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Magnetic behavior of an amorphous ferromagnet for temperatures close to,
and above, the Curie point: Structural relaxation effects
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Detailed bulk magnetization (ac susceptibility) measurements on the amorphous Fei6Ni64B»Si alloy

have been performed in the temperature region 0.95TC-1.5TC (0.95T& & T ~ 1.05T&) before and after it
had undergone isothermal annealing at 400 K for 60 and 120 min. An elaborate analysis of the data so

obtained, besides yielding accurate values for the asymptotic and leading "correction-to-scaling" (CTS)
critical exponents and amplitudes, reveals that the structural relaxation consequent upon isothermal an-

nealing does not have any in6uence on the asymptotic and CTS critical exponents and on the universal

amplitude ratios rno/M, (0) and Dmso/ho, whose values are close to those theoretically predicted for a
three-dimensional Heisenberg ferromagnet, but has profound effect on the ratio pohp/kz Tq and the Cu-

rie temperature, Tz. The fraction of spins actually involved in the transition at Tz is small and reduces

slowly with increasing annealing time. Consistent with the theoretical expectations, nonanalytic correc-
tions (originating from the nonlinear irrelevant scaling fields) to the singular behavior at T& dominate

over the analytic ones (arising on account of the nonlinear relevant scaling fields) in the critical region

but the reverse is true for T» T&. Regardless of whether the sample is annealed or not, the initial sus-

ceptibility follows the generalized Curie-Weiss law for as wide a temperature range as Tc & T~ 1.5T&.
The present results provide a strong evidence for weak itinerant ferromagnetism in the glassy alloy in

question.

I. INTRODUCL ION

The features in the magnetic behavior that distinguish
amorphous ferromagnets from their crystalline counter-
parts are (a) a steeper' fall in spontaneous magnetization
M, (T) with increasing temperature at low and intermedi-
ate temperatures, and (b) a more pronounced concave-
upward curvature in the temperature dependence
of inverse initial susceptibility yc (T), that persists to
much higher values of the reduced temperature, t =T
/Tz(Tc is the Curie temperature), in the former case.
A direct consequence of feature (b} is that the effective
critical exponent for susceptibility, defined as

y,s(T)=d [lnyc '(e)]/d(lne), where e=(T —Tc)/Tc
=t —1, has roughly the same value for amorphous and
crystalline ferromagnets in the asymptotic critical region
e~ e (e~ is the so-called crossover temperature) but in-

stead of decreasing monotonously ' towards the mean-
field (MF} value for e& e„,as in crystalline (ordered} fer-
romagnets, goes through a peak (peak value, y~s) at e
for amorphous ferromagnets before decreasing towards
MF value at e »e„The peak in .y,s(T) and its depen-
dence ' on the concentration of magnetic atoms in a
given amorphous alloy system has found qualitative inter-
pretation in terms of a number of theoretical " and
phenomenological models. Considering that the func-
tional dependence of y,~ on temperature for e&e is
markedly different in amorphous and crystalline fer-
romagnets and that the mean-field calculations, " on
the one hand, and the phenomenological model, on the
other, predict completely different temperature depen-
dence of y,~ in quench-disordered ferromagnets after

they have undergone annealing treatment, a systematic
investigation of the infiuence of structural relaxation
(caused by annealing) on y, tie, T) in glassy ferromagnets is
expected to provide a rigorous test for the existing
theories. These considerations prompted us to perform
detailed bulk magnetization and ac susceptibility mea-
surements on an amorphous (a-}Fe,&Ni64B»Si sample be-
fore and after it had undergone annealing treatment at
Tz =400 K for durations of time tz =60 and 120 min.
Another motivating factor for undertaking this type of
study was the confiicting reports ' ' regarding the sen-
sitivity of y,tt(T} to annealing in a-(Fe,Ni)sc(B,Si}2o and
a-(Fe,Cr}s5B &5 alloys.

H. EXPERIMENTAL DETAILS

Amorphous (a-) ribbons of a cross section 0.04X2
mm of the alloy with the nominal composition
Fe&6Ni&B»Si were prepared by the single-roller melt-
quenching technique under high-purity argon atmo-
sphere. The amorphous nature of the ribbons so fabricat-
ed was revealed by x-ray difFraction and confirmed by the
high-resolution electron microscopic (HREM) technique.
Magnetization (M) versus external magnetic field (H,„)
isotherms (temperature stability better than +40 mK)
were measured at =0.15 K intervals in the temperature
range 0.95Tc T~1.05T& and at temperature values
=5 K apart in the interval 1.05T~ & T ~ 1.5T& in fields

up to 10 kOe on the a-Fe,6Ni64B»Si sample before and
after it had undergone isothermal annealing at Tz =400
K for t„=60 and 120 min. The sample was in the form
of a pile of ten =5 mm-long ribbon strips and its temper-
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ature was measured by precalibrated copper-constantan
thermocouple. High-precision (relative accuracy better
than 10 ppm) ac susceptibility, y„(T), measurements on
a single 20-mm-long strip, cut from the same ribbon as
that used for the magnetization measurements, before
and after it was annealed at T„=400K for t„=120 min,
were performed at =25-mK intervals in the temperature
range —0.05&@=(T—Tc)/Tc &0.05 in a rms ac driv-
ing field of H„=100 mOe and frequency 87 Hz using the
mutual inductance method. ' The sample temperature,
monitored by a precalibrated platinum resistance sensor,
was kept constant to within +10mK during the measure-
ment period at every fixed temperature setting by a pro-
portional integral and differential temperature controller.
H„(H,„) was directed along the length of the strip
(strips) within the ribbon plane in y„(T)[M(H,„,T)]
measurements to minimize the demagnetization efFects.
The demagnetizing factor for the samples used in both
g„(T) and M (H,„,T) measurements was determined
from the low-field ( &20 Oe) magnetization data and the
measured ac susceptibility as well as H,„were corrected
for demagnetization to obtain the intrinsic susceptibility
yo(e) and internal field H, respectively. From a detailed
compositional analysis' ' and the composition depen-
dence ' ' ' of Tc in a-FexN180 ~8,9Si alloys, we infer
that the concentration Auctuations in the sample in ques-
tion could give rise to fluctuations in T& of the order
5TC =0.1 K. Therefore, data taken in the reduced tem-
perature range &5Tc/Tc have been left out of the
analysis. The present choice of the annealing tempera-
ture is based on the difFerential scanning calorimetry re-
sult that the sample does not get crystallized even when it
is annealed at this temperature for two months. This re-
sult was further confirmed by the HREM examination.
Thus, measurements in the critical region could be per-
formed without any complications due to crystallization.

