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The magnetoelectric effect in composites of piezoelectric and piezomagnetic phases is investigated
theoretically. The magnetoelectric effect is totally absent in these two constituent phases, and so it is a
new property of the composites. A generalized theoretical framework based on a Green's function
method and perturbation theory is proposed to treat the coupled magnetoelectric behavior in the corn-

posites. Explicit relations for determining the effective magnetoelectric effect in the composites are de-

rived, and the different approximate expressions for the magnetoelectric coefficient of the 6brous com-

posites with 1-3 or 3-1 connectivity of phases are given. To illustrate the technique, numerical calcula-
tions of the magnetoelectric coefficients of the BaTi03-CoFe204 composites for various phase composi-
tions and particle shapes are performed. The theoretical estimates are shown to be in agreement with
available experimental results, and also show the interesting magnetoelectric behavior of the composites.

I. INTRODUCTION

The magnetoelectric effect is a coupled (or cross) two-
field effect, in which the application of either a magnetic
field or an electrical field induces an electrical polariza-
tion as well as a magnetization. Like other coupled-
response effects in composites (e.g., the piezoelectric
effect and pyroelectric effect in piezocomposites), the
magnetoelectric effect in composites has recently attract-
ed much attention owing to the significant interest in use
of the magnetoelectric composites for broadband magnet-
ic Geld probes which exhibit large magnetoelectric effects
and an exceptionally Hat frequency response. ' Magne-
toelectric composites with a surprisingly large magne-
toelectric effect have been made from ferroelectric phases
(e.g., BaTi03) and ferromagnetic phases (e.g.,
CoFe204). When a magnetic field is applied to a com-
posite of the piezoelectric perovskite and the spinel-
structure phases, the ferrite particles change their shape
because of magnetostriction, and the strain is passed
along to the piezoelectric particles, resulting in an electri-
cal polarization. The magnetoelectric effect obtained in
this way can reach a hundred times larger than that in
the single-phase magnetoelectric material Co203.

This magnetoelectric property of the ferroelectric-
ferromagnetic composite is known as a product property
of the composite, and results from the interaction be-
tween different properties of the two phases in compos-
ites. Neither ferroelectric phase nor ferromagnetic phase
has the magnetoelectric e8'ect, but composites of these
two phases have a remarkable magnetoelectric effect.
Thus the magnetoelectric effect is a product of the piezo-
magnetic effect (magnetic-mechanical effect) in the fer-
romagnetic phase and the piezoelectric effect
(mechanical-electrical effect) in the ferroelectric phase,
namely,

magnetic mechanical
Magnetoelectric effect =

mechanical electrical

or

M ] ff
electrical mechanical

Magnetoelectric effect =
mechanical magnetic

and is a coupled electrical and magnetic phenomenon by
elastic interaction. Similarly, a coupled magnetoelectric
effect can also be obtained by thermal interaction in a
pyroelectric-pyromagnetic composite.

In spite of efforts in the development of rnagnetoelec-
tric composites, the theoretical understanding of these
materials is quite limited. As with most composites,
studies on magnetoelectric composites are also concerned
with the estimation of their effective properties in terms
of details of their microstructures, i.e., phase properties,
volume fraction, shape, connectivity. etc. A theoretical
treatment is very necessary in order to design new mag-
netoelectric composites for applications. Recently, Mil-
grom and Shtrikrnan gave a compatibility condition be-
tween the effective magnetoelectric coefficient and the
dielectric and magnetic permeabilities for isotropic mag-
netoelectric composites of two magnetoelectric phases.
Their technique is not suitable for ferroelectric-
ferromagnetic composites because of the mechanical in-
teraction of the problem and the nonmagnetoelectric
effect in the two phases. More recently, Harshe,
Dougherty, and Newnham treated such a magnetoelec-
tric effect of piezoelectric-piezomagnetic composites in
terms of a simple approach. They assumed a relatively
simple geometrical model, a cubes model, in which the
so-called 0-3 or 3-0 composite with particles of one phase
(denoted by 0) embedded in the matrix of the second
phase (denoted by 3) was considered as consisting of
small cubes, and then solved the fields in one cube for
which the boundary-value problem involved is tractable.
This simple cubes model is an elementary series-parallel-
like model, and is lacking in theoretical rigor.

