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The infinite-range Ising spin glass in the presence of a Gaussian random field is investigated by means
of the replica method. The replica-symmetric solution and its instability are discussed; it is shown that
the Almeida-Thouless instability regions are always reduced by the random field. The crossover ex-
ponent ¢ associated with the irreversibility line is shown to be nonuniversal in the presence of a random
field, varying in a range from 1 to 3. Some of our results are compared with recent experimental mea-
surements performed in the diluted antiferromagnet Fe,Zn,_,F,.

I. INTRODUCTION

Disordered systems represent one of the most investi-
gated areas in physics nowadays, due to their relevance
for the understanding of the real world and numerous ap-
plications. Two of these systems, namely, spin glasses
and the ferromagnet in a random magnetic field, have at-
tracted special attention from many workers. Although a
lot of progress has been made on these problems, many
questions remain open, some of them being quite funda-
mental.

The theory of spin glasses!> has been mostly concen-
trated on the study of infinite-range interaction systems,
whose prototype is the Sherrington-Kirkpatrick (SK)
model.} The solution of the SK model turned out to be
highly nontrivial, presenting many unexpected features;
among many, one can point out a phase transition in the
presence of an external magnetic field, signaled by the
Almeida-Thouless (AT) line,* and the correct description
of the spin-glass phase, in terms of an infinite number of
order parameters, i.e., an order-parameter function.> Be-
ing infinite range, these systems are appropriate in the
limit of infinite dimensions, representing mean-field ap-
proaches for more realistic (short-range interaction) mod-
els.® One has no guarantee that such unusual properties
will survive in three dimensions, and this has been a point
of a lot of controversy lately.” !> Apart from this, many
experimental investigations' claim to have observed the
AT line, and so it may be that at least some of the predic-
tions of the SK model could be present in real systems.

The random-field problem, as formulated originally by
Imry and Ma,'* remained purely academic, until the ap-
pearance of its physical realization as a diluted antifer-
romagnet in a uniform magnetic field'® and the proof that
the static critical behavior is identical in these two sys-
tems.!® Since then, a lot of effort has been devoted to this
system from both experimental and theoretical points of
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view.'””20 In particular, an important question which
has been addressed concerns what the random-field prob-
lem has in common with spin glasses in a uniform
field.?! ~%

The joint study of spin-glass and random-field prob-
lems has been proposed as an appropriate system for the
description of mixed hydrogen-bonded ferroelectrics and
antiferroelectrics, the so-called proton and deuteron
glasses;>* % these may be considered as the electric coun-
terparts of magnetic spin glasses. Also, experiments on
the diluted antiferromagnet Fe Zn,_,F, in an external
magnetic field have presented a crossover between
random-field and spin-glass behaviors;*! ~3 in particular,
the phase diagram in the field versus temperature plane is
affected by the concentration x. This suggests that the
joint study of these two problems may also be suitable for
a better understanding of some diluted antiferromagnets.
In this paper we study the Sherrington-Kirkpatrick mod-
el in the presence of a Gaussian-distributed random mag-
netic field, by means of the replica method. In Sec. II we
start by defining the model and considering the replica-
symmetric (RS) solution. We analyze the instabilities of
the RS solution in Sec. III. Finally, we discuss our main
results in view of some experimental measurements car-
ried out for the diluted Ising antiferromagnet
Fe,Zn,_,F,.

II. THE MODEL AND ITS REPLICA-SYMMETRIC
SOLUTION

The SK model® in the presence of an external random
magnetic field is defined in terms of the Hamiltonian

“7{=—(2)J‘]S'S]_2 h,-Si ’
ij i

2.1

where S; ==*1, with i=1,2, ..., N, and the sum ) ap-
plied to all pairs of spins. The coupling constants {J;;}
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and the random fields {A;} follow independent probabili-
ty distributions,

N 172 J 2

. 0

P(Jij)— ;TJ—Z ] exp —? Jij_—N_ J } , (2.2)
172

P(h;)= A exp 2A2(h —hy)? (2.3

For a given realization of bonds and site fields
({J;j},{h;}), one has a corresponding free energy
F({J;;},{h;}), such that the average over the disorder

* 1;,» becomes

(FO{T5 30 (i) 10
= [ 11 [dJ,PUNITL(dhPh)IF({J;}, (R;)) .
(if) i

(2.4)

One can now make use of the replica method! in order
to get the free energy per spin as

—3f— hm _[IHZ({JU} {hi}) ] n

= lim llmN—([Z lin—D, 2.5)

N—>owon—0

where Z" is the partition function of the replicated sys-
tem. The usual procedure leads to

2 2
Bf=—(B:) (Bg) +hm mmg(m ,q%) , (2.6)
where
BJ 2
g(m?,q®)=—"2 S (map+ B 5 (qoy
2 a 2 (aB)
—InTrexp(H.q) , (2.7a)
H o= BJozmasa+(BJ 3 gPsesh
(aB)
+(BAY 3 S°SP+pBh, zsa (2.7b)
(aB)

Above, a and B(a,B= ., n) are replica labels and
3 (ap) denote sums over dlstmct pairs of replicas.