III. RESULTS AND DATA ANALYSIS
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FiG. 1. Modi6ed Arrott plot at a few representative temper-
atures for the a-Fe&6Ni&B»Si alloy in the as-quenched condi-
tion.

A. Bulk magnetization

The raw magnetization data are converted into the
modified Arrott [i.e., M' ~ versus (H/M)' r ] plots
through the choice of critical exponents p and y that
makes the M'~~ vs (H/M)'~r isotherms in a narrow tem-
perature range around T~ straight and parallel to one
another over as wide a range of (H/M) values are possi-
ble. One such plot, shown in Fig. 1 for the a-
Fe,6Ni648»Si alloy in the as-quenched condition, is also
representative of those for the annealed sam. ples. Linear
extrapolation ' ' of the high-field straight-line portions
of the isotherms to (H/M)'~r =0 and M'~~=0 yield in-
tercepts on the M'~~ and (H/M)'~r axes from which
spontaneous magnetization M, (T) and inverse initial sus-
ceptibility go '(T) are computed. M, (T)[yo '(T)] data so
obtained are plotted against t = T/Tc(T) in Figs. 2 and
3; the value of Tc used in Fig. 2 and listed in Tables I and
II has been determined by the following method.

Within a narrow temperature range around Tc, M, ( T),
and yo '( T) can be approximated by the single power
laws, i.e.,

Si&
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FIG. 2. Spontaneous magnetization as a function of tempera-
ture. The continuous curves through the data points represent
the best least-squares fits to the data based on Eq. (4) of the text.
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FIG. 3. Temperature variation of the inverse initial suscepti-
bility. The continuous and dashed curves through the corrected
data points (solid circles) represent the best least-squares fits to
the data in the temperature ranges Tz & T~ 1.5T& and
Tc & T ~ 1.05', respectively, based on Eqs. (17b) and (5) of the
text.
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FIG. 4. Temperature dependence of the quantities X(T) and

Y( T) in the critical region. e„denotes the temperature beyond
which the data deviate from the least-squares fits (straight lines
through the data points) based on Eq. (3) of the text. Note that
the origin of the ordinate scale for the samples annealed for 60
and 120 min is shifted for the sake of clarity.

X(T)=go '(T)[dXo '(T)ldT] '=(T —Tc)ly,s, (3b)

when plotted against T should yield straight lines with
slopes (lip, z) and (ily, s), and the intercepts on the T
axes equal to Tc. Such plots shown in Fig. 4 demonstrate
that this is indeed the case for the glassy alloy in question
within the temperature range —0.02 ~ e 0.05. This
method, better known as the Kouvel-Fisher (KF)
analysis, yields the values for mo, l,s; P,s; y,& and Tc
displayed in Tables I and II; m o and I',s are calculated

M, (T)=mo( s)~[1+a—xr ( e) '+aM—( —e) '], s'&0

and

(4)

~zXo(T)=I 6 «(1+0» E +0» s ), e)0

from Eqs. (1) and (2) using the KF values of P,s, y,s; and
Tc. Next, the expressions' for M, (T) and Xo '(T) that
include the "correction-to-scaling" (CTS) terms, i.e.,

TABLE I. Asymptotic and leading correction-to-scaling critical exponents and critical amplitudes for spontaneous magnetization
as well as critical exponent 5 and amplitude D for the critical isotherm of the amorphous Fe&6Ni64B»Si alloy before and after it has
undergone isothermal annealing. AA —asymptotic analysis (see text), AQ —as-quenched, BM—bulk magnetization, CTS—
correction-to-scaling analysis, KF—Kouvel-Fisher analysis, and RG—renormalization group.

(min) Method Analysis
Fit range

in 10'e
Tc
(K)

[mo~]
mo

(emu/g)
D

5), (10 )

AQ
AQ
AQ
60
60
60
120
120
120
3D-
Heisenberg'

BM
BM
BM
BM
BM
BM
BM
BM
BM
RG

AA-II, KF
AA-II, CTS
lnM vs lnH
AA-II, KF
AA-II, CTS
1nM vs lnH
AA-II, KF
AA-II, CTS
lnM vs lnH

0.18-91
0.18-91

0.18-70
0.18-70

0.04—9
0.04—9

341.85(12)
341.87(10)
341.81(18)
351.25(13)
351.27(10)
351.24(18)
351.24(13)
351.26(10)
351.24(15)

[65.1(4)] [0.360(10)]
55.8(10) 0.363(5) —0.280(30) 0.110(40)

[62.9(4)] [0.350(10)]
53.9(10) 0.362(5) —0.290(30) 0.100(40)

0.365(3)

