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Large Fermi surface of the one-dimensional Kondo lattice model
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A Luttinger-liquid fixed point is obtained in the strong-coupling limit of the one-dimensional Kondo-lattice
model with a frustrating next-nearest-neighbor hopping. The Luttinger-liquid phase has a large Fermi surface
whose area is determined by the total number of conduction electrons and localized spins. A numerical study

for finite systems shows that the paramagnetic ground state of the finite Kondo lattice model away from
half-filling is adiabatically connected with this fixed point.

The Kondo lattice model (KLM) is one of the canonical
models for the heavy-fermion syste'ms. Although the model
has been studied intensively, it was only recently that the
ground-state phase diagram in one dimension was deter-
mined for the model with nearest-neighbor hopping.

' It con-
sists of three phases. The first is a ferromagnetic (FM) me-

tallic phase, which includes the low-density limit and the
strong-coupling limit. ' The second phase is a paramagnetic
(PM) metallic phase which is obtained in the weak-coupling
limit away from either half-filling or the low-density limit.
The third phase is an insulating spin-liquid phase at
half-filling. '

Among the three phases, properties of the PM metallic
phase are not well understood compared with the other two.
In one dimension many interacting electron systems belong
to the class of Luttinger liquids. In fact, numerical studies
for the KLM by exact diagonalization' or Monte Carlo
simulation show that the spin and charge correlations have a
dominant structure at 2kF, corresponding to the Fermi sur-
face (FS) which is determined only by the density of con
duction electrons without counting localized f electrons. On
the other hand, the KLM in the weak-coupling limit can be
regarded as an effective model for the periodic Anderson
model (PAM) in the limit of strong electron correlation. For
the latter it may be natural to guess that its PM phase has a
large FS, containing both the conduction electrons and f
electrons.

The fact that KLM is an effective model of the PAM does
not necessarily mean that the KLM also has the large FS. For
the PAM, f electrons are always mixed with conduction elec-
trons (ftc;)=(ctf;)*40, which means that the f electrons
have some finite weights at the Fermi energy. On the other
hand, in the KLM charge degrees of freedom of the f
electrons are completely suppressed [local U(1) gauge
symmetries], leading to the absence of the mixing,
(ftc;)=(ctf;)*=0. From this point of view, it would be
even surprising if the f electrons participate in the FS sum
rule. A variational Monte Carlo study by using the

Gutzwiller projected hybridization form supports the large
FS for the KLM. However, in the variational treatment it is
hard to decide whether the large FS is a consequence of the
choice of the trial wave function, or the real property of the
system. Therefore, even though the PM state of the KLM
may belong to the universality class of Luttinger liquids,
such a basic question as the large or small FS is not settled
yet.

In this paper we study the Kondo lattice model with both
nearest-, —t, and next-nearest-neighbor hoppings, —t'. First,
it is shown that for a negative t' there appears a region of the
PM ground state in the strong-coupling limit in addition to
that in the weak-coupling region. In the strong-coupling re-
gime we will show that the FS is large. This is the first
unambiguous example that localized electrons described
purely by spin degrees of freedom participate in the FS sum
rule. Next we show that for finite systems there is an adia-
batic path connecting the two PM regions in the strong- and
weak-coupling regimes. Although this is a suggestion that
the KLM in one dimension generally has a large FS in PM
phase, at present it is premature to draw a definitive conclu-
sion for infinite systems.

The Hamiltonian of the one-dimensional KLM studied in
this paper is written as

WJ tg (cj~cj + &~+ H.c.)—t' P (c, c,+z~+ H c)..

