as the J, goes to zero, as should be apparent
from the crosses of Fig. 4. The numerical results will be
given in detail in a forthcoming work.!?

IV. CONCLUSION

In conclusion, our mean-field theory (flux phase) de-
scribes accurately the low-lying excitations of the AF
Heisenberg model on the ladder. The gap is found to in-
crease smoothly with J,. Its behavior as a function of J,
is shown in Fig. 4. The quantitative agreement between
the analytical approach and the DMRG numerical solu-
tion is very good.

The accuracy of the flux phase in the case of the ladder
is a precursor of high-dimensionality physics, since a
finite flux can exit only in dimensions higher than 1. The
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spin-energy excitations have a gap. Now, when charge
degrees of freedom are introduced, the situation becomes
more complicated. However, if we assume that a finite
doping, §,, is required to bring the gap to zero, then one
can conclude that the 1D Luttinger-liquid state is unsta-
ble for 8§ <8, in the sense that the spin correlations de-
crease algebraically in 1D rather than exponentially for
finite J,. The system does not belong to the same univer-
sality class when J| > 0 as that of the 1D system.
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