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Small-angle neutron-scattering investigation of long-range correlations in silica aerogels:
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Numerical simulations of gel formation by off-lattice diffusion-limited cluster-cluster aggregation
(DLCA) of identical spherical particles in a cubic box are performed. Both the correlation function g (r)
and the small-angle scattering function S(q), which is related to the Fourier transform of g(r) —1, are
calculated for the resulting gel structure which is made of connected fractal clusters. In addition to the
short-range features already described in a previous paper, it is found that g (r) goes through a minimum

before tending to unity for large r values. As a consequence the scattering function S(q) exhibits a max-

imum at small q values. After multiplying S(q) by the form factor P(q), the intensity curve I(q) is cal-
culated and its behavior is found to be in good agreement with small-angle neutron-scattering experi-
ments on silica aerogels of various densities. In contrast with previous approaches, the low-q maximum

in the I(q) curve is here directly quantitatively accounted for, without introducing any phenomenologi-
cal ad hoc term to describe the intercluster correlations.

I. INTRODUCTION

Silica aerogels are known to be good examples of frac-
tal materials. A revealed by small-angle x-ray-scattering
(SAXS) or small-angle neutron-scattering (SANS) experi-
ments, ' they are made of a disordered, but homogene-
ous, array of connected fractal clusters resulting from the
aggregation of primary particles. The analysis of the
wave-vector dependence of the scattering intensity I(q)
has permitted the determination of two characteristic
length scales which are the average size a of the particles
and the average size g of the clusters. Three distinct
domains of wave vectors can be identified. At large q
(q )a },the scattering is dominated by the density fluc-
tuations associated with the particle surface so that, for
smooth particles, I (q) follows the Porod law,
I(q)-q . At intermediate values of q, for

' &q &a ', the fractal nature of intracluster particle
correlations is revealed by a power-law behavior
I(q)-q, where D is the fractal dimension of the clus-
ters. Finally, at small q values, for q «g ', the scatter-
ing intensity saturates and eventually decreases as q tends
to zero.

Since the range of wave vectors of the fractal regime
may often be narrow, it is interesting to have quantitative
information about the full I(q) curve. In a previous pa-
per, hereafter referred to as Paper I, we have focused on
the crossover between the fractal regime and the Porod
regime. From a numerical calculation of I(q) for simu-
lated fractal aggregates, we were able to fully take care of
the short-range correlations between the particles consti-
tuting the clusters. However, such a calculation cannot
simply be extended to describe the long-range intercluster
correlations. As far as long-range properties are con-
cerned, the single-aggregate approach is only valid for ex-
tremely diluted solutions of aggregated particles where

the mean interaggregate distance I is much larger than
the mean radius of gyration R of the aggregates. Other-
wise, the theoretical I(q) curve of a single aggregate,
which saturates for q values smaller than R ', in the so-
called Guinier regime, is no longer valid down to q
values of order l ', where interaggregate correlations
start to have some influence. In fact, if one neglects other
scattering contributions such as scattering by thermally
activated fluctuations, I(q) should vanish for q &I
since, for distances larger than I, the system becomes
homogeneous and should no longer scatter the incident
beam. Such behavior cannot be avoided in the case of
aerogels were l and R are of the same order of magnitude
and should be replaced by g. If the experiments can be
performed down to suSciently small q values, if no other
artifactual inhomogeneities are present and if scattering
by thermal fluctuations is small enough, all the experi-
mental I(q} curves for gels or aerogels should exhibit a
maximum. In practice, a maximum is observed, or not,
depending on the range of q values available. When it ex-

ists, this maximum is more or less pronounced depending
on preparation conditions (concentration, catalytic pH,
etc.).