+J& S j S/j
J

where S„=X„c;,( ,'o)„ic.,—, and SI;-is a localized spin
1

with S= 2. In the following the KLM with only t is referred
to as t-KLM and the KLM with both t and t' as t-t'-KLM,
if distinction is necessary. Because of the electron-hole sym-
metry for the conduction electrons, it is sufficient to consider
electron concentrations less than half-filling (0(p=N/L
&1).
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In the limit of J=~, the degrees of freedom per site are
reduced from eight to three: a local singlet composed of one
conduction electron and an f spin, and an unpaired f spin (up
or down). By identifying these local singlets as vacant sites,
the J=~ KLM is mapped to the U=~ Hubbard model with
N= L —N—particles, which are referred to as f electrons in
the following. ' Since a hopping matrix element for the f
electrons is reduced to half, the effective Hamiltonian in this
limit is given by

1

W, , =+—g (f,~f;+,~+H c )+.—.g (f,~f;+2~+H c ), . .

15-

10-

0
0.0

el/I

~ ~

~ ~ ~
~ ~ \
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

~ ~ \
I ~ ~
~ ~ \
~ ~ ~

P0
~ ~ l
~ ~

~ l~ ~
~ ~
~ ~ ~
~ ~ ~~ ~
~ ~
~ ~
~ ~
~ ~
~ ~ ~~ ~ ~~ ~ ~

~ ~
~ ~ ~
~ ~ ~~ ~
~ ~

~

~ ~ ~

' '0

p
~

~~ ~
~ ~
~ ~
~ ~
~ ~
~

~~ ~~ ~~ ~
~ ~
~ ~~ ~
~ ~

~
~

~ 4
~ ~
~ ~
~ ~
~ ~

gb

Para

~ ~ ~
~ ~ ~
~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ I ~
~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ \
~ ~ ~
~ ~ ~
~ ~ ~

Ferro
' ~I ~ ~
~ ~ ~
~ ~ ~
~ ~ ~' ~ e
~ ~ ~

~ ~
~ ~ ~
~ ~
~ ~ ~

8

0.5

o9
~ I

~
~ ~
~ ~
~ e
~ I
I ~
~ ~

~ ~ ~
~ ~
~ ~
~ ~
~ ~
~ 0
~ ~
~ ~

~ ~
~ ~
~ ~
~ I

~ ~ ~~
~

~ l ~~ ~ ~

~
~ ~
~ ~

~
~ ~
~ ~

~ ~
~ ~ ~

~ ~
~ ~
~ I
~ ~
~ e
~ ~
~ ~

~ ~ ~

od&

OQ t
~ I 0
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ I ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

~ ~
~ ~
~ ~

~ ~

~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~1 ~ ~

00 0

Para
1.0

(2)

where the double occupancy of the f electrons is forbidden

(t t' m-odel). The change in the sign of the hopping matrix
elements comes from the fermionic sign of the original f
electron which is a component of the local singlet.

When t'=0, the ground state of the t-t' model has a
complete 2 -fold spin degeneracy, because the nearest-
neighbor hopping does not change the spin configuration.
The wave functions in the ground-state multiplet are"

J (J2( o ~ o (Jg
det( P (j) (fit, , f&~„„(0),--

where the one-particle eigenfunctions {P ) are chosen to be
the lowest W levels of the nearest-neighbor hopping terms.

A finite but small t' is sufficient to lift the spin degen-
eracy, since it introduces spin exchange processes. For a
small t', the effective spin interaction in the ground-state
multiplet may be calculated, keeping the charge configura-
tion fixed:

'''0-
& Oy 'ON

crt. o -~J ir~ S"S +ilo.i o.N +conste W
J

t'l2
J,ff= — sin up —sin2m p,2m(wp

(4)

where p= 1 —p. The effective Heisenberg coupling is ferro-
magnetic for t'&0 and antiferromagnetic for t'&0. For a
large but finite J, the second-order processes in t produce a
coupling of the same form with t' replaced by t /J. There-
fore, when t'&0 there is no frustration in the t-t'-KLM and
the ground state in the strong-coupling limit is ferromagnetic
for all 0(-p(. 1. On the other hand for a frustrated t-t'-KLM
(t'&0), the ground state is singlet in the strong-coupling
limit for any 0(.p(. 1.