[61.7(9)] [0.352(10)]
66.2(7) 0.360(5) —0.056(21) —0.30(15)

4.86(10) 4.86(12) 1.354

5.00(10) 4.83(12) 1.357

5.00(10) 4.83(12) 1.357
4.80(40)

'Reference 20.
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and

P.tt(e) =P+ttst, ~I( e) '+—tie, ~,( &) '— (6)

y,s(e)=y —ar b, ie ' —Izr 62m
'

employing the CTS values (Tables I and II) for P(y ), a~
1

(ar ), allr (ar ), and Tc (T~+ } in Figs. 5 and 6, the im-

provement in the quality of fits brought about by the in-
clusion of CTS terms is not (barely) apparent in the case
of P,N(e) [y,it(e)]. The main reason for this is the in

0.40
I
o—FeIsNissB„si,

I TA = 400 K

1 20 m i n
~ ~~

are fitted to the M, (T) and Xo '(T) data within the same
temperature range as above using the nonlinear least-
squares-fit computer program that treats m o

(I '=ho/mo), Tc (Tc ), P (y), aM (ar ), and alit

(ar ) as free fitting parameters but keeps the CTS critical
X2

exponents b, I and b,2 fixed at their theoretically predict-
ed' ' ' values 6& =0.11 and 62=0.55. The best
theoretical fits (denoted in Figs. 2 and 3 by the continu-
ous and dashed curves, respectively) with the choice of
the parameters given in Tables I and II and arrived at in

this way (henceforth referred to as the CTS analysis) are
superior in quality to those (the KF fits} based on Eqs. (1}
and (2}, as inferred from a considerably reduced value of
X, the sum of deviation squares, for the former type of
fits. However, when the P,Ni(e) and y,lr(e} data, comput-
ed from the modified versions of Eqs. (3a) and (3b), i.e.,
Ps(e) = [Tc/Y( T)]e and y,s(e) = [Tz/X(T)]e, using the
KF value for Tc, are compared with the KF fits (dashed

lines} and the theoretical values (continuous curves) cal-
culated from the relations'

ooooo 'as —quenched'
ooooo tA = 60 min.
+++++ tA

—— 120 min.
18—

a FeIsNi«B»Si

40O

1.7

1.6

t .5 f]"
']I(iI' '

)C3
«]

I '

s]
&co &]

s] [
~ ] 23

~ ]
[3

j3

(
~

(& 'I.", '

(3 L'

()"'
,',

() () () ()()() (3 .",
,",' () () ()

rTtC X

1
I I I IIII I I I I I I I I I I II I I I I I III

0.001 0.01 0. 1

herent scatter in the M, (T} [Xo '(T)] data, obtained

through the abave-mentioned extrapolation method,
which gets further amplified when the quantity Y(T)
[X(T)] is computed from such data with a view to arrive

at the experimental values of P,s(e) [y,N(e)]. Fits to the

M, ( T) and Xo '( T) data in the temperature range
0.98T, ~ T~1.04T& based on the version ' of Eqs. (1),

~ = (T-Tc)/Tc
FIG. 6. Variation of the effective critical exponent for initial

susceptibility, y,n; with temperature. The continuous curves

and dashed straight lines through the data points represent the

best least-squares fits to the data based on Eqs. (7) and (3b) of
the text, respectively. Note that the origin of the ordinate scale

is shifted up by 0.1 and 0.2 for the samples annealed for 60 and

120 min, respectively, with respect to that for the as-quenched

sample.
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FIG. 5. Variation of the effective critical exponent for spon-
taneous magnetization, P,e; with temperature. The continuous
curves and dashed straight lines through the data points
represent the best least-squares fits to the data based on Eqs. (6)

and (3a) of the text, respectively.

FIG. 7. 1nM vs 1nH isotherms at a few temperatures around

the Curie point for the a-Fe64Ni64B»Si sample in the as-

quenched condition. The straight line through the data

represents the best least-squares fit to the critical isotherm based

on Eq. (8) of the text.
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(2), (4), and (5) that replaces linear variable e by the non-
linear one, Z=(T —Tc)/T, revealed that all the parame-
ters retain their earlier values, i.e., those given in Tables I
and II, and practically no improvement in the quality of
fits compared to the earlier CTS fits, based on Eqs. (4)
and (5), occurs.

The M vs H isotherms measured at temperatures in the
range (Tc —1 K) & T & (Tc+1 K) are analyzed in terms
of the relation

M=a H'"
0

or H=DM a=0

and the result is shown in Fig. 7. It is noticed that only
the inM vs lnH isotherm taken at T = Tc is a straight line
with slope 5 ' and intercept on the ordinate equal to
inAo; the isotherms at temperatures on either side of Tc
exhibit a finite curvature. The values of Tc, 5, and D
(which is related to the critical amplitude A o as
D = A o ) determined in this way are listed in Table I.

B. ac Susceptibility

Figure 8 displays the temperature dependence of ac
susceptibility, corrected for demagnetization, i.e.,
Xo(e')=X s(E)l[l —NX s(e)], where N is the demag-
netizing factor, in the critical region —0.05 & a &0.05.
Increased accuracy (by at least an order of magnitude} of,
and substantially reduced scatter in, the ac susceptibility,
X„(T), data compared to the zero-field susceptibility
data, obtained through the extrapolation method (Sec.
III A), makes X (T) data amenable to a more rigorous
analysis, whose details have already been reported else-
where. ' Therefore, only a brief outline of the steps in-
volved in this analysts are given below. At first, the KF
method is used to accurately determine Tc and y,s from
the X ( T) vs T plot and then the values of these parame-
ters so obtained (Table II) are inserted in Eq. (2) to com-
pute the corresponding values of I',s. Such plots for the