The extrema of the functional g(m®,q°) give us the
equilibrium equations

=(S%),
g®=(5°8P) (a#B),

(2.8a)
(2.8b)

where ( - - - ) indicate thermal averages with respect to
the “effective Hamiltonian” # .4 in (2.7b).

The analytic continuation n —0 in (2.6) may be easily
performed if one chooses the “naive” replica-symmetric

solution,’
m=m, Va; q“B=q, Y(aB) . (2.9)

With this choice, the free energy per spin [Eq. (2.6)] and
the equilibrium equations [Egs. (2.8)] become
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2 J,
(—B~4‘I—)——(1—q)2+§—9 2

Bf=— m
1 172
—J7 |55 | dzexp(—z’/2)n(2coshg), (2.10)
1 172
m= f A7 dz exp(—z?%/2)tanhé , (2.11)
1 172
- = (L .2 2
q=[ - 12# dz exp(—z%/2)tanh’¢ , (2.12)
where
A 21172
E=BJom+BJ |q+ 7} z+Bh, . (2.13)

At this level, the case hy7O0 leads to the uninteresting
situation of field-induced parameters (m+0, ¢#0); we
shall therefore consider h,=0, for the moment. Never-
theless, the random-field width (A) plays the role of an
inducing field which acts on the parameter ¢ only, i.e.,
g70, if A>0. In such case, there is no spontaneous spin-
glass order like the one found in the case A/J=0 (SK
model). However, one can still have a phase transition
associated with the parameter m. Hence, two phases are
possible in this case; namely, the ferromagnetic
F (m#0, ¢70) and the independent I (m =0, g#0), as
shown in Fig. 1. The critical frontier separating these
two phases is given by the softening to zero of the magne-
tization parameter m (throughout this paper, we will
work in units kz =1, i.e., B=1/T),

A/3=0.5

Z5 A/3=1.0

Jo/3

0 T T
0 1 2

FIG. 1. Phase diagram of the Sherrington-Kirkpatrick model
in the presence of a Gaussian random field of width A (for typi-
cal values of A /J), within the replica-symmetric solution. Only
in the case A/J=0 does one have, besides the ferromagnetic
(F) phase, the paramagnetic at high temperatures and spin-glass
at low temperatures (which are separated by the horizontal line
at T/J=1). For any A/J >0, only the F and the independent
(I) phases are present. The reentrance effect is stronger in the
SK case (A/J=0) and gets reduced as A /J increases.



50 EFFECTS OF A GAUSSIAN RANDOM FIELD IN THE. ..

172

T_JO © .2
7—7f—w gy dz exp(—z°/2)

2112
z. (2.14)

X sech?BJ [q + 7

The critical frontier F-I may be obtained analytically
only in the high- and low-temperature regimes. For high
temperatures, one gets, in first approximation,

2 2

T_Jo J A
—=— — | |= 2.15
J J Jo J 2.13)
For low temperatures,
T A 272
7=ﬂ 1+ 7
7 5 172 1
X|——|= —_— |, (2.16)
Jo |7 [1+(A/T)?]2 ]
such that at 7=0 one has
7 172 21172
0 T
—= | — 2.17
J 2 I+ J @.17)

In the intermediate-temperature region the F-I critical
frontier is obtained by solving Egs. (2.14) and (2.12) nu-
merically. In Fig. 1 this line is represented for typical
values of A/J. One notices that the random field favors
the independent phase and reduces the reentrance al-
ready observed in the replica-symmetric phase diagram
of the SK model. Alos, all curves for A/J>0 are
smooth, due to the fact that the parameter g is always
finite along these lines; only in the SK limit (A/J=0)
does g go from zero to a nonzero value, at the multicriti-
cal point (T/J=1, J,/J=1), leading to a cusp in the
phase-transition line.*

