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The nucleation and growth of two-dimensional islands during the submonolayer stage of epitaxial
growth is studied with kinetic Monte Carlo simulations and mean-field rate equations. Previous work
on irreversible growth is extended to include relaxation of island shapes by edge diffusion. Island
morphologies range from ramified structures at low temperatures to compact, polygonal shapes at
higher temperatures. Using a self-consistent calculation of the rate coeflicients, quantitative agree-
ment is obtained between the solution to coupled, mean-field rate equations and the simulation
results for average quantities. The island size distribution function is described by a single univer-
sal “scaling function.” The average island size is the only important scale for determining island
densities. It is shown that the general form of the scaling ansatz applies to wider range of coverages
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than anticipated previously. This scaling form is combined with the solution to the rate equations

D

to explore explicitly the & dependence of the number density of islands (D is the surface diffusion

F
coefficient and F is the deposition flux).

I. INTRODUCTION

Experimental techniques for studying the nucleation
and growth of epitaxial thin films have progressed rapidly
over the past few years. Scanning tunneling microscopy?!
(STM) provides detailed atomic scale information. Low-
energy electron microscopy? provides real-time images of
the growing film with 100-A resolution and a field of view
spanning several micrometers. Thus, the collective dy-
namics of the evolving adlayer are readily studied. In
addition, reciprocal-space techniques, such as low-energy
electron diffraction® and in situ grazing incidence x-ray
scattering,* provide information on long-range correla-
tions in the growing films. The variety of experimen-
tal data for length scales ranging from angstroms to mi-
crons, and times ranging from picoseconds to minutes
provide the opportunity to develop a quantitative the-
ory of thin film growth. The “ideal” theory should span
these length and time scales to connect first-principles
electronic structure calculations with thin-film morphol-
ogy.

Models of epitaxial growth under typical molecular-
beam-epitaxy (MBE) conditions commonly assume the
following: Atoms are deposited at random onto an ini-
tially flat substrate at a rate of F monolayers/sec, and
diffuse freely on the crystalline substrate until they en-
counter another atom, group of atoms, or a defect such
as a step. Immediately upon application of the flux to
a defect-free area of the substrate, the population of iso-
lated adatoms begins to increase linearly with time until
small clusters (or islands) begin to nucleate. As the de-
position proceeds, the total number of islands increases,
eventually overtaking the number of monomers. The pe-
riod of time between this crossing of the monomer and
island densities, and the initial stages of coalescence is
referred to as the “aggregation regime.” In this regime
the film growth is characterized completely by the dy-

0163-1829/94/50(9)/6057(11)/$06.00 50

namical evolution of the island size distribution, island
shapes, and locations.

This work focuses on the study of the aggregation
regime for systems in which the overlayer wets the sub-
strate. The islands that form in this so-called “Frank-
van der Merwe growth mode” are only one atomic layer
in thickness. The observed morphology of these two-
dimensional islands range from ramified structures sim-
ilar to those observed in two-dimensional models of dif-
fusion limited aggregation® (DLA) to compact polygonal
shapes. Recent STM studies! of films grown at room
temperature reveal ramified islands for Au on Ru (0001)
and compact islands for Co on Ru (0001). Similar stud-
ies of Pt on Pt produced ramified islands at low temper-
ature and compact islands at higher temperatures.® The
varying morphologies reflect the complex nature of the
dynamical processes in this non-equilibrium system. Lo-
cal rearrangements of atomic positions within an island
drive the island to a compact polygonal shape, while mass
transport to the islands drives instabilities in the island
morphology.”®

It is important to understand the effect that the
atomic-scale processes have on the island shapes and dis-
tributions, since these islands form the building blocks
upon which all further growth proceeds. For example,
the morphology of the first monolayer has a large influ-
ence on the nucleation and growth of the second and sub-
sequent layers. This fact is clearly demonstrated in the
work of Kunkel et al., which linked the formation of ram-
ified islands to the observation of anomalous reentrance
of layer-by-layer growth of Pt on Pt at low temperature.?

Moreover, recent authors have proposed a direct way of
calculating the surface diffusion coefficient D by simply
counting the number of islands on the substrate.!® The
number of islands per unit area N has been observed to
have (approximately) a simple power-law dependence!?!
on the surface diffusion coefficient and the flux F' accord-
ing to
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N« (D/F)7". (1)

The so-called “minimal-model” proposed by Villain et
al.1? assumes that apart from a small logarithmic correc-
tion, average quantities, such as N, scale with a single
length, namely,

tx (D/F)"?. (2)

This assumption is argued to be valid in the latter part
of the aggregation regime in the adiabatic limit for the
monomer densities. From straightforward scaling argu-
ments and the assumption that coalesence limits the
number of islands on the substrate, Villain et al. pre-
dicted values for vy ranging from 1/3 to 1/2. The ex-
ponent is found to depend on the types of diffusional
processes assumed important for the specific material.