1 2—(a h&e +a h2e )

I, (se)=I'(1+ +ac '+a+ e ')e (9)

to deduce the value of the asymptotic critical amplitude
for susceptibility I. The values of I' estimated in this
way for the a-Fe, sNis4B»Si sample in the as-quenched
condition and after annealing at 400 K for 120 min are
also included in Table II for comparison. Consistent with
the earlier observation (Sec. IIIA), the above analysis
when repeated for the nonlinear variable Z leaves all the
previously deterinined parameter values (Table II}practi-
cally unaltered and brings forth no improvement in the
quality of the theoretical fits. Note that the parameter
values deduced from the X„(T) data serve as a
crosscheck for those extracted from the extrapolated
Xo(T) data and a comparison between them sought in

Table II asserts that the Xo( T) data, when analyzed prop-
erly, are capable of yielding accurate values for the pa-
rameters I, y, a~, a~, and 1~.X] X2

as-quenched and annealed (Tz =400 K, t„=120 min)
samples, depicted in Fig. 4, demonstrate a perfect agree
ment between the X„(T) and extrapolated Xo(T) data.
Next, the values of y, ir at different e, i.e., y,s(e},calculat-
ed from the relation y,s(e)=[TcIX(T)]e using X(T)
and the KF value of Tc, are used in Eq. (2) to compute
I,s(e) A. ccurate values of y, b,„b,z, az, and az are ob-

X] X2

tained by minimizing the mean-square deviation (X } of
the theoretical fits, based on Eq. (7), from the y,s(e) data
with the aid of the nonlinear least-squares-fit computer
program which treats y, ar, and az as free fitting pa-

X] X2

rameters but varies 6i and hz in fixed steps of 0.01 within
the ranges 0.01&6,&0.20 and 0.35&62&0.75. The
best least-squares fits obtained in this manner are shown
in Fig. 9 as continuous curves. The values of y, 5i, h2,
ar, and ar so determined and listed in Table II are thenX]' X2

used in the relation'

12
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FIG. 8. Temperature dependence of the initial (ac) suscepti-
bility in the range —0.05 e 0.05.
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FIG. 9. The effective critical exponent for initial (ac) suscep-
tibility as a function of temperature. The continuous curves
through the data points represent the best least-squares fits to
the data based on Eq. (7}of the text. c represents the tempera-
ture beyond which the data deviate from the fitted curves.
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TABLE II. Asymptotic and leading correction-to-scaling critical exponents and critical amplitudes for the initial susceptibility of
the amorphous Fe&6Ni64B»Si alloy before (AQ) and after it has undergone isothermal annealing. AA —asymptotic analysis (see text),
ACS—ac susceptibility, AQ —as-quenched, BM—bulk magnetization, CTS—correction-to-sca1ing analysis, KF—Kouvel-Fisher
analysis, and RG—renormalization group.

(min) Method Analysis
Fit range

in 10m
Tc
(K)

[y.s]
y

[1 .sl
r

(10 emu/g) a

AQ
AQ
AQ
AQ
60
60
120
120
120
120
3D-
Heisenberg'

'Reference 20.

BM
BM
ACS
ACS
BM
BM
BM
BM
ACS
ACS
RG

AA-II, KF
AA-II, CTS
KF
CTS
AA-II, KF
AA-II, CTS
AA-II, KF
AA-II, CTS
KF
CTS

0.32—41
0.32—41
0.40-45
0.40-45
0.30—39
0.30-39
0.30-39
0.30-39
0.40-45
0.40-45

341.86(12)
341.88(10)
341.87(6)
341.87(6)
351.24(12)
351.27(10)
351.23(12)
351.26(10)
351.26(5)
351.26(5)

[1.342(30)]
1.388(27)

[1.328(22)]
1.386(14) 0.11(4) 0.55(5)

[1.350(30)]
1.390(25)

[1.350(30)]
1.387(23)

[1.333(17)]
1.386(15) 0.11(3) 0.55(5)
1.386(4) 0.115(9) 0.550(16)

[0.870(40)]
0.710(70)
[0.948(63)]
0.750(150)
[0.844(60)]
0.640(100)
[0.836(60)]
0.650(150)
[0.925(40)]
0.660(120)

0.068(12) 0.58(15)

0.068(12) 0.63(7)

0.039(8) 0.63(10)

0.033(7) 0.57(11)

0.039(4) 0.68(6)

IV. DISCUSSION

A. Scaling equation of state in linear variables

Tables I-III compare the experimentally determined
values of the asymptotic (P, y, 5}and leading correction-
to-scaling (6„62)critical exponents and of the universal
amplitude ratios with those predicted by the
theorys's' ' for isotropic ordered spin system with space
(d) as well as spin (n) dimensionality of three. The main
points that emerge from this comparison are (i) the KF
and CTS analyses of the y„(T) and the extrapolated
yp(T) data yield identical (within the uncertainty limits)
results, (ii) structural relaxation consequent upon iso-
thermal annealing does not have any influence on the
asymptotic (and leading correction-to-scaling} critical ex-
ponents and the amplitude ratios mp/M, (0) and
Dmp/hp, whereas it appreciably alters the values of
nonuniversal asymptotic and CTS critical amplitudes (ex- m =f~(h), (10)

cept for I,s; I, and ar ) as well as of the universal ampli-
X2

tude ratio p hp/pk Te& and Tc, (iii) the presently deter-
mined values of P, y, 5, b, „b2, mp/M, (0), and Dmp/hp
conform very well with the corresponding theoretical es-
timates for an isotropic ordered n =d =3 spin system
with the exception of the ratio pphp/kgTc which ts
lower by at least an order of magnitude, and (iv) the criti-
cal exponents P, y, and 5 satisfy the Widom scaling rela-
tion 5=1+(y/P) to a high degree of accuracy. While
observations (i)—(iii) vindicate the Harris criterionz2 and
the theoretical predictions, based on the renormal-
ization group (RG}calculations, that the critical behavior
of ordered n =d =3 spin system with a (0 remains unal-
tered in the presence of quenched disorder, validity of the
Widom scaling relation asserts that the magnetization
data taken in the critical region should satisfy the scaling
(magnetic) equation of state (SES}