We performed numerical exact diagonalization for the
frustrated t-t'-KLM with the open boundary conditions to
determine the region of ferromagnetism. Figure 1 shows the
phase diagram of the frustrated t-t'-KLM with t'
= —0.1 (t=1) determined by the systems from L =4 to
1.=9. Finite-size effects are very small in the present case,
similarly to the results of the t-KLM. In addition to the PM
region in the weak-coupling regime, a new PM region opens
from the side of low electron concentration to the strong-

FIG. 1. The ground-state phase diagram of the frustrated
t-t'-KLM with t' = —0.1.

coupling limit. It is seen that the zeroth-order estimation for
the FM and PM boundary, J-t /~t'~, fits fairly well. It
should also be mentioned that the theorem of ferromag-
netism for the KLM with one conduction electron does not

apply to the present case, because of the frustration intro-
duced by the negative t'.

Now we turn to the momentum distribution of the con-
duction electrons. In the strong-coupling limit, the momen-
tum distribution per spin in the t-t'-KLM is obtained from
that of the t-t' model through the relation

nk= nk —const&& sgn(fkf —k„)f fkf
—kz[ . (6)

For the U=~ Hubbard model, and therefore in the limit of
small —t' of the J=~ t-t'-KLM, e has been determined to
be —,

'
by the combination of the conformal field theory and the

Bethe ansatz solution. Ogata and Shiba have shown that
nz =

2 gives the best fits for the U=~ Hubbard model in-

dependent of the electron concentration, which means

nk = p/4 for the J=~ t t'-KLM. -
F
Figure 2 shows ni, of the J=~ t-t'-KLM (t'= —0.1) at

quarter-filling (p=-,') and third-filling (p=-,'). It shows

clearly that the FS is large. The arrows in the figure show the

nk= 2(1 x~p nk) &

where a PM phase is assumed for simplicity.
As we discussed already, in the strong-coupling limit, the

ground-state wave function for the t-t' model with a suffi-
ciently small —t' is given by a product of the Slater deter-
minant and the spin wave function for the spin--,' antiferro-
magnetic Heisenberg model. This wave function is precisely
the same as that of the U=oo Hubbard model studied by
Ogata and Shiba. "Note here that the single-particle energy
of the t t' model, t c-osk+t'cos2k, takes the minimum value
at k= m, if 0(.—t'(-0.25. Thus the Fermi points of the t-t'
model are at ~m(1 —p/2). It means that for the J=~
t t'-KLM, the -Fermi wave vector is also kz = m(1
—p/2) = m(1+ p)/2 and nl, is larger in between ~k~ than
outside. Therefore it is concluded that the ground state of the
frustrated t-t'-KLM is a Luttinger liquid with the large FS in
the strong-coupling limit.

A Luttinger liquid is characterized by the critical exponent
of the momentum distribution defined by
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FIG. 2. The momentum distribution of the J=~ t-t'-KLM with
(t' = —0.1) at quarter-filling (filled symbols) and third-fil'ling (open
symbols). The arrows indicate the singularities at 3kF where

kF m(1+ p).——

FIG. 3. Energy levels measured from the lowest singlet state for
L =4. The thick lines are for other singlets. A level crossing with

the lowest triplet occurs twice at J= 1.6 and J= 10.7, which are
the boundaries of the FM region.

3kF singularities. The critical exponent is not universal and

may depend on t'. At quarter-filling, from the numerical data
it is estimated as a=0.13 for t'= —0.1 and a=0.10
for t' = —0.25 with nk =0.11.For third-filling the best fits

F
are obtained by u = 0.14 for t ' = —0.1 and n = 0.11 for
t'= —0.25 with nj', =0.14. These results are consistent

F
with the previous discussions, if we consider the accuracy of
the analysis typically ~ 0.01—~ 0.02 for u. They also sug-
gest that u becomes smaller than the limiting value —,

' as —t'
is increased.