Much of the theoretical work from the past 25 years
focuses on the solution to a set of deterministic coupled
reaction-diffusion (or rate) equations!!'!3 that describe
the dynamical evolution of the island size distribution
function (ns(#)). (The island size distribution function
(ns(0)) is defined as the number of islands per unit area
containing s atoms at a coverage § = Ft. The angular
brackets represent an average over a large area of the sur-
face or an ensemble of systems.) As input into the rate
equations, one specifies rate coeflicients that contain in-
formation concerning all of the important atomic scale
processes as well as long-range correlations between is-
lands. The exact specification of these rates requires the
solution to a far-from-equilibrium many-body problem.
The complexity of the problem requires one to make ap-
proximations. Ideally, the resulting solutions should be
compared with experiment or computer simulations as a
test of validity.

Kinetic Monte Carlo (KMC) simulations'*!® provide
a “true” solution to the stochastic problem, which can
be compared directly with results from the rate equa-
tion analysis. Approximations for the capture rates can
be tested for ideal systems in which all of the atomic
processes have been accounted for. In principle, activa-
tion barriers for these processes can be calculated with
ab initio techniques. In the present work, however, a
limited subset of atomic-scale processes is considered,
and their rates are treated as parameters. The chosen
subset of processes produces irreversible growth of two-
dimensional islands. In this paper, previous work on this
model'®71® is extended to include relaxation of the is-
land shapes by edge diffusion. The details of the KMC
simulations are presented in Sec. II.

Section III contains a rate equation analysis of irre-
versible growth, which is compared directly with KMC
results. A solution to the coupled rate equations within
a self-consistent mean-field approximation, similar to the
“uniform depletion approximation” presented in Refs. 13
and 19, produces suprisingly accurate results. Quantita-
tive agreement between KMC simulations and the rate
equation results are obtained for average quantities (IV,
the average island size, etc.) with one (physically justi-
fied) fitting parameter, which depends only on the island
morphology. Moreover, the nucleation rate calculated
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from this continuum description reproduces the results of
a recent microscopic derivation for the adiabatic limit.}®

An alternate and equally important approach to study-
ing thin-film growth involves the application of scaling
theories. Scaling theories have proven to be a power-
ful tool for understanding nonlinear driven dynamical
systems,?? nonequilibrium growth processes,?! and per-
colation phenomena.2? For large values of s, the distri-
bution function (n,(#)) and related quantities are deter-
mined completely by specifying the average island size 3
(a rigorous definition of 5§ is presented in Sec. IV), the
coverage, and a single “universal” scaling function, which
is independent of coverage and the growth parameters!”

0 _ /s
(ns(0)) = 529 (g) : (3)
The coverage-dependent average island size, therefore, re-
places £ [Eq. (2)] as the defining length (or, in this case,
area). Recent approzimate models?>2* for growth find
that 5 has a power-law dependence on coverage over much
of the aggregation regime. More exact models!”1825
show that such a power-law dependence is only true
approximately in the “large coverage” limit. Measur-
ing lengths in units of £ and inserting the power law,
5~ (D/F)Y 6P, into Eq. (3), the scaling form of Ref. 23
is reproduced as

(no(0)) = 6"~ (D/F) "> §[s6=7 (D/F) ], (8)

Equation (4) applies to coverages between approximately
0.1 monolayer and the coverage at which coalescence be-
gins.

Section IV presents a scaling analysis of the island size
distribution function. It is shown that the more gen-
eral scaling form given by Eq. (3) is valid throughout the
aggregation regime over a large range of coverages and
ratios %, when one does not assume a power law for the
average island size. The scaling analysis, when coupled
with the mean-field solution to the rate equations pro-
vides a powerful technique for analyzing the scaling of
important quantities with —g—. In particular, the scaling
form is utilized to derive explicitly that the average cap-
ture rate for compact islands is independent of %, which
facilitates the calculation of the exponent . For ramified
islands, however, it is found that corrections to Eq. (1)
arise because the average capture rate is no longer inde-
pendent of %. This result is contrasted with the explana-
tion of Villain et al.!?
and conclusions.

Finally, Sec. V presents discussion

II. KINETIC MONTE CARLO SIMULATIONS

In order to study the growth of islands on a substrate
under typical MBE conditions, it is necessary to con-
sider systems that are large on the atomic scale. At low
growth rates (~ 1 monolayer/min), islands on the sub-
strate can contain over 10% atoms,! and the completion of
the overlayer can take several minutes. It is not possible
presently to follow the detailed trajectory of this large



50 DYNAMICS OF IRREVERSIBLE ISLAND GROWTH DURING . ..

number of atoms over relevant time scales using molecu-
lar dynamics. Instead, it is useful to consider a “simple”
system in which atoms reside on a lattice dictated by the
underlying substrate. Further simplification results from
the solid-on-solid restriction in which no overhangs are
allowed. The dynamics are defined by specifying transi-
tion rates for the “hopping” of atoms between adjacent
lattice sites. Such simplifications allow one to model epi-
taxial growth on realistic length and time scales.