In this paper, a more rigorous treatment of the magne-
toelectric behavior of piezoelectric-piezomagnetic corn-
posites wi11 be performed in terms of a similar but some-
what different approach to the Green's function method
and perturbation theory which have been widely ern-
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II. FORMALISM

Consider a perfectly bonded piezoelectric and piezo-
magnetic composite. For the piezoelectric phase in the
composite, its e-type constitutive relations to describe the
coupled interaction between electrical and elastic vari-
ables are

cr=Cs —e E,
D=es+sE .

For the piezomagnetic phase in the composite, its consti-
tutive equations to describe the coupled mechanical-
magnetic behavior are

o=Cs —
q H,

B=qs+pH .
(2)

Here o, s, D, E, B, and H, are the stress tensor, strain
tensor, electrical displacement, electrical field intensity,
magnetic induction (or flux density), and magnetic field
intensity, respectively. C, a., and p, are the stiffness tensor
(measured at a constant electrical and magnetic field) and
dielectric and magnetic permeability tensors (measured at
a constant strain), respectively. e and q are the piezoelec-
tric and piezomagnetic coeScient tensors, respectively.
e and q are the transposes of e and q, respectively.

For a piezoelectric-piezomagnetic composite, because
of the coupled interaction between the two phases, the
constitutive relations to describe its coupled-response
behavior turn into coupled magnetic-electrical-
mechanical equations, namely,

ployed to treat the general linear-response properties of
inhomogeneous media (see, for example, the recent re-

view ). A theoretical approach has been developed re-

cently to determine the coupled electroelastic behavior of
piezoelectric composites and the coupled thermal-
electrical-mechanical behavior of piezoelectric and py-
roelectric composites by Nan and co-workers ' In this
paper, I will extend the theoretical method ' to address
the coupled magnetoelectric effect of piezoelectric-
piezomagnetic composites.

Section II contains the theoretical framework derived
by the Green's function method and the general solution
to the efFective coupled magnetoelectric coefficient of the
composites. As a practical example, we consider
specifically the case of aligned cylindrical fibers exhibiting
transverse isotropic piezoelectricity (or piezomagnetism}
embedded in a piezomagnetic (or piezoelectric) matrix
with such transverse symmetry, which are the technologi-
cally important composites with 1-3 or 3-1 connectivity
of phases. Two approximate solutions, namely, the so-
called non-self-consistency and self-consistency efFective-
medium approximations, for the efFective magnetoelectric
coefficient of such 1-3 or 3-1 composites are given in Sec.
III. The numerical results for the effectiv magnetoelec-
tric properties of BaTi03-Cope04 composites are
presented and discussed in Sec. IV. The conclusions are
summarized in Sec. V.

n=Cs —e E—q H,
D =es+ cE+aH,
B=qs+a E+pH,

(3)

C —e —q s

a a ED = e (4)

B q a p H

The matrix of these constitutive coeScient tensors is a
12X12 matrix. This matrix formulation is to be inter-
preted simply as multiplication of matrices and will
greatly simplify the resulting equations. For the compos-
ite, these quantities are local values depending on the spa-
tial position x. The efFective constitute coefficient tensors
of the piezoelectric-piezomagnetic composite are defined
in terms of averaged fields, namely,

(a& C* —e * —q
'

(s&
(D) = e* a* a' (E)
(B& q' aT' p' (H)

Therefore the problem essentially consists of the deter-
mination of the strain and electrical and magnetic fields
in the composite under certain specified boundary condi-
tions and then the performance of the averages.