TABLE III. Comparison between the experimentally determined and theoretically predicted values for the universal asymptotic
amplitude ratios for magnetization. AA —asymptotic analysis (see text), AQ —as-quenched, BM—bulk magnetization, CTS—
correction-to-scaling analysis, and KF—Kouvel-Fisher analysis.

(min) Method Analysis

M, (0) Po

(emu/g) mo/M, {0) (pz )

ho

(kOe)

Po"0

ka Tc
(10 ) Drn 0/hp {%)

AQ
AQ
60
60
120
120
3D-
Heisenberg'

'Reference 5.

BM
BM
BM
BM
BM
BM

AA-II, KF
AA-II, CTS
AA-II, KF
AA-II, CTS
AA-II, KF
AA-II, CTS

60.7
60.7
60.7
60.7
60.7
60.7

1.02(1)
1.09{11)
1.07(6)
0.92{16)
1.04{6)
0.89(16)
1.37(7)

0.528 708.85(49)
0.528 932.39(18)
0.528 771.44(27)
0.528 869.62(22)
0.528 751.91(54)
0.528 827.30(18)

7.35
9.40
7.78
8.78
7.59
8.35

158.00

1.35(30)
1.35{30)
0.95(30)
1.35(30)
0.82(30)
1.35(30)
1.33(1)

11.34(20)
8.86(20)

10.70(20)
9.50(20)

10.98(20)
9.98(20)

4.65(15)
5.95(10)
4.93(15)
5.55{10)
4.80(15)
5.28(10)
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FIG. 10. m vs h/m scaling plots for the as-quenched and
annealed samples of a-Fe,6Ni~B)9Si alloy.

where plus and minus signs refer to temperatures above

and below Tc and m =—M/~e~~ and h =—H/~e)~+r are the

scaled magnetization and scaled field, respectively. We,
however, prefer to test the magnetization data against an

alternate form of SES, i.e.,

rn = Ta++b+(h/m)

for two reasons. First, even the slightest deviations of the
data from the universal curves f (h) and f+(h), which

escape detection in a lnm vs lnh plot because of the in-

sensitive nature of the double-logarithmic scale, are easily

discernible when the same data are plotted in the form

of a m vs (h/rn) plot; this form of SES, therefore, pro-
vides a more rigorous test for the experimentally deter-

mined values of the critical exponents and Tc. Secondly,

the use of Eq. (11) permits an independent determination
of the critical amplitudes mo =a '~ and ho/mo =a+ /b+
from the intercepts of the universal curves with the m

and h/m axes, respectively, in a m vs h/m plot and

thereby offers a crosscheck for the amplitude values ob-

tained by the KF and/or CTS analysis. Such rn 2 vs h /m

plots displayed in Fig. 10, besides demonstrating that the
M(H, T) do indeed satisfy Eq. (11), testify to the correct-
ness of the presently determined values of Tz and the ex-

ponents P and y. Moreover, the values of rno and

(ho/mo) computed from the intercepts of the universal

curves equal those listed in Tables I and II.
If ho is identified with an effective exchange interaction

field and p,e is an average effective elementary moment

participating in the ferromagnetic (FM) —paramagnetic
(PM) phase transition, the ratio p,sho/ks Tc is expected
to equal the three-dimensional (3D} isotropic nearest-

neighbor (nn) Heisenberg estimate of 1.58 because the
values of the critical exponents and the remaining ampli-

tude ratios are close to those theoretically predicted for a
3D nn Heisenberg ferromagnet. Evidently, this is not

6.0

5.0
0

4.P —
~
a —Fe,6Ni«B»si, ~- f f

-9

1.6

1.4

3.0

1.5
C3

0.0

TA = 400 K

I I

0 50 100
tA (min. )

5
O

FIG. 11. Variation of the quantities e,„,e, y~m, p,z, and c
with the annealing time t&.

borne out by the data presented in Table III unless p,~ as-
sumes as high values compared to po (average magnetic
moment per alloy atom at 0 K) as listed in Table III and
depicted in Fig. 11. Moreover, the concentration of such
efi'ective moments c is given by c =ps/}Lt, e. The values of
c are also given in Table III. From the variation of c with
t„shown in Fig. 11, it is evident that only about 6%%uo of
the moments (i.e., the Fe spins in the present case because
Ni atoms in the a-FexNi80 xB»Si alloy series carry
negligibly small' moment) actually participates in the
FM-PM phase transition in the a-Fe&sNis4B&9Si alloy
and that this fraction is further reduced as the annealing
time t„ is increased. A similar observation was previ-
ously made by us on a-Fe&oo xZrx alloys.