The RS solution may give a qualitatively good approxi-
mation of the true phase diagram, but it leads to serious
problems at low temperatures; a sign of this is a negative
entropy at 7=0. In our case, the entropy per spin in the
I phase, at T=0, is given by

1 1
2 1+(A/T?

which goes to zero as A/J— . As already noticed for
the SK model,! we believe that the reentrant effect
(independent-ferromagnetic-independent), observed in
Fig. 1, should be another artifact of the RS solution.
Indeed, such an effect is related to the negative entropy at
low temperatures; one may show that the derivative of
the F-I line at T=0 is given by

s(0)= (2.18)

d(T/]) _
d(Jo/J)

A

J

— (2.19)

2 ws(0)

1+

The negative entropy is often related to the instability
of the RS solution at low temperatures;* Eq. (2.18) sug-
gests that, at least in the I phase, the RS solution should
be unstable at low temperatures (except in the limit
A/J— o). This analysis will be considered next.
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III. INSTABILITIES OF THE REPLICA-SYMMETRIC
SOLUTION

The stability of a given solution is ensured by a
positive-definite Hessian matrix associated with the func-
tional g(m¢%q®) appearing in Egs. (2.6) and (2.7).
Analogous to what was done for the SK model,* it can be
shown that, within the RS solution, one of the eigenval-
ues of this Hessian matrix becomes negative below a tem-
perature defined by

2
foo
— o

where £ was already defined in the previous section.

Usually in the literature,"? two criteria have been used
for the identification of a spin-glass (SG) phase, depend-
ing on whether one is in a replica-symmetric space (a sin-
gle order parameter g is employed), or within replica-
symmetry breaking (many order parameters are needed;
actually, an infinite number of them).

(i) In the first case, the SG phase is associated with the
onset of the single parameter g; this can be found, e.g., as
one crosses the horizontal line at 7/J=1 for the case
A/J=0 (see Fig. 1). Such a line does not exist for the
cases A/J>0 since g is trivially induced by a finite
random-field width A.

(ii) In the second case, the SG phase may be associated
with the onset of replica-symmetry breaking, i.e., the
single-parameter solution (either induced or spontaneous)
becomes unstable in a region of the phase diagram delim-
ited by Eq. (3.1). To overcome this instability, an infinite
number of order parameters, i.e., an order-parameter
function, is required.’ If, in addition to this, such region
contains also a spontaneous ferromagnetic order, it is usu-
ally called a mixed ferromagnetic phase (like the one
found in the T /J-J,/J phase diagram of the SK model);
if no spontaneous ferromagnetism is present, it is
classified as a SG phase (like the one found in the
hy/J-T /J phase diagram of the SK model).

In the case A/J =0, both criteria described above lead,
in the T /J-J,/J phase diagram, to a horizontal line at
T/J=1, whereas for A/J>0 a horizontal line may be
found only within criterion (ii). In the discussion which
follows, a SG phase will be defined, for A/J >0, taking
into account criterion (ii).

Let us first consider the stability analysis for the phase
diagram in Fig. 1, i.e., hy=0. Throughout the indepen-
dent phase (m =0), Eq. (3.1) defines a line (for a fixed
value of A/J) which splits it in two regions (see Fig. 2).
At high temperatures one gets a region in which replica
symmetry is stable, presenting the characteristics of the
usual paramagnetic solution (except for the field-induced
parameter q); from now on, we shall refer to this as the
paramagnetic (P) phase. At low temperatures the RS
solution is not valid, characterizing then a SG phase.
One should observe that the SG phase is reduced by the
random field; actually, as A/J— o the SG phase disap-
pears, supporting the argument that the “negative-
entropy catastrophe," the reentrance (paramagnetic—
ferromagnetic—spin glass), and the instability of the RS

172

1 dz exp(—z%/2)sech’¢ ,

- (3.1)

I
J
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T/J TO 3 1/3 2/3112
—J—E 1—-2 Z 7 (A/J small) . (3.4)

A/3=0.0 « //—> 8/31=0.5

Jo/J

FIG. 2. Phase diagram of the Sherrington-Kirkpatrick model
in the presence of a Gaussian random field of width
A(A/J=0.0,0.5). The dashed lines define the frontiers of sta-
bility of the replica-symmetric solution. In analogy to the
A/J=0.0 case, four phases are also present for 0<A/J < o0:
the paramagnetic (P), the spin-glass (SG), the ferromagnetic (F)
and the mixed ferromagnetic (F’) phases.

solution are strongly correlated. Similar to the SK mod-
el, Eq. (3.1) provides a division of the ferromagnetic
phase into two regions, namely, the conventional fer-
romagnetic (F) for which replica symmetry is stable, and
the mixed ferromagnetic (F’') where the RS solution is
unstable (see Fig. 2). Analogous to the SG phase, the F’
region is reduced as A /J increases.