In contrast to standard Monte Carlo techniques, KMC
is meant to reflect the time evolution of the system. This
implies that one considers not only the energies of the
initial and final states, but also the energy (and entropy)
of the intermediate states.!%1%:26 In the following, an Ar-
rhenius form is assumed for the “hopping rates” between
adjacent sites

h = v exp[~BEs), (5)

where v is the attempt frequency, 3 is the inverse tem-
perature, and Ep is the energy barrier separating the
initial and final states. Numerical values for these pa-
rameters are difficult to calculate or measure directly
and are not known in general. However, one expects
Ep to depend on an atom’s local environment. A very
common assumption®%27 is that the barrier for motion in
any direction along the surface is proportional to the cur-
rent number of nearest-neighbor bonds, while noting the
difference between adatom-substrate bonds and adatom-
adatom bonds. Hence,

Ep =nE + Ep, (6)

where Ep is a constant reflecting the energy barrier for
diffusion of an isolated adatom, F is a parameter reflect-
ing the relative binding energy of an atom bound to a
near neighbor (also on the surface) versus one that is
not, and n is the number of lateral nearest neighbors. In
the absence of an external flux, this assumption correctly
drives the system to its lowest free-energy configuration.

Alternatively, a directional dependence can be incor-
porated into the transition rates. There is sufficient ev-
idence to support the existence of large anisotropies in
these rates, i.e., energetic barriers are known to depend
on the hopping direction. The motion down a step edge,
for example, is less favorable than motion on the ter-
race. This step edge barrier has been shown?® to be a
crucial addition in KMC calculations of the reentrance
of layer-by-layer growth for Pt on Pt.® Also, recent em-
bedded atom method calculations for Cu estimate that
the activation barrier for detachment of an atom from an
island is four times higher than the barrier for diffusion
along an island edge®® (henceforth referred to as edge
diffusion). Further proof of the directional dependence
for diffusion barriers is provided by the experiments per-
formed by Hwang et al. on Au on Ru(0001).! They find
that even after anealing to 650 K, no Ostwald ripening3°
of the islands is seen. However, the island shapes relax
toward their compact equilibrium form due to a signifi-
cant amount of edge diffusion along the boundary of the
island.
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With this evidence in.mind, the current KMC stud-
ies assume irreversible attachment of adatoms to islands
and subsequent diffusion of the adatoms along the edge
of the island and/or terrace. This approximation avoids
the complicating effects, which arise in the rate equation
analysis due to a larger (> 1) critical nucleus. The ef-
fects of adatom surface diffusion and island structure on
the size distribution function can be isolated and studied
separately. The rules governing the KMC evolution of
the surface are as follows.

(1) Atoms are deposited randomly onto the substrate
at a rate F (monolayers/sec). All impinging atoms are
assumed to stick and no desorption is allowed.

(2) Adatoms on an open terrace “hop” at a rate

hp = vexp[-BEpD]. (7)

(Note that the diffusion coefficient is given by D = hp /4
in units, where the lattice constant is one.)

(3) Attachment of monomers to the islands is irre-
versible. Dimers are stable and will only diffuse as the
atoms move around one another.

(4) The barrier to diffusion along the edge of an island
has a contribution of Ep from the layer below and a con-
tribution of nE due to bonding with atoms on the same
layer, where n is the number of lateral nearest neighbors.
Hopping along the edge of an island, therefore, occurs at
a rate given by

he =vexp[—B(Ep + nE)]. (8)

As mentioned earler, Ep and F are not known in general.
These barriers are treated as model parameters in this
paper.

(5) No additional barrier is assumed for the interlayer,
downward hopping of atoms over the edge of the island.
However, atoms are not allowed to hop up a layer.

Simulations are performed on a (100) surface of a simple-
cubic lattice. The main results of this paper are insensi-
tive to the underlying symmetry as long as the diffusion
of free adatoms on the terrace remains isotropic. The
effect of anisotropic diffusion was considered by Bartelt
and Evans in an approximate model for growth.23

Two essential features are included in this simple
model: (i) the dependence of the overall length scale on
D, and (i) the dependence of the island morphology on
the competition between the destabilizing influence of the
diffusion field”® and edge diffusion. Figure 1 shows a top
view of the growth of islands produced by the KMC simu-
lations on a 400 x 400 lattice. Simulations for three differ-
ent temperatures at the same coverage (0.4 monolayers)
and growth rate are shown. The shades of gray depict
the atoms on the first layer of the deposit at different
stages of the growth. The lighter shades represent atoms
deposited at early times while the darker shades repre-
sent those deposited at later times. The simple model is
seen to produce the range of possible island morphologies
found in experiment.!'® At low temperature [Fig. 1(a)]
when the amount of edge diffusion is small, the islands
are ramified and resemble the fractal structures produced
in two-dimensional DLA models.® Since an island grows
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FIG. 1. Kinetic Monte Carlo simulations of irreversible is-
land growth at three different temperatures: (a) T = Ep/16,

D ~1x10"% (b) T = Ep/14, % ~ 8 x 10'%; and (c)
T = Ep/10, & ~ 4 x 10'2. The barrier to edge diffusion
E = Ep. The lighter shades of gray represent atoms de-

posited at early times, while the darker shades represent those
deposited at later times.
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in the direction from which the adatoms are diffusing,
there is a tendency for the islands to avoid one another.
This tendency delays coalescence and increases the range
of the aggregation regime. Atoms that fall on top of the
islands are quickly incorporated into the inner portions
of the island.