The local principal constitutive coefficients X, (C, a,
and p) can be written as

x=x'+x', (6)

where the first term is the constitutive coefBcient of a
homogeneous comparison medium and the second term is
the fluctuation on the first. Let the composite now' be
subjected on its external surface S to a homogeneous
magnetic-electrical-mechanical boundary condition i.e.,

u;(8) =s,jxj =u;, P(S)= E, x;=P—
v (S}= H, x,=v— .

where u;, P, and v denote elastic displacement, electrical
potential, and magnetic potential, respectively. Consider
a state of static equilibrium in the absence of body forces
and free electrical charges so that

where a is the magnetoelectric coefBcient tensor and a
is the transpose of a. The magnetoelectric property a is
a new property of the composite, since it is entirely ab-
sent in the two phases making up the composite. Of
these constitutive coefficient tensors, C is a fourth-rank
tensor; e (e } and q (q ) are three-rank tensors; and a, p,
and a (a }are second-rank tensors. For simplicity of no-
tation, we have used the direct notation for tensors, and
dropped the often used superscripts E, H, and s on the
constitutive coefficient tensors which are used to denote
the constant-electrical-field, constant-magnetic-field, and
constant-strain conditions. The tensors C, e, q, e, , p, and
a are (6X6), (3X6), (3X6), (3X3), (3X3), and (3X3) ma-
trices, respectively, by means of the compressive repre-
sentation.

With the shorthand notation, Eq. (3} can be rewritten
as
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D, , =0, (7)

0
CijklSkl j +(Cijklskl nij+n qnij Hn ),j 0 s (8a)

(8b)

where the comma denotes partial difFerentiation. These
are coupling equilibrium equations.

Substitution of Eqs. (4) and (6) into (7) yields T11 T12 T13 ' 0

p0

T31 732 T33 HO

(13)

where G", G~, and G' are the modified elastic displace-
ment, electrical potential, and magnetic potential Green's
functions for the homogeneous comparison medium
(C,s,p ), respectively, " and (s,E,H ) are the homo-
geneous fields in the homogeneous medium.

We iterate Eq. (12) and obtain an explicit solution for
the local fields as

PinHn i +(mijn jn + in n+PinH'n ),i (8 )
with

In terms of the elastic displacement uk, electrical poten-
tial (I}, and magnetic potential u, Eqs. (8) appear to be

0
ijkluk, ij +(CijklSkl nij En Qnij +n )i j

isn't, in+( ijn~jn+einEn+ inHn ), i

(9a)

(9c)

uk(x) =ilk+ fgk;(x, x')F;(x')dx',

itp(x)=itp + fg~(x, x') Y(x')dx',

u(x)=u + fg"(x,x')Z(x')dx',

(loa)

(lob)

(10c)

The solutions for ilk(x), (I}(x), and v(x) can be obtained
as

T"=[I—G"C'+G"e (I—G~e') 'G&e

+G"q (I—G"y, ') 'G"q]

T' = —T"G"e (I—Gi'a')

T = T GuqT( I Gvtjs )
—1

T"=(I—G~K') 'G~eT",
T22 (I—Giles ) '(I+ G([)eT12)

=(I—G&a'} 'G(eT

T"=(I—G [[i,') 'G "qT",

T =(I Gv)M') G qT

T =(I—G" ') '(I+G" T' ),

(14)

where I'„Y, and Z represent the second terms in the
left-hand sides of Eqs. (9a), (9b), and (9c), respectively.
uk, p, and v are the homogeneous solutions of Eqs. (9a),
(9b), and (9c) under the given surface elastic displace-
ment, surface electrical potential, and magnetic potential,
depending only on C, a, and p, respectively. gk;(x, x'),
g~(x, x'}, and g "(x,x') are the elastic displacement, elec-
trical potential, and magnetic potential Green's functions
for the homogeneous comparison medium (C,a,p }."
The solutions of the local fields within the composite can
be obtained by differentiating (10) and then integrating by
parts: +((C&' —

q T )) A (15)

where I is the unit tensor, and the terms containing the
magnetoelectric coefficient a have been ignored because
the two phases making up the composite do not exhibit
the magnetoelectric effect. By first substitutin~ Eq. (13)
into (4) and averaging, then eliminating so, E, and Ho

from those equations obtained by averaging, and finally
comparing them with Eq. (5), we get the general solutions
to the six effective constitutive coefficient tensors of the
composite:

Cn ( (CT[[ eTT21 qTT31)) All+ ( (CT[2 eTT22) ) A[2

s(x)=s + fG"(x,x')[C'(x')s(x') —e (x')E(x')

—q (x')H(x')]dx',

E(x)=E +fG~(x, x')[e(x')s(x')+e'(x')E(x')

+a(x')H(x') ]dx',
H(x}=H + fG"{x,x'}[q(x'}s(x')+a (x')E(x'}

+y, '(x')H(x')]dx' .

eTn —( [(Cn C)T12+eTT22] ) (T22) —1

T*= ( [(C*—C)T"+ T"] ) (T")

en = ( [(e en )T12+ET22] ) ( T22)
—I

(11b) a*=((e—e')T' )(T )

p ( [(q q* )T13++T33]) ( T33 )
—1

(11 )
where

(16)

(17)

(19)

(20)

s' '

E' +
0 0

0 6'
C' —e

X e c.
'

q a
E, (12)
H

These equations can be expressed in the operator form
All —[(Tll ) (T12)(T22)—1(T21)

( T13 ) ( T33 )
—1(T31 ) ]

—1

A12 — (T22) —l(T21) All

Herein the terms containing T or T are ignored, since
e=O for the piezomagnetic phase and q=O for the
piezoelectric phase. These results are general and in-
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dependent of the models assumed for the composite, and
also provide the interrelationships between these effective
coefBcient tensors. Obviously, the three principal
effective moduli tensors, i.e., the effective elastic stifFness
C', the efFective dielectric constant tensor s', and the
effective magnetic permeability p, all contain the cou-
pled magnetic-electrical-mechanical effect. After ignor-
ing these coupled terms, Eqs. (15), (18), and (20) become

C» ((=Tll )(Tll) —1

a» (aT22)(T22) —1

~» —( T33) (T33)
—1

where the T tensors are simplified as

T"=(I—G"C') '

T =(I—G"y,')

(21)

(22)

IH. MAGNETOELECj. 'RIC CORI I ICIENT
OF 1-3 AND 3-1 COMPOSIrxS

As a practical example, first consider a 1-3 or 3-1 trans-
versely isotropic composite composed of a transversely
isotropic matrix and aligned but randomly located fibers
also exhibiting transverse isotropic symmetry. The fibers,
the matrix, and the composite are transversely isotropic
about the x3 axis, and x, -x2 is the basal plane of trans-
verse symmetry. In the limiting case that the aspect ratio
of the constituent particles approaches infinity, we can
obtain the foHowing simple approximate result for the
important component a33 of the magnetoelectric tensor

These results are the same as those for general linear-
response problems. Numerical results show that the
infiuence of the coupled effects on C», a, and p is gen-
erally weak, so Eqs. (21)—(23) are applicable for the deter-
mination of the principal effective moduli (C', a', and

p ) of the composite.
T lgl

The effective piezoelectric tensor e, Eq. (16}, con-
tains the piezomagnetic effect. If the piezomagnetic
effect in Eq. (16) is ignored, Eq. (16) also becomes the
known result for piezoelectric composites. The efFective
piezomagnetic tensor q

' is similar to the effective
piezoelectric tensor e '. If the piezoelectric term in Eq.
(17} is ignored, Eq. (17) is the result for piezomagnetic
composites. The behavior of q

' for the piezomagnetic
composites is similar to that of e ' for the piezoelectric
composites.