Let us now consider the instabilities for the case J, =0
and h,7#0. For a given value of A/J, Eq. (3.1) defines a
line in the plane hy/J versus T/J, below which the RS
solution is unstable. This Almeida-Thouless line, which
was at first introduced for the SK model (A/J=0)* is
nowadays associated with strong irreversibility effects in
real systems, and many experimental workers claim to
have observed it.! We now analyze how this line is
affected by the presence of a random magnetic field. For
a strong mean (h,/J >>1) one gets

T_4 1 1 1 (ho/J)?
T3 Var N+ 2P | T 2 1+

b

(3.2)

i.e., the presence of a finite width (A /J > 0) gives a slower
tendency towards 7=0.

For both mean and width small (hy/J,A/J <<1) one
can show that

173 2 2711/3

T 3 ho
=l-—= |2 245
T T, |4 7 J
173 A 2/3
= 21, 3.3
4 7 3.3)

where T, is the temperature obtained from Egs. (3.1) and
(2.12) for Jy=hy=0, i.e.,

Equation (3.3) presents, to lowest order, two distinct re-
gimes, namely, the “random-field” one,

=103 Cla] M me | (A>>h,), (3.5)
3|4 J J o
and the “spin-glass” one,
_[2]7 A v (A<<hy) . (3.5b)
4 J

These two regimes are interpolated by a reversal in the
curvature, and the crossover between them may be
defined as occurring at the infllection point. This is clear-
ly observed in the AT line for A/J=0.2, shown in Fig. 3.

One may define a crossover exponent ¢, associated
with the AT line [Egs. (3.5)], through,

T~(ho/J)?’® (hy/J small) , (3.6)

which may vary, in principle, both by changing A/J or
along a given line (i.e., changing T /J for A/J fixed). For
the two regimes discussed above [Egs. (3.5)], this ex-
ponent goes from ¢=1 (random-field regime) to ¢=3
(spin-glass regime). Such crossover behavior has already
been observed experimentally along the irreversibility line
of the Ising antiferromagnet Fe,Zn,_ . F,, for
x=0.31.373% As A/J increases, T is shifted to the left
and the range over which the AT line is dominated by the
random-field regime increases, i.e., the inflection point
occurs for higher values of h,/J, as shown in Fig. 4.
When A /J is large, the AT line becomes nearly a vertical
straight line, meeting the h,/J axis when A/J= .

Through the whole A/J range, the exponent
ho/J
2]
A/3=0.2
1<
0 T T 1
0.0 0.5 1.0
T/J
FIG. 3. Almeida-Thouless line for the Sherrington-

Kirkpatrick model in the presence of a Gaussian random field
of width A/J=0.2. An inflection point separates two distinct
regimes, the random-field (¢=1) from the spin-glass one

(¢=3).
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ho /g

T/

FIG. 4. Evolution of the Almeida-Thouless lines as A/J
varies [z=1/(1+A/J)]. The instability region is reduced as
A /J increases similarly to what happens in Fig. 2.

¢=1 (hy small; hy<<A) is found, but as A/J gets large
the above-mentioned crossover disappears. Analogous to
Fig. 2, the region of replica-symmetry instability is re-
duced by the random field (i.e., as A /J increases).

In what follows, we present our main conclusions and
discuss our results, comparing them with some previous
experimental investigations.

IV. DISCUSSION

We have studied the Sherrington-Kirkpatrick model in
the presence of a Gaussian random field of mean h, and
width A. Within replica symmetry and h,=0, the main
effects of a finite width (A/J >0) are to favor the in-
dependent ordering and reduce the reentrance of the in-
dependent phase, which is shown to be correlated to the
negative entropy at T=0. The stability analysis of the
RS solution shows that, in the 1 =0 phase diagram, the
regions of instability (i.e., the spin-glass and mixed fer-
romagnetic phases) are reduced by the random field. It is
well known that the reentrant effect for A /J =0 (which is
stronger than that of any A /J > 0) is completely removed
by Parisi’s replica-symmetry-breaking hypothesis;' we be-
lieve the same will happen for the cases A/J >0.