1. Temperature dependence of the susceptibility effective
critical exponent

With reference to the effect of isothermal annealing on

y,e(T} (Figs. 6 and 11) and other relevant magnetic pa-
rameters, the important findings that deserve attention
are (I) the asymptotic critical exponents P and y remain
unaffected even though the structural relaxation caused
by isothermal annealing leads to a substantial increase in
Tc [TC=341.87 and 351.27 K for the as-quenched and
annealed (for tz =60 min) samples, respectively]; no dis-
cernible change in Tc occurs as t~ increases from 60 to
120 min and a slight enhancement in the value of M, for
temperatures well below Tc (Fig. 2), and (II) as t„ in-
creases, (a) the peak in y,s( T) broadens, (b) the peak posi-
tion, e,„, shifts to higher temperatures (from
e,„=1.5X10 ' for the as-quenched (AQ) sample to
e,„=3.0X 10 ' for the one annealed for 120 min}, while
the Peak height yre, increases from y~e (AQ}=1.5 to y~e
(t„=120min) =1.65, and (c} the crossover temperature,
e, gets displaced to lower temperatures (from
(AQ)=5. 5X10 to e„(t&=120min) =4.0X10 ). In
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view of the observation that dTc/dX =25 K/at. % Fe in
the Fe concentration range of present interest ' ' ' for
a-Fe+Nisp g B&9Si alloys, an increase in T~ of about 10 K
as a result of isothermal annealing indicates that after
this treatment the alloy in question behaves as if its Fe
concentration has increased by nearly 0.4 at. %. In sharp
contrast with this interference, the observations II(a)—(c)
suggest that the isothermal annealing has the same eQect
on the width of the peak in y,a(T), e,„, yves; and e„as
lowering of Fe concentration in the amorphous alloy
series Fe«Niso «B,9Si has ' ' on these quantities (see
Ref. 5 for details). While the correlated molecular-field
theory, ' the cluster-variational' and cluster-expansion"
calculations fail to resolve this contradiction, the Monte
Carlo simulations do ofFer a simple explanation provided
it is conjectured that isothermal annealing increases both
the correlated bond disorder, which accounts for the ob-
served enhancement of Tz, and site disorder, which is re-
sponsible for the type of behavior II(a)—(c). However, an
increase in both correlated bond and site disorder due to
annealing is hard to visualize physically. The only other
model, which provides a straightforward explanation for
all our observations, is the infinite 3D FM matrix plus
finite FM spin clusters model ' 3 (henceforth re-
ferred to as the FM matrix-FM cluster model), as eluci-
dated below. According to this model, the amorphous al-
loy under consideration in the as-quenched condition,
though homogeneous so far as the chemical composition
is concerned, contains microscopic regions of low density
in an otherwise high-density bulk such that the average
nn distance between Fe atoms in these low-density re-
gions (finite-spin clusters) is considerably greater than
that in the remaining bulk (infinite FM matrix). As a
consequence, the ferromagnetic coupling between spins
within the finite clusters is much stronger3 than that be-
tween spins in the FM matrix and hence the bulk Curie
temperature, Tc, is lower than that for the spin clusters.
Due to considerable mismatch in the nn interatomic
spacings within the zones that separate these microscopic
low-density regions from the high-density bulk, not only
large local quenched in stress-es but also strong exchange

fluctuations exist in these zones (for details, see Ref. 30).
Hence, the spins within these zones get frustrated
through the magnetostrictive mechanism plus the ex-
change fluctuations. During annealing process, the local
quenched-in stresses get progressively relieved through
an overall decrease in the average size of the clusters,
slight increase in the number of spins in FM matrix at the
expense of those originally belonging to the frustration
zones, and an increase in the average nn distance between
spins in the FM matrix, but soon an optimum arrange-
ment of atoms is reached, which corresponds to a state of
system in thermal equilibrium at T~, such that a further
increase in t~ has little or even no efFect on both the aver-
age size of the finite clusters and the average nn intera-
tomic spacing in the FM matrix. Thus, a steep increase
in T& up to t„=60 min is followed by saturation at
higher annealing times as contrasted with a slight
enhancement and early saturation in I, at low tempera-
tures (increase in M, is primarily due to a small number
of spins, originally belonging to the frustration zones, lost

to the FM matrix during the stress-relief process). The
above remarks, however, pertain only to the changes in
the low-temperature magnetic behavior brought about by
the annealing process and do not take into account the
temperature-induced alterations. As T~Tc, the ex-
change interaction between the spins in the FM matrix
weakens, while the FM coupling between the spins within
the finite clusters is still quite strong owing to the higher
Curie temperature for the clusters so that the cluster
spina polarize an increased number of FM matrix spins
and grow in size at the expense of the FM matrix. There-
fore, it is not surprising that only a small fraction of spins
participates in the FM-PM phase transition and this
fraction decreases further with increasing t„(Fig. 11).
Moreover, isothermal annealing promotes temperature-
induced cluster growth through the stress-relief process
and thereby ensures that by the time temperatures as
high as (or just above) Tc are reached the average cluster
size has increased as well as the cluster size distribution
has broadened as t„ is increased. As a result, isothermal
annealing simulates the change in the y,sj( T) peak width,

ff e,„, and e,p normally caused by the magnetic dilu-
tion process (the explanation for the efFect of magnetic di-
lution in terms of the FM matrix —FM cluster model can
be found in Ref. 5).