Equation (19) for the effective magnetoelectric
coeflicient tensor a' for the piezoelectric-piezomagnetic
composite is an important result, and this is the product
property of piezoelectric and piezomagnetic effects. The
composite, indeed, has a nonzero magnetoelectric effect,
though the magnetoelectric effect is absent in the two
constituent phases. Next we mainly discuss the magne-
toelectric effect of the piezoelectric-piezomagnetic com-
posite.

2f (1—f) 'e31 mq3, (k»+m ')
('k +m ')( k +m ') (27)

where k» and m are determined by their self-
consistency equations"e»
f +(1—f)ek+m» mk+m» (28)

f Nl m
'm (k'+2m ')+3k 'm '

m —m'
m (k'+2m')+3k»m' (29)

Although the results of a33 predicted by these three equa-
tions are different, obviously, a33=0 at f=0 or f=1, and
there is a nonzero a33 only in the piezoelectric-
piezomagnetic composite (f%0 or 1). This nonzero a3»3

results from the product interaction between the
piezoelectric ('e3, }and piezomagnetic ( q3, ) effects.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In order to have a better understanding for the theoret-
ical results above, we perform a numerical computation
for a two-phase transversely isotropic piezoelectric-
piezomagnetic composite with 6m' symmetry, such as
the BaTi03-CoFe204 composite. Piezoelectric-
piezomagnetic composites of this type have been intro-

2(e~& —eu)e3,
)k+m'

from Eq. (19}, where k=C»+C, 2 and m =C» —C,2.
Depending upon the choices of the homogeneous com-
parison medium, Eq. (24) can give diff'erent approximate
results.

For the 1-3 piezoelectric-piezomagnetic composite
with piezoelectric fibers embedded in a continuous piezo-
magnetic matrix, we can approximately take the continu-
ous piezomagnetic matrix as the comparison medium. In
this case, Eq. (24}becomes

2f 1 f '&31—q31

ek+m f (ek mk)

where f is the volume fraction of the piezoelectric phase,
and the superscripts e and m denote the piezoelectric
phase and the piezomagnetic phase, respectively.

For the 3-1 piezoelectric-piezomagnetic composite
with piezomagnetic fibers embedded in a continuous
piezoelectric matrix, which is an inversion of the 1-3
composite, a33 is

2f (1—f}'e3, q

k+'m —(1 f}( k ——'k)

Equations (25) and (26) are non-self-consistency (NSC)
approximations, and valid for matrix-based composites
with dispersive microstructure. Another important ap-
proximation is to take C =C', which is the self-
consistent effective-medium theory (SCEMT}. In this
case, a33 is determined by
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TABLE I. Properties of BaTi03 and CoFe204 to be taken for
numerical calculations of the magnetoelectric coeScients of the
composites.

C)l (GPa)
C&2 (GPa)
C„(GIa)

C33 {GPa)

I 33/I
'

e» (C/m )

e33 (C/m )

q» (N/Am)

q33 (N/Am)

BaTi03

166.2
76.5
77.4

161.4
1350

8
—4.22
18.6
0
0

CoFe204

286.0
173.0
170.5
269.5

10
125

0
0

580.3
699.7

duced in recent years to obtain enhanced performance in
magnetic field sensors. An important quantity used to as-
sess the performance of the composite for a typical device
is given by

+E33 33~e33

which is the magnetoelectric voltage coeScient of the
composite.

For computations, BaTi03-CoFe204 composites are
considered. The properties of the two phases used for
calculations of the magnetoelectric effect in the compos-
ite are given in Table I. For the sake of comparison with
experiments and theoretical results predicted by using the
cubes model (CM} of Harshe, Dougherty, and Newn-
ham, the available experimental data ' for the magne-
toelectric voltage coefficient for the BaTi03-CoFe204
composite and the CM approximate results for the 0-3
and 3-0 composites are also shown.