Several authors have tried to make some quantitative
fit of I(q) in the intermediate- and low-q regime for aero-

gels or similar gel systems. Some of them ' have used a
formula due to Fisher and Burford' (see below formula
22} in which g plays the role of a radius of gyration.
Many others ' "" have used a semiempirical formula
obtained by introducing a cuto8' function to limitate the
fractal scaling, in which g enters as a correlation length
(see below, formula 24). In all cases, these approaches do
not take into account the intercluster interactions which
give rise to a maximum in the I(q) curves. Recently,
Posselt, Pedersen, and Mortensen' have addressed this

problem by introducing a hard-sphere model to describe
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the packing of the connected clusters.
In this paper we present quantitative results for the lo-

cation and shape of the maximum of the I(q) curve from
numerical simulations of the full aerogel structure. This
work can be considered as a continuation and improve-
ment of the work reported in Paper I. To model the
aerogel, we use here the diffusion-limited cluster-cluster
aggregation model (DLCA) in a box '4'5 with a
sufBciently large initial concentration, rather than the
hierarchical model' which is only able to build a single
aggregate. The difference is that the correlation function

g (r), instead of tending to zero for r ~ oo, tends to a con-
stant value, which can be taken equal to 1 after a proper
normalization. Intercluster correlations are revealed by
the presence of a minimum of g (r). The location of this
minimum allows one to estimate the mean cluster size g.
As a consequence, the small-angle scattering function
S(q), which is related to the Fourier transform of
g (r) —1, exhibits a maximum, whose location depends on
the concentration. We show that these results are in

good agreement with SANS experiments on silica aero-
gels and we are able to present some quantitative fits with
only two adjustable parameters.

In Sec. II, we describe the numerical simulations of gel
formation. In Secs. III and IV, we give the results of the
calculations for g (r) and S (q), respectively. In Sec. V we
compare our numerical results with experiments. In Sec.
VI we present a discussion about the physical meaning of
the correlation length and in Sec. VII we give a con-
clusion.

II. NUMERICAL SIMULATIONS OF GEL FORMATION

We have considered a three-dimensional off-lattice ex-
tension of the original cluster-cluster model' ' in the
case of a sufficiently large particle concentration to get a
gelling network at the end of the aggregation process.
Such a model was first proposed by Kolb and
Herrmann' to describe the formation of gels, but, at this
time, they were considering a two-dimensional model on
a lattice.

Initially, identical spherical particles of unit diameter
are randomly disposed in a cubic box of edge length L
(here L is not necessarily an integer) using a standard
sequential addition procedure: attempts are made to
center particles, one after another, at points whose coor-
dinates are random numbers uniformly distributed be-
tween 0 and L. If a particle overlaps a previous one, it is
discarded and a new trial is made. If the process gen-
erates N particles, the dimensionless concentration, or
volume fraction, c is given by

m Nc=
6 L

From previous studies, ' it is known that, with this pro-
cedure, c cannot exceed an upper limit which is called the
"jamming concentration, "c =0.385.

Let us consider the starting configuration as a collec-
tion of aggregates containing one particle each. At a
later time, one obtains a collection of N, aggregates, the
ith aggregate containing n,. particles, so that

n

pn, (3)

In most of our simulations, we have taken a= —0.55, a
value close to —1/D, where D =1.78 is the fractal di-

mension of the resulting aggregates built in three dimen-

sions (3D), ' in order to insure that the diffusion

coefficient of the aggregates varies with the inverse of
their radius. However, in some of our simulations we
have varied a for a reason that will be explained later.
Then a space direction is chosen at random among the six
directions +1,+1,+1 and an attempt is made to move
the cluster by a step of one unit length in that direction
(note that this choice corresponds to performing a ran-
dom translational Brownian motion on a lattice but, since
the original coordinates of the particles are not integers,
the aggregates themselves are built off lattice). If the
cluster does not collide with any other cluster during this
motion, the displacement is performed and the algorithm
goes on by choosing again a cluster at random, etc. If in-

stead a collision occurs, the cluster is translated in the
chosen direction by the shortest distance ensuring that
one of its particles becomes tangent to one particle of the
colliding cluster. Then the collection of clusters is updat-
ed: the two colliding clusters are discarded and a new

cluster, formed by sticking together the colliding clusters,
is added to the collection. After that, one cluster is
chosen at random, etc. Periodic boundary conditions are
used at the edges of the box. The process is stopped
when a single aggregate is reached. If the concentration
is larger than a characteristic gel concentration c~, the
final aggregates spans the box from edge to edge in the
three space directions. This is the usual convention to
define a gel network.