At a slighty higher temperature [Fig. 1(b)], edge diffu-
sion begins to play an important role. The branches are
wider and the shapes resemble the growth of dendrites.
The islands are still able to avoid one other, and the cov-
erage at which coalescence begins is comparable to the
lower-temperature case.

At a much higher temperature [Fig. 1(c)], edge diffu-
sion is very rapid. The shape of the islands relax to their
equilibrium form; a square on the (100) surface. Since
the shape of the island is restricted to a square, they can
no longer avoid one another. Coalescence is observed al-
ready at 0.4 monolayers. In addition, there are fewer
islands than the low-temperature case because the sur-
face diffusion rate has increased [consistent with Eq. (1)].
Quantitative results from the KMC simulations are pre-
sented in the next two sections.

III. RATE EQUATION ANALYSIS

Rate equations provide a useful tool for understanding
the early stages of epitaxial growth. In this section, cou-
pled rate equations, which describe the time evolution of
the island size distribution function (n,(6)), are derived.
In what follows, only those terms in the rate equations
appropriate for the simplified set of processes described
in the preceding section are retained. The evolution of
the island size distribution function is followed from early
times up until the islands start to coalesce. Under these
assumptions the coverage derivative (time is replaced by
the coverage 0 = F't) of (n,(8)) is given by

d(n,)
do

= (D/F)0s-1({n1){(ns-1) = (D/F) 75(n1)(ns)

+Re—1(Ns—1) — Ks(Ns) {s=2,...,00}

(9)

where D is the adatom diffusion constant. The capture
number, o,, is a measure of how effectively an island
of size s competes for the available monomers on the
surface. The first (second) term on the right-hand side
of this equation is the rate at which diffusing monomers
are added to an island of size s — 1(s) multiplied by the
total density of islands of that size. This process increases
(decreases) the number of islands of size s. The third and
fourth terms account for the direct capture of deposited
atoms by an island of size s —1 and s respectively. In the
quasistatic approximation (see below) Kk, ~ s2/ds with
d; the fractal dimension of the islands. At large values
of % and small coverages these direct capture terms are
small and do not effect the exponent in Eq. (1).
The density of monomers is described by
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1%21—) =1-2(D/F)o1{n,)* — (D/F) (n,) Zas(ns>

—k1(ny) — Zn,(n,) (10)

where the first term on the right-hand side results from
the flux of atoms onto the surface. The second and third
terms account for the loss of monomers to dimer forma-
tion and attachment to islands, respectively. The factor
of 2 in the second term is present because each dimer for-
mation results in the loss of two monomers. The fourth
term accounts for the loss of diffusing monomers due to
direct capture of the deposited flux, and the fifth term is
the loss of flux to the direct impingement onto existing
islands and monomers.

Note that all information about island structure and
the spatial correlations between islands is contained in
the time-dependent capture numbers o,. Complete in-
formation about the correlations is not contained in the
average quantities (n,(#)). The system of equations given
by Egs. (9) and (10), therefore, are not complete with-
out further information or assumptions. In this section,
approximations are presented in which the capture num-
bers can be specified completely, given knowledge of the
average densities, i.e., 0, = g5({n1), (nz),...). Numerous
approximations of this form exist in the literature. Ref-
erences 11 and 13 provide excellent reviews. In this work,
mean-field assumptions similar in spirit to the “uniform
depletion” approximation'31? are employed. Analogous
techniques have been used for the study of radiation dam-
age in solids®! and Ostwald ripening.32

Consider an island of radius R, (assumed to be circu-
lar) embedded in an ensemble average system of islands
and monomers. The local density of monomers, ny(r,8),
responds to the presence of this island. In particular,
if adatoms attach irreversibly, the density of monomers
vanishes at the edge of the island: n;(R,,0) = 0. The
simplest possible diffusion equation,3® which describes
the spatial variations of n; is

% =(D/F)V?*n, + J — (D/F) ¢ %n,, (11)
where J and £ can be calculated from the self-
consistency condition, n(r — co,0) = (ny(0)), i.e., the
presence of this island is not felt infinitely far away. In
this limit, Eq. (11) must reproduce Eq. (10). Direct com-
parison gives

J=1- Z Ke(Ts) (12)

and

£ =201(n1) + Y _ 04(n,) + (F/D) ka, (13)

8=2

where £ is the average distance a monomer travels before
being captured by an island or another monomer and
J is the fraction of the flux, which lands on the bare

substrate. Implicit in this approach is the mean-field as-
sumption that at every point outside of the island, the
local densities n,(r, ) take on their average value (n,(9))
(for s > 2).