Some theoretical predictions of the effective magne-
toelectric coeScients of the composites are shown in
Figs. l —5. These predictions show that the numerical
values of the magnetoelectric coefficient a33 and voltage
coefficient aE33 of the composites with various connec-
tivities of phases increase from zero to the maxima with
increasing volume fraction f of the piezoelectric phase
because of the continuous enhancement in the elastic in-

teraction, and then approach zero at f= l. The .max-
imum numerical values of a33 lie in the intermediate
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FIG. 1. (a) Magnetoelectric coefficient a33 and (b) magne-
toelectric voltage coefficient a+33 of 0-3 or 1-3 composites for
various aspect ratios of the piezoelectric phase (denoted by 0 or
1) calculated by using the NSC approach. The CM results (Ref.
3) of a+33 for the 0-3 composite and three available experimental
data points (Refs. 3,4) (solid triangle and diamonds) are also
sho urn.

FIG. 2. (a) Magnetoelectric coefficient a33 and {b) magne-
toelectric voltage coefficient aE33 of 3-0 or 3-1 composites for
various aspect ratios of the piezomagnetic phase (denoted by 0
or 1) calculated by using the NSC approach. The CM results
{Ref.3) of a+33 for the 0-3 composite and three available experi-
mental data points (Refs. 3,4) (solid triangle and diamonds) are
also shown.
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FIG. 3. (a) Magnetoelectric coeScient a33 and (b) magne-
toelectric voltage coefBcient aE33 of the composites for various
aspect ratios calculated by using the SCEMT. Solid triangle
and diamonds are three available experimental data points
(Refs. 3,4).

composition range near f=0.5, because the stiffnesses of
the two phases are comparable in magnitude and the elas-
tic interaction between the two phases is strongest near

f=0.5. The maximum numerical values of aE33 which is
a combination property of a33 and c33 however, lie in the
low-volume-fraction f range, which is due to the fact that
the dielectric permittivity of the piezoelectric phase is at
least two orders of magnitude larger than that of the
piezomagnetic phase.

The aspect ratio r of the dispersive-phase particles has
a pronounced effect on the effective magnetoelectric
properties. With increase in the aspect ratio r of the
dispersive phase, the values of the magnetoelectric
coefficient a33 of the BaTiOi-CoFe204 composite change
from negative to positive values, and correspondingly the
values of aE33 change from positive to negative values, at
about r=3, as shown in Fig. 5. For the sake of clear il-
lustration, the values of aE33 on aE33 vs f curves for
r&10 have been shown with their positive numerical
values. As the aspect ratio is less than about 3, the nu-
merical values of the efFective magnetoelectric coefficients
of the composites rapidly decrease with increasing r. In
the range 10& r& 3 the numerical values of the efFective
magnetoelectric coefficients rapidly increase with increas-
ing r. For r&10, the numerical .values of the efFective
magnetoelectric coefficients change slightly with r and
finally approach the values in the limiting case of aligned
fibers (I/r=0), predicted by Eqs. (25)—(27). The changes
in the magnetoelectric coefficients with the aspect ratio r
predicted theoretically are interesting consequences, and
remain to be experimentally veri6ed.

The trend of change of aE33 predicted by the NSC ap-
proach is similar to that predicted by the series-parallel-
like CM for the 0-3 and 3-0 composites [Figs. 1(b) and
2(b)]. The NSC predictions are in agreement with experi-
mental results, but there exists large deviation of the CM

1.2

p 0$-

~ 0.6.8

OJL

L6

OA "
02, -.8

-C3—0(l)-3
(NSC)~ 34(1)
(NSC)~ St:~ivrr

d 0.2-
W.2

tL2 OA 6.6 68
VOiIa~ FatC5Oa f 10 100

FIG. 4. Comparison between the NSC and SCEMT predic-
tions of the magnetoelectric voltage coeScient aE33 for the 0-3
or 3-0 composites. Solid triangle and diamonds are three avail-
able experimental data points (Refs. 3,4).