(H/M)' r =aoe+boM' ~, (12)

that involves the linear variables e and H and forms the
basis for the modified Arrott plot, cannot account for the
temperature dependence of the slope because the
coefficient bo (like ao) is temperature independent. How-
ever, within an extremely narrow temperature range
around Tz, where the slope of the AP isotherms does not
change appreciably, the SES form represented by Eq. (12)
is still applicable. Next, the temperature variation of
both the slope and intercept, on the ordinate, of the AP
isotherms is analyzed in terms of the SES (Ref. 21)I~rp=~ ( g)+br »r(~ j~— )»r (13)

with

a = A~[1+aM (
—r) '+a~ ( —Z) '] (14a)

or

and

a = AM(1+aM') (14b)

(Isa)

or

b = A (1+at) (15b)

B. Scaling equation of state in nonlinear variables

A close examination of the modified Arrott plot (AP)
shown in Fig. 1 reveals that the slope of the AP isotherms
goes on decreasing with increasing temperature. This
feature of the modified Arrott plot is characteristic ' of
ferromagnets in the crystalline or amorphous state. The
scaling equation of state
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that makes use of the nonlinear (NL) variables I=alt
and h =H/t. In Eqs. (14}and (15), (a) and (b) versions of
the expressions for the coeScients a and b describe the
nonanalytic and analytic corrections to the dominant
singular behavior arising from NL irrelevant and relevant
scaling fields, respectively. The best least-squares (LS}fits

to the observed temperature variation of the slope
(=bt '~r) and intercept [=[M(T,O}]' ~=a( —'E)] in a
narrow temperature range around Tc, based on Eqs.
(13)-(15) and obtained by varying the asymptotic and
correction amplitudes, while keeping Tc, h„and b, 2 fixed

at the KF value, 0.11 and 0.55, respectively, are shown in

Figs. 12 and 13 by the continuous (dashed) curves for the
version (a) [version (b)] of Eqs. (15) and (14). Such an ex-

ercise reveals that (I) inclusion of the correction terms in

the expressions for slope and intercept leads to a
significant improvement in the quality of the LS fits, (II}
the (a) and (b) options of Eqs. (14) and (15) describe equal-

ly well the temperature variation of the intercept and

slope within the temperature interval Tc —5

K & T & Tz+ 5 K (Figs. 12 and 13), and (III) the addition

of a constant (which is not predicted by the theory ') to
Eqs. (15a) and (15b} improves agreement with the experi-
ment considerably (a possible origin of this constant is

given below). Success of the nonlinear scaling theory ' in

correctly predicting the temperature dependence of the
slope and intercept encouraged us to attempt a detailed
comparison between the observed variation of M, and

gD
' with temperature and the one predicted by the ex-

pressions given by the nonlinear scaling theoryxi that ei-
ther include the leading nonanalytic corrections, i.e.,
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FIG. 13. The intercept [M(T,O}]'~~ of the linear Arrott plot
isotherms (Fig. 1) on the ordinate as a function of temperature
in the critical region. The dashed and solid curves through the
data points represent the theoretical variations predicted for the
term a (

—Z} in Eq. (13) when a is given by Eqs. (14a) and (14b)
of the text, respectively.

M, (T)=mD( —F)~[1+aIir ( —z) '+a~ ( —z) '], 1&0
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cal variations predicted for the prefactor bt ' of the second
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or analytic corrections, i.e.,

M, ( T)=B~(—z)~(1+aIIrz), z & 0

yD(T)=Art Ie r(1+a@), z&0.
(17a)

(17b)

The main points that emerge from this comparison are (i}
within the temperature ranges 0.96' & T & T& and

Tc & T & 1.04' (i.e., in the critical region), Eq. (16a) and

Eq. (16b) provide decidedly better LS fits to the M, (T)
and yII( T) data than Eqs. (17a) and (17b); however, in the
same temperature range, equally good fits to the M, (T)
or yD( T) data are obtained based on Eqs. (16a}and (4) or
Eqs. (16b) and (5), as already mentioned in Sec. III A, and
(ii) for3' T~1.29Tc, the uncorrected gII(T) data (open
circles in Fig. 3) are best described by Eq. (17b) plus a
constant B&[= —(7.0+0.1)X 10 and —(9.0+0. 1)
X10 for the as-quenched and annealed samples, re-
spectively]. In view of the latter finding, yD(T) has been
corrected for this additional constant in the entire tem-
perature range Tz ~ T ~ 515 K and the LS fits to the re-
sulting (corrected) data (solid circles in Fig. 3}have been
attempted using Eqs. (17b) and (16b). It turns out that
the LS fits based on Eq. (17b), the continuous curves in
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Fig. 3, for Tc ~ T ~ 1.5Tc are far superior in quality to
those involving Eq. (16b). Furthermore, the best LS fits
based on Eq. (17b) accurately determine the Curie con-
stant C = Az T&, which, in turn, permits a calculation of
the effective paramagnetic moment, p,z, through the rela-
tion p,s =2.828(CA/p)', where 3 and p are the atomic
weight and density, respectively. Regardless of whether
the alloy in question has undergone the annealing treat-
ment or not, the ratio of the moment per alloy atom in
the PM state, q, (=2.4+0. lpga), computed from p,s us-

ing the relation p,s. =q„(q, +2), to the moment per alloy
atom (in the FM state) at 4.2 K, q, ( =0.528@& ), turns out
to be 4.5+0.2. According to the Rhodes-Wohlfarth cri-
terion, such a high value of the q, /q, ratio asserts that
the investigated glassy alloy is a weak itinerant ferromag-
net. This inference is consistent with the conclusions pre-
viously drawn from the spontaneous resistivity anisotro-

py and spin-polarized photoemission studies on the
same or similar amorphous alloys.