In general the Fermi momentum, defined by the singular-

ity in ni', may be a function of p and J. Now we know that

the FS is large in the strong-coupling limit,

kF(p, J)=vr(p+1)/2, independent of J. Suppose the KLM
has a small FS in the weak-coupling region,
kF(p,J)= m p/2. This may be possible if this small FS re-

gion is separated from the large FS region by another phase
like the FM phase or otherwise kF(p,J) must ]ump at some
critical J*(p). Therefore, concerning the problem of the FS
sum rule in the weak-coupling region, the first question is
whether the PM phase in the weak-coupling region is con-
nected to the one in the strong-coupling region through a
narrow corridor besides the half-filling line or split into two
parts (see Fig. I). If it is connected continuously, it is prob-
able that the FS is large everywhere. ' However, it is difficult
to determine the FM boundary in the region close to half-
filling. As an alternative approach, we looked at the energy
level scheme as a function of J at a fixed density (quarter-
filling). For this purpose we calculated low-lying energy ei-
genvalues for finite systems (L=4 and 8) with the open
boundary conditions. Figure 3 is the result for L =4. One can
see that the singlet ground states in both limits are continu-
ously connected. The same behavior is observed for L=8.
This implies that the symmetry of the singlet state in the
weak-coupling region is the same as that in the strong-
coupling region and that there is an adiabatic path connecting
the two regions.

The momentum distribution in the singlet state of the
t-t'-KLM is shown in Fig. 4 for different values of J. In this
figure, L = 8 and p=-,', and the open boundary conditions are
used. With the open boundary condition, the "momenta" for
a finite system k; (i = 1, . . . , L) are defined through the
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FIG. 4. The momentum distribution of the conduction electrons,

nk, for the frustrated t t' KLM with t' = —-0.-1: L =8 aud p= 2. (a)
nk vs k, compare with Fig. 2. (b) nk vs J. From top to bottom, k is
decreasing. J, is the value for crossover between the large and
small FS regimes.

relation, a;= —2t cosk; —2t'cos2k;, where a; are the single-
particle energies for the t t' KLM--By co.mparing Fig. 4(a)
and Fig. 2, it is readily seen that for large J, nk is similar to
that of J=& t-t'-KLM. The difference of nl', between the

neighboring k points is the largest at the position correspond-
ing to kF, —= mp/2 in the weak-coupling case. As J is in-

creased, the largest difference occurs at the position corre-
sponding to kF [see Fig. 4(b)].

A straightforward interpretation of Fig. 4 would be that
there is a transition from the large FS to the small one. Then,
however, it is hard to understand the existence of the adia-
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batic path mentioned above, especially in the situation that
there is no other singlet coming down. Another possible sce-
nario is that the KLM in the PM phase shows the large FS in
the thermodynamic limit but only at temperatures lower than
a characteristic energy like TK. For a finite system, there is a
finite low-energy cutoff in the problem, which is determined

by the discreteness of the energy levels for the conduction
band. The results shown in Fig. 4 indicate that as the J is
increased over the cutoff energy, the system shows a cross-
over from the small FS regime to the large FS regime. ' The
crossover coupling constant J, may be defined as the 1
where the difference of nI', at 2k+, is equal to that at 2k+. If
the infinite system shows the large FS behavior in suffi-

ciently low-energy scale, J, must decrease as the system size
is increased, since the low-energy cutoff becomes smaller.
From Fig. 4(b) we see that J,(L=8)-3.8, while for a
smaller system J,(L =4)-4.7. Therefore we may conclude
that the behavior of nj, as a function of J is consistent with

the idea that the KLM has a large FS in the PM phase even

in the small coupling region. However, it is also clear that a
more systematic finite-size scaling is necessary to give a
definite answer to the problem.

In conclusion, we found a Luttinger-liquid fixed point in
the strong-coupling limit of the frustrated t-t'-KLM. The FS
sum rule in this limit counts both the number of conduction
electrons and the number of localized spins. The critical ex-
ponent for the momentum distribution is —, in the limit of
small —t'.
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