FIG. 5. Magnetoelectric voltage coe%cient aE33 of the com-
posites as a function of the aspect ratio r of the dispersive-phase
particles.
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predictions from the experimental results. The large
discrepancy between the CM predictions and experiments
results from the inherent shortcoming of the simplified
cubes model, which overestimates the values of aE33 and
can be considered as an upper bound of aE33 of compos-
ites.

For the 0-3 (r=1} or 1-3 composite in which in
piezoelectric phase is the dispersive phase and the piezo-
magnetic phase is the continuous matrix, the characteris-
tic volume fractions corresponding to the maximum aE»
and a33 decrease with increase in the aspect ratio of the
piezoelectric particles (Fig. 1). For the 3-0 or 3-1 com-
posites with the inverse structures of the 0-3 or 1-3 com-
posites, the characteristic volume fractions corresponding
to the maximum a@33 and a33 increase with increasing as-

pect ratio of the piezomagnetic particles (Fig. 2). In these
cases, the large aE» is always obtained at low volume
fractions of the piezoelectric phase. An important conse-
quence is that the 3-0 or 3-1 piezoelectric-piezomagnetic
composite exhibits a larger magnetoelectric effect than
the 0-3 or 1-3 piezoelectric-piezomagnetic composite.

The difference between the NSC approach and the
SCEMT for the magnetoelectric coefficient lies in which
SCEMT expression for the efFective magnetoelectric
coeScient contains the effective stiffnesses of the compos-
ites estimated by self-consistency equations. Unlike the
effective piezoelectric properties of piezoelectric-polymer
composites, " there is no remarkable difFerence between
the NSC and SCEMT estimations of the efFective magne-
toelectric coefficient of the piezoelectric-piezomagnetic
composites because these two phases have comparable
stiffnesses (Figs. 1-3}. In the BaTiO&-rich and CoFeiO„-
rich composition regions, the behavior of the effective
magnetoelectric coefficients predicted by the SCEMT is

similar to that for the 3-0 (or 3-1) composite and for the
0-3 (or 1-3) composite estimated by the NSC approach,
respectively, as shown in Fig. 4. Close to f=0 and f= 1,
the results predicted by the SCEMT are in agreement
with those obtained from the NSC estimations.

V. CONCLUSIONS

Although the piezoelectric and piezomagnetic phases
have no magnetoelectric efFect, their composites have
coupled magnetic-electrical effects as a result of the elas-
tic interaction between these two phases. The magne-
toelectric effect which can be observed as the product
property of the composites has been treated first in terms
of rigorous theoretical modeling based on the developed
Green's function method and perturbation theory. For
transversely isotropic fibrous piezoelectric-piezomagnetic
composites, explicit approximate expressions for the
magnetoelectric coefficient have been given by means of
the NSC approach and the SCEMT. As a practical ex-
ample, explicit numerical calculations for the magne-
toelectric effect in BaTi03-CoFe204 composites with vari-
ous connectivities of phases have been performed over
the whole range of compositions following the NSC ap-
proximation and the SCEMT of the theory. In compar-
ison with the recent CM results, our theoretical predic-
tions are in good agreement with the available experi-
mental results, and the CM results can be considered as
upper bounds of the magnetoelectric coefficients of the
composites. The efFective magnetoelectric coefficients of
the composites can be strongly influenced by the connec-
tivity, the volume fraction, and the aspect ratio of the
particles. At low volume fractions of the piezoelectric
phase BaTi03, a large magnetoelectric voltage coeScient
of the composites can be obtained. The maximum mag-
netoelectric effect in 0(l)-3 piezoelectric-piezomagnetic
composites is smaller than that in 3-0(1) piezoelectric-
piezomagnetic composites. These numerical results show
the interesting behavior of the composites, which can
provide a general guideline for the evaluation of more
composite systems and the selection of the best combina-
tion with an efficient coupling of piezoelectric and piezo-

magnetic properties. The present theoretical framework
can also be directly generalized to the modeling of the
magnetoelectric effect in composites of a pyroelectric
phase and a pyromagnetic phase.
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