It should be emphasized at this stage that the constant

B& is too large to be explained either by the presence of
higher-order correction terms in Eq. (17b) or in terms of
a diamagnetic contribution to yo( T) arising from the elec-
trons in the completely filled shells (and/or Landau con-
tribution from conduction electrons). Since the M vs H
isotherms exhibit slight but finite curvature even for tem-
peratures well above Tc presumably due to the presence
of finite-spin clusters (short-range magnetic order), we ar-

gue that the extrapolation procedure (which gives full

weightage to the high-field data only), employed in this
work to arrive at the values of initial susceptibility at
different temperatures, underestimates yo( T) particularly
for T &&T& where the magnetization data taken at low

fields deviate considerably from the extrapolated straight
lines (Fig. 1). Thus, the constant 8&, in some sense,
represents a correction to the extrapolated yo( T) data
due to the low-field deviations. We have verified this by
comparing the corrected yo '( T) data with the yo '( T)
values computed from the intercepts of the AP isotherms
on the abscissa in Fig. 1 obtained through an extrapola-
tion method that gives equal weightage to the low-field

and high-field data. After correcting for Br, yo '( T) loses

most of its curvature and exhibits a Curie-Weiss-like
behavior (Fig. 3) for T~1.11Tc. An immediate conse-

quence of the decreased curvature is that, as the tempera-
ture is progressively raised above Tc, the KF effective
critical exponent y, tt (e) [Eq. (3b)] for the corrected yo( T)
data stays constant at the 30-Heisenberg-like value in the
range 0 & e ~ 0. 15 and instead of going through a peak, as
is the case for the uncorrected data (Fig. 6), gradually de-
creases from this value for e) 0. 15 so as to approach the
mean-field (MF) value at @=0.5 (Fig. 14). Such a temper-
ature variation of y,z"(e) is reminiscent of that usually en-

countered in crystalline ferromagnets. Figure 14 also
displays the functional dependence on temperature of the
efFective critical exponents y",s(c) [introduced by Fahnle
and Souletie (FS)] and y,s (e), which correspond to the
cases~' when the coefficient a& =0 and a&%0 in Eq. (17b),
respectively, and are related to y,z"(e) through the rela-
tions
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zonal Fg
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FIG. 14. Temperature variation of the Kouvel-Fisher (KF),
Fahnle-Souletie (FS), and nonlinear (NL) forms of the e6'ective

critical exponent for the corrected initial susceptibility data.

yg( T)=y tt"( T) t e— (18a)

y, ( T) =y", ( T)+a e, (18b)

for the corrected yo(T) data. y",s(T) for the present al-

loy, though similar to y,z"( T) and the temperature varia-
tion theoretically predicted for S 1 Heisenberg spins
on the fcc lattice, widely differs from the one ob-
served ' in crystalline ferromagnets in that y",z in them
is either temperature independent or increases slightly
from its asymptotic value over temperatures ranging
from Tc to 3T&. The finding that in the present case
y",s( T) follows the predictions of the fcc S & 1 Heisenberg
model closely is consistent with the earlier result' that
the nn atomic configuration in amorphous Ni-rich 3d
transition metal-metalloid alloys is fcc-like and S = 1

Heisenberg model adequately describes their magnetic
behavior. By contrast, y,~, like y",z in crystalline fer-
romagnets, is essentially temperature-independent con-
sidering large uncertainty in the y,z values particularly
for temperatures @~0.1. The origin of such a large un-
certainty in y,& (e) can be traced back to the fact that the
correction term azZ in Eq. (17b) [and hence in Eq. (18b)]
becomes increasingly important for temperatures e & O. l

and that the coef6cient a& could not be determined to an
accuracy better than 10% in the present work. In this
context, an important point to note is that at the highest
temperature (=515 K), the correction term aP in Eq.
(17b) amounts to 30% (10%%uo) of the asymptotic term for
the as-quenched sample (the sample annealed at 400 K
for 120 min). Thus, if this decreasing trend in aP is

maintained as the sample finally goes into the crystalline
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state, one would expect this term to be negligibly small
for crystalline ferromagnets. In view of Eq. (18b), it is,
therefore, not surprising that y,l is temperature indepen-
dent for crystalline ferromagnets but not for their amor-
phous counterparts whereas y,z has a weak or even no
dependence on temperature in the latter case alone.

V. CONCLUSION

The main conclusions, based on the results of the
present study, are

(i) In accordance with the Harris criterion and the pre-
diction of the renormalization group calculations that the
critical behavior of ordered n =d =3 spin system with
tz(0 remains unaltered in the presence of short-ranged
quenched disorder, the asymptotic and leading
correction-to-scaling (CTS) critical exponents and the
universal amplitude ratios mo/M, (0) and Dm o/ho retain
their pure values (i.e., those for an isotropic ordered
n =d =3 spin system) both in the as-quenched and an-
nealed states.

(ii) Structural relaxation consequent upon isothermal
annealing does cause substantial change in the values of
the asymptotic and CTS critical amplitudes, Tc and the
ratio poho/ka Tc. The fraction of spina that actually par-
ticipates in the FM —PM phase transition is small and
reduces slowly as the sample is annealed for longer dura-
tions of time.

(iii) Nonanalytic correction terms, originating from the
nonlinear irrelevant scaling Selds, dominate over the ana-

lytic ones, arising on account of the nonlinear relevant
scaling fields, in the critical region but the reverse is true
for T »Tc.

(iv) Magnetization data obey the equation of state in
linear (nonlinear) variables, valid for second-order phase
transitions, for temperatures in the immediate vicinity of
Tc (in an extremely wide range that embraces the critical
region; particularly for T & Tz ).

(v) Initial susceptibility, yo(T), follows the generalized
Curie-Weiss law, Eq. (17b), from T& to 1.5T& with the
3D Heisenberg-like value for the exponent y regardless of
whether the sample is annealed or not. This permits an
unambiguous determination of the atomic moment in the
paramagnetic state.

(vi) The alloy in question is a weak itinerant ferromag-
net.

(vii) The infinite 3D FM matrix plus finite FM spin
clusters model provides a simple qualitative explanation
for the temperature dependence of the effective critical
exponent, y,s( T), for susceptibility and for the changes in

y, tt( T) brought about by the isothermal annealing.
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