Despite its deceptively simple form, Eq. (11) is dif-
ficult to solve due to its complicated time dependence
[€ = &(t)] and the growth of the island, i.e., the bound-
ary is moving. An approximate solution can be found,
however, by assuming that the rate of adatom diffusion is
large compared to the growth rate of the island (a good
approximation). It is sufficient, then, to fix the radius
of the island and solve for the instantaneous concentra-
tion of monomers. One must be careful to assure that
the boundary condition at large r is satisfied; hence, it
is not appropriate to simply neglect the left-hand side
of Eq. (11). One cannot satisfy Eq. (10) as 7 — oo if
the coverage (time) derivative of the more general n(r, 6)
is neglected. Instead, substract Eq. (10) from Eq. (11)
and neglect deviations of the coverage derivative from its
average value:

F (anl d(ny)

D\ 39  db

) =V?n; — € %(ny — (n1)) = 0. (14)

The resulting Helmholtz equation has the straightfor-
ward solution

Ko (r/€) ]
- 15
Ko (R/6) 19)
with K; a modified bessel function of order j. From this,
one can readily obtain the capture numbers,!!

— 27‘_& Kl (R,/f)

E KO (Ra/E) ’

Since the capture numbers can be written as functions
of the average densities, Egs. (9), (10), (13), and (16)
form a complete set of equations that must be solved
self-consistently for the island size distribution function.
Calculation of o, with Eq. (16) is accomplished easily
using an iterative scheme. The resulting set of ordinary
differential equations are solved numerically with a stan-
dard integration routine (it is only necessary to consider
values of s up to a maximum value, which is greater than
the size of the largest island). However, two outstand-
ing issues remain: (1) The islands seen in Fig. 1 are not
circular, and (2) one does not expect this continuum ap-
proach to apply to small values of s (especially the mobile
monomers, s = 1).

For noncircular islands, it is sufficient to replace the ra-
dius R, with an effective radius appropriate to the island
morphology. At low temperatures (or no edge diffusion)
when the islands are ramified, the effective radius has a
power-law dependence on s given by

ni(r,0) = (n1) [1

_ 27R, %
- <’n1) 67‘

(16)

Os

r=R,

R, ~ as'/d, 17)

where dy is the fractal dimension of the islands!® mea-
sured to be df ~ 1.72. Since the inner portions of the
fractal islands fill in due to deposition, o is a weakly
time-dependent quantity, which is taken to be nearly
constant (a ~ 1.0). Note that a is the only fitting pa-
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rameter in the theory that depends only on the island
structure. For compact islands at higher temperatures
(large amount of edge diffusion), the distinction between
square and circular islands produces minor differences in
the solutions to the rate equations. For circular islands
the radius is given by

m:¢§ (18)

ie., df = 2 and a = 1/4/7. For square islands, how-
ever, a better result is obtained with a larger value for o
(¢ ~ 0.95). For intermediate temperatures, the islands
remain compact until a critical size is reached. Subse-
quent growth produces ramified islands with R, of the
from given by Eq. (17). This work focuses on the two ex-
treme limits (compact or fractal), while noting the need
for further analysis. An estimate of the critical size, for
example, can be obtained from a linear stability analysis
of Eq. (11).78

The continuum approach produces an excellent esti-
mate for o, even for the smaller values of s. Far away
from the island and/or monomer, one expects Eq. (15)
to remain robust. The results indicate that the solution
is not very sensitive to near-field corrections due to the
small size or shape of the island. The use of Eq. (16)
down to values of s = 1 produces excellent results (see
below). One must be careful, however. From the per-
spective of a monomer, the other monomers are diffusing
at a rate D' = 2D. One then solves for o; using the
method above with D replaced by D’. To avoid double
counting, the derived capture number, must be divided
by two. This cancels the correction on the diffusion con-
stant and produces the same results as Eq. (16). In fact,
this capture number reproduces the result of a recent
microscopic derivation of the dimer formation rate in the
adiabatic approximation.}® This approximation is good
at larger coverage and assumes that d{n,)/df ~ 0 and
N > (n;). Furthermore, since £ > R;, Eq. (16) can be
replaced by its small argument expansion. After combin-
ing Egs. (10) and (16), one obtains,

4
71 [(1/a) (D/F) (n)]’

(19)

In Fig. 2, a numerical solution of the rate equations is
compared with results from KMC simulations for the case
of no edge diffusion (the barrier to edge diffusion is set to
a very large number). Plots of the monomer density,®
(n1), and total number density of islands N versus cov-
erage are shown for three different values of 2; (a) 105,
(b) 107, and (c) 10°. The coverage ranges from 0.0 to
0.4 monolayers. The dashed lines are solutions to the
rate equations and the solid lines are KMC results. The
agreement between the mean-field rate equations and the
KMC simulations is striking. Similar agreement is ob-
tained for conditions yielding compact islands.