We have also investigated how the h,-T phase diagram
varies with A. Similarly to what happens in the case
hy,=0, the region of replica-symmetry breaking is re-
duced by the presence of the random field. Essentially,
two distinct types of AT lines were found, both scaling as
7~(ho/J)¥9, for h,/J small, where ¢ is in principle a
nonuniversal exponent, as we mention below.

(a) A/J <<1. A crossover between a random-field re-
gime (A >>h,), with ¢=1 (concave range), to a spin-glass
regime (A <<h,), where ¢ =3 (convex range) was found.
Other nonuniversal behaviors for spin glasses have al-
ready been reported in the literature.*!

(b) A/J>>1. The AT instability is signaled by a near-
ly vertical straight line which approaches the h,/J axis
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as A/J— o; one still has $=1, but no crossover to ¢=3
is observed for h /J small.

The above results may be compared with recent mea-
surements performed on site-diluted uniaxial antifer-
romagnets in the presence of a uniform magnetic field of
which one of the most investigated (and puzzling) is
Fe,Zn,_,F,.!™% Its percolation threshold is x,=0.24,
and even not having competing interactions it may
present spin-glass behavior. For x >0.40 it is well known
as a prototype of an Ising random-field system, whereas
for x =x, it behaves as a conventional spin glass. 3!~
For intermediate concentrations, both behaviors may be
found, depending on the value of the external field. In
particular, the case x =0.31 has been investigated in de-
tail;*> "3 a line corresponding to the appearance of ir-
reversibility effects, which is usually associated with the
Almeida-Thouless instability, has been observed in which
(i) for a very small external field (less than 1 T) this line
presents ¢=1.42; (ii) as the field is increased (above 1.5
T), a reversal in the curvature of such line is observed,
which scales then as the AT line for spin glasses, with
¢=3.4.

Within the usual precautions in what concerns the re-
sults of mean-field approximations, we may say that the
breakdown of reversibility for Fe; ;,Zng (F, in the pres-
ence of an external magnetic field may be satisfactorily
identified with the Almeida-Thouless instability presented
here (for small A/J), as shown in Fig. 3. It is amazing
how an infinite-range model can reproduce such a subtle
effect.

In Fig. 4 we present the evolution of the AT line with
A /J, which should be compared with the evolution of the
experimental equilibrium boundary [T (h)] for
Fe,Zn,_,F, in the range 0.25 <x <0.40 presented in the
literature (either Fig. 4 in Ref. 36 or Fig. 9 in Ref. 37).
Two important points should be stressed when compar-
ing these figures, as we discuss next.

(1) The instability region delimited by the AT line in
our Fig. 4 shrinks as A /J increases, whereas in the exper-
imental phase diagram the region below T, (h) (which
starts, for zero external field, at the Néel temperature
Ty ) is shifted to the right, forced by the increase of Ty as
x varies from 0.25 to 0.40. The region in the experimen-
tal phase diagram to be associated with the AT instability
is the glassy state which is defined for temperatures
T.(h)<T <Tcqy(h), where T,(h) signals the appearance
of long-range antiferromagnetic ordering. Although
nonequilibrium effects are present for T < T,.(h), due to
critical slowing down associated with activated dynamics,
their characteristics are very distinct from those of a
spin-glass state. In the experimental phase diagram such
a glassy state also gets reduced as x increases. For small
magnetic fields, one has ¢ =1.42 (x =~0.40) in the experi-
mental case,’®3” whereas we find $=1.0 (A/J— »); no
crossover is observed in either case.

(2) For high magnetic fields our instability region is al-
ways dominated by the exponential decay shown in Eq.
(3.2), whereas the experimental curve for T (h) ap-
proaches T'=0 with zero slope for x =0.40. One should
remember that the identification of a diluted antifer-
romagnet in the presence of a uniform external field with
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the ferromagnet in a random field is valid only in the lim-
it of small magnetic fields.'> 16

To conclude, we have presented an infinite-range Ising
spin-glass model in the presence of a Gaussian random
field, which is able to reproduce several recent experi-
mental results obtained for the diluted antiferromagnet
Fe,Zn, ,F, (0.25=<x =0.40). Surprisingly, our model
is based on competing interactions, whereas the com-
pound Fe,Zn,__F, is believed not to have them; this
may indicate that spin-glass properties should not be
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specific only to canonical spin glasses, but should rather
be quite generic, common to systems with a large number
of low-lying, almost degenerate states, which represent
multiple minima in the free-energy surface, as pointed
out in Ref. 36
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