Figure 3 shows a plot of the second moment of the
size distribution 5(@ (defined in the next section) for
the same values of %&. The agreement between the rate
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FIG. 2. Monomer density (n1(6)) and total number density
of islands N(0) versus coverage for ramified islands at (a)
D =10°% (b) 2 =107, and (c) 2 = 10°. The solid lines are
measured from KMC simulations, and the dashed lines are
numerical solutions of the rate equations.

equations and the KMC simulations is also very good.
At larger coverages, however, the island size distribution
function (n,(#)) is not reproduced very well by the mean-
field rate equations. Figure 4 shows the distribution at
three different coverages for —f: = 10%. Hence, the rate
equations are seen to reproduce average quantities but
not the distribution function. This is not surprising, since
the mean-field approximation does not properly include
island-island correlations. The following section discusses
the scaling properties of this distribution.

1000

100

5(0)

10

T LAMLL NSRS ALIL BENRLERLLY § T
1073 1073
0

10!

FIG. 3. Average island size § versus coverage for ramified
islands at (a) 2 = 10°, (b) 2 = 107, and (c) L= 10°.
The solid lines are measured from KMC simulations, and the
dashed lines are numerical solutions of the rate equations.



30 DYNAMICS OF IRREVERSIBLE ISLAND GROWTH DURING . . .

L

(n(8)) (x10°)
0.5

100 150 200 250 300 350
s

0 50

FIG. 4. Island size distribution (n,(6)) versus s at three
different coverages. The solid lines are measured from KMC
simulations, and the dashed lines are numerical solutions of
the rate equations.

IV. SCALING THEORY

The distribution function, defined by

p(5,0) = 5(ns(0)) =s(n:9(0))’

> s(na(9))

s=1

(20)

is equal to the probability that an atom, selected at ran-
dom from the growing layer, resides in an island that con-
tains s atoms. This section focuses on the dependence of
this distribution on the coverage and growth parameters
and the consequences of such dependencies.

The average size island 5(6), to which an atom belongs
at a coverage 0, is given by the first moment of Eq. (20)
according to

o > s*(na(6)
5(0) =) sp(s,0) = ilo— (21)

An alternate average island size can be defined by

oo

> s(na(6))

sav(0) = =2
> (na(0))

In this paper, a bar over a symbol denotes an aver-
age over the distribution given by Eq. (20), while the
subscript av denotes an average over the distribution
(ns(0))/ (N + (n1)) as in Eq. (22).

After the initial transient period, when the number
of islands becomes much greater than the number of
monomers, the finite size of the atom no longer influences

. /]
N+ (m)

(22)
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the behavior of the distribution function. The only im-
portant size scale for determining the distribution func-
tion becomes the average size of an island (since units
are chosen so that an atom occupies unit area, an is-
land containing s atoms has an area of s). Furthermore,
the distribution function only depends on the coverage
through this characteristic size, i.e., p(s,f) is a homo-
geneous function of s and 5(f). Given the requirement
of mass conservation and normalization, the scaling hy-
pothesis implies that the distribution function must have

the form?1:22
) , (23)

where g(z) is a universal function, which is independent
of £ and satisfies [[°dzg(z) = [;°dzzg(z) = 1. The
scaling function, g(z), is related to §(z) in Eq. (3) by
g(z) = zg(z). Futhermore, one can show that

w | @

p(s,0) = §“1g(

0 (o

m =N (24)

S =

where ( = [dzg(z)/z, a constant. Scaling is only ex-
pected to hold when N > (n;); hence, the (n;) in the
denominator of Eq. (22) can be neglected.

This scaling ansatz predicts that a plot of 3p(s,8) as
a function of s/5 should produce a curve, g(z), indepen-
dent of the coverage and % (in the aggregation regime).
Figure 5 presents a test of this prediction using KMC
results. In panel (a), the data for several different cov-
erages at one value of the ratio % = 10® are plotted as
suggested above for the case of fractal islands (no edge
relaxation). For coverages ranging from less than 0.001
to more than 0.4, the data collapse is excellent. The re-
sulting curve is the scaling function. Panel (b) shows the
scaling function for a single coverage (0.2 monolayers) for
three different values of %. Again, excellent data collapse
is observed. The last curve in panel (b) (represented by
a @) is the result for the case of compact islands. The
scaling is insensitive to the growth parameters and the
structure of the islands. The fact that the results for sev-
eral different conditions result in a unique curve is proof
of the applicability of the scaling form.

Given the observation of scaling behavior for the prob-
ability function p(s,0), it is worthwhile to pursue further
scaling properties of the system. In particular, the appli-
cability of Eq. (1) to these simulations can be explored
and the exponent 7y can be deduced from the form of the
differential equations®® with the aid of Eq. (23). Since 5
is setting the size scale, it is important to calculate the
dependence of 5 on the growth parameters. According to
Eq. (23), the effect of varying these growth parameters
on the island densities is contained in 5. An equation for
§ is obtained by substituting Egs. (9) and (10) into the
coverage derivative of Eq. (21). Neglecting direct attach-
ment, § obeys

d . _
—10(5 = 1)] =2(D/F) (my)z0. (25)
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FIG. 5. Scaling function for varying growth conditions and
coverage. Panel (a) is for fixed 2 = 10° at four different
coverages for ramified islands. Panel (b) shows the scaling
functions at fixed coverage (6 = 0.2) for (O, O, and +) three
different values of £ for ramified islands, and (0) L =108
for compact square islands.

Summing Eq. (9) and neglecting (n;) with respect to N
in Eq. (10) gives

dN \
T (D/F)o1{n1) (26)

and

d{nq)
dé

=1—(D/F)(n1)oayN. (27)

The % dependence of N, (n;), and 5 can be derived
from Egs. (25)—(27) only if the effect of these growth
parameters on o,, and & is known. This is facilitated by
the scaling ansatz if one assumes the rate coefficients to
take the simple form (as in the mean-field calculations),
o, = g(s€7%). Then, g,y is given by

1 oo
Tav = ;fh(ns(f)))
1 [ dz

¢ 5o (@)

= f (s6%4). (28)
From the definition of £ [Eq. (13)], for N > (n,),

ds/2

s¢~Y = 5(1-41/2) [¢of (56 ))
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Assuming that Eq. (29) can be solved for 3¢~9/, the re-
sulting value of 3¢~ is a function only of #5(2/ds—1),
Therefore, o,, must have the form

Tav = f (95‘2/df—1>) . (30)

All of the dependence on % in this equation is contained

in the average size §. In particular, for compact islands,
ds = 2 and g,y is found to be independent of-g‘ A similar
analysis can be performed for 7, i.e., & = & (05(2/4r~1).
Note that the above result applies only in the scaling
regime.

At larger coverage in the adiabatic limit for the
monomer density, the left-hand side of Eq. (27) is small
in comparison to the right-hand side. If one neglects the
weak logarithmic dependence of o; on %, it is easy to
show from Egs. (25)—(27) that

N(6) ~ (D/F)7",
(n(8)) ~ (D/F)~OFV/2, (31)

(5(6) —1) ~ (D/F)”

with the exponent, v = 1/3 for compact islands. These
results have been derived previously!!:1216:17:23 for the
irreversible model by assuming that o,, is independent
of D/F. The current analysis provides a justification for
this assumption for the case of compact islands.

For fractal islands, however, o,, is no longer indepen-
dent of %. Equations (25)—(27) have a parametric form,
and it is not possible to extract analytically a simple
power—law with coverage-independent exponents. Cor-
rections to Eq. (31), however, are small and time de-
pendent. Figure 6 shows scaled plots of N, (n;), and
(8 — 1) versus coverage for values of % ranging from 10°
to 1010 for ramified islands. At early coverages (650.1),
exponents for the compact island case provide a good
description of the data for the monomers and average is-
lands size (see below). At larger coverages the difference
between compact and fractal islands is more pronounced
and small deviations from Eq. (31) are observed. In Fig. 7
the total island density is plotted versus % at a fixed cov-
erage (0 = 0.2). The slope of the curve for the fractal
island case is larger than for the compact island case.
Again, the rate equations provide the correct value for
these number densities.

Villain et al.'?2 proposed a correction for the value of
v for fractal islands based on the assumption that only
coalescence can limit the total number of islands. The
effect of coalescence, however, is not included in the self-
consistent rate equations. The dependence of N on D/F
is altered from the compact island case long before coa-
lescence can play a role. Therefore, a different physical
interpretation emerges. The difference in size of a fractal
versus compact island increases with the average island
size and, hence, with —g—. The larger ramified islands com-
pete more effectively for the available monomers, leaving
fewer monomers for island nucleation. The net result is
a decrease in the total number of islands when compared
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FIG. 6. Scaled plots of N (), (n1(6)), and (3(0) — 1) versus
coverage for ramified islands. Each panel shows five different
values for % ranging from 10° to 10'°. % = 105 is the first to
diverge from the universal curve as the coverage decreases.

0.001

with the compact-islands case.

The deviation of the curves in Fig. (6) from the uni-
versal curve at lower coverage occurs when the system
has not yet reached the adiabatic limit. This seems to
occur at a higher coverage for N than for the other quan-
tities of interest. In fact, (n,) and (5 — 1) scale through-

jo. o]
]
21 0 compact
1 s ramified
] — rate equations
8
ﬁ’ -
o
2 <]
T 5 T T TTTTT T
10 10 107 10®  10°

D/F

FIG. 7. Number density of islands N versus % at a fixed
coverage (0 = 0.2) for compact (df = 2, a = 0.95) and fractal
(df = 1.72, a = 1.0) islands.
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out the aggregation regime. This is fully consistent with
Eq. (24). Assuming the scaling form to be correct for

(3 —1), N must have the form N ~ 8/[1 + (%)(7) q(0)],
where g(6) is the function shown in Fig. 6(c). Until 3 be-
comes much greater than one, both N and § — 1 cannot

obey Eq. (31). The coverage at which this occurs goes to

Z€ero as (%) — 00.

Using an analysis similar to that which resulted in
Eq. (30), the exponents in Eq. (31) predicted by other
approximations for o, can easily be derived. For exam-
ple, it is common to assume that the capture number is
proportional to the perimeter of the island,'®2437 je.,
0, = asP. Missing from this approximation is the influ-
ence of the other islands. Based on this assumed form
for o,, from Eq. (23) one can show that o,, ~ 37, which,
when inserted into Egs. (25)—(27), produces an incorrect
estimate for v, viz., v = 1/(2p + 3). Ratsch et al.?®
recognized this problem and proposed capture numbers
of the form o, = alN9sP. The current analysis reveals
that, for compact islands, the correct 7 is obtained if
the capture number is any integrable function of (Ns)?
(p = q)- The classical derivations'!!3 for the rate coeffi-
cients presented as functions of R,/{, where { = 1/v/7N
is the average distance between islands, satisfy this crite-
ria, since R,/¢ ~ v/Ns (compact islands). Such deriva-
tions provide better physical insight than simple fitting
to power laws. In particular, the self-consistent, mean-
field description produces results which are superior to
that produced by oversimplified, power-law approxima-
tions for the capture rates.

V. CONCLUSION

This paper presents a detailed analysis of the growth
of two-dimensional islands during the early stages of epi-
taxy. Direct comparison between numerical solutions to
the rate equations and KMC simulations produces sur-
prising results. A straightforward, self-consistent, mean-
field treatment of the rate equations produces quantita-
tive agreement for average quantities. The theoretical
framework for calculating the rate coefficients was dis-
cussed over 20 years ago in a review article by Venables.!3
Direct comparison with KMC simulations have allowed
a refinement of these techniques. In particular, we have
extended the formalism of Venables to apply to rami-
fied and noncircular islands with the introduction of the
island dimensionality dy and one fitting parameter.

Despite the quality of such approximations, much of
the recent theoretical work has focused on a crude power-
law form for the rate coefficients, namely, 0, = s?. Such
simplifications provide the correct qualitative behavior
and aid in the derivation of analytic results. It can
only produce quantitative accuracy, however, if desorp-
tion from the surface is allowed to “short circuit” the
communication between islands. If the desorption rate
is small, the results can be misleading. The dependence
of the number of islands on %, for example, is not cor-
rectly reproduced for the irreversible model. Further-
more, the average island size is predicted to have a power-
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law dependence on coverage for much of the aggregation
regime.2* No such power law is observed in the KMC
simulations or the mean-field analysis presented in this
work.

This has particular significance in the final form of the
scaling ansatz [Eq. (23)]. If 5 is assumed to have a power-
law dependence on @ the scaling ansatz takes the form of
Eq. (4). Equation (4) was first proposed by Bartelt and
Evans?? to describe the scaling behavior for the growth of
point islands. In their model, each island occupies only
one point on the substrate and the exponents v and 3
are found to be 1/3 and 2/3, respectively. For islands of
finite extent, however, the nucleation rate must saturate
at higher coverage as the amount of room left for new nu-
cleation decreases. In this case, N approaches a constant
and f = 1 (Refs. 18 and 25) [see Eq. (24)]. The point
island exponent (3 = 2/3) is never observed in the KMC
simulations presented in this work, and the asymptotic
approach of 5 to a linear form is valid approximately only
over a limited range. Instead, it is shown here that the
entire aggregation regime obeys the more general scaling
form given by Egs. (3) or (23) when 5 is not restricted to
a power law.

An important conclusion derived from the scaling
ansatz is that the mean-field, average capture number
0.y for compact islands is independent of % in the scal-
ing regime. This leads directly to the correct power-
law dependence of N and (n;) on % thus justifying
derivations presented in previous studies of irreversible
growth.1%16:23 Furthermore, the mean-field analysis re-
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veals that deviations from this simple dependence for the
case of fractal islands are due primarily to the nontrivial
dependence of g,, on % when dy # 2.

The details of the island size distribution are not re-
produced by the mean-field analysis (or the simpler ap-
proximations discussed at the end of Sec. IV). In partic-
ular, the scaling form predicted by Eq. (23) or, equiva-
lently, Eq. (3) is not an exact solution of the rate equa-
tions. Further analysis of the distribution function re-
quires a detailed analysis of the island-island correlations
and how these correlations effect the form of Egs. (9) and
(10). Bartelt and Evans?® studied the island-island cor-
relations for approximate models of irreversible growth.
Talbot and Willis®! investigated the effect of these cor-
relations on the “sink strength” (or capture number) of
voids in irradiated material. In the interest of calculating
the correct distribution function (verified with KMC sim-
ulations), a similar analysis is warranted for the current
problem.
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FIG. 1. Kinetic Monte Carlo simulations of irreversible is-
land growth at three different temperatures: (a) T = Ep/16,
L ~1x10'% (b) T = Ep/14, 2 ~ 8 x 10'% and (c)
T = Ep/10, 2 ~ 4 x 10'®, The barrier to edge diffusion
E = Ep. The lighter shades of gray represent atoms de-
posited at early times, while the darker shades represent those

deposited at later times.