A series of calculations has been done to determine the
gel concentration c as a function of the box size L. In
practice we have varied the concentration and we have
performed 20 independent runs for each concentration.
The gel concentration has been defined as being the con-
centration at which ten runs end up with a gel. The re-
sults are given in Fig. 1 as a log-log plot of c versus L.
As already found by Kolb and Herrmann, ' the gel con-
centration tends to zero in the infinite-L asymptotic limit.
Since, at the gelling threshold, an aggregate of fractal di-
mension D reaches the size L of the box, one should have

L
—(3—D)L

L3

Qur data are well fitted with the slope —1.28+0.05, giv-
ing D=1.72+0.05, a value slightly smaller but quite
close to the fractal dimension D= 1.78 of DLCA in three
dimensions. ' Note that we do not recover here a larger

g n;=N.
i=1

The algorithm proceeds as follows. An aggregate i is
chosen at random according to a probability p„which

l

depends on the number of particles n, that it contains,
given by
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We have used this formula to compute g (r) in the gels re-
sulting from our simulations. For each particle in the
box, we have counted the number of particle centers lo-
cated between spheres of radius r and r +5r, taking care
of the periodic boundary conditions when investigating
regions outside of the box. Then we have averaged the
result over all the N particles in the box and divided it by
24cr 6r. Moreover, g(r), obtained that way, has been
averaged over a large number of independent simulations.

A typical g (r) curve is shown in Fig. 3. It results from
an average over 20 simulations with I.=57.7 and c=0.05.
Due to the large number of averages made, the curve is
less noisy than the f (r) curves reported in Paper I and
the short-range features are more clearly revealed. Not
only does one see the peak at r = 1 and the discontinuity
at r =2 but also one can observe a weaker singularity at

10
10

FIG. 1. Log-log plot of the gel concentration c~ as a function
of the box size L. The fit by a straight line is shown which gives
a slope of —1.28+0.05.

fractal dimension at the gelling threshold as Kolb and
Herrmann found in two dimensions. ' We do not know
the reason for such discrepancy (this might be due to the
fact that we work o8' lattice here and that we are limited
by the geometrical "jamming" effect rather than by lat-
tice percolation).

In all the calculations reported below, we have con-
sidered c values much larger than c, in order to get a gel
far above the gelling threshold and to be sure that the
correlation length g is smaller than the box size L Typi-.
cal examples of gel networks for two different concentra-
tions are depicted in Fig. 2 where we have visualized a
two-dimensional projection of a slice of the box. The
slice thickness has been chosen to be proportional to Ijc
in order to get the same mean coverage in projection.
Thus the only di6'erence between the two pictures is in
the way the apparent local densities deviate from the
mean. As one sees larger holes in case (a), it is apparent
that the mean cluster size is larger in that case where the
concentration is smaller than in case (b).

III. CALCULATION OF THE CORRELATION
FUNCTION g ( r)

As usual the two-point correlation function g(r) is
defined such that g (r)d'r is proportional to the probabili-
ty of finding a particle center in a volume d r at a dis-
tance r from a given particle center. Consequently, for
an isotropic material, the number of particle centers dn
located between r and r +dr from a given particle center
is proportional to g(r)4~r dr. Knowing from Eq. (l)
that, in average, the number of particle centers per unit
volume is 6cla, one can normalize g (r) to unity when r
tends to infinity, by writing

dn = g(r)4mr dr =24cg(r)r~dr .6c

FIG. 2. Two-dimensional projections of the particles con-

tained in a slice of thickness l after obtaining a gel in a box of
size I.=57.7. Cases (a) and (b) corresponds to e=0.0095,
1=34.6 and c=0.038, 1=8.65, respectively. Cross sections of
particles that are cut by the front slice edge are shown in black.
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FIG. 3. Plot of g(r) versus r for L=57.=57.7 and c=0.05. This
curve results from an average over 20 simulations.
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'

d b analyzing distances between sp crea tangent
toto each sphere o a ih f d'mer in a manner very simi ar
atwhat we did in aperd'd ' P I to explain the discontinuity a

r=2. After that, g (r) behaves difFerently than in aper
es ver close to 1It oes through a minimum and becomes y

in a large range o r va ues.f 1 . But other features appear for
larger r values outside the range of Fig. 3: g r goes

h
'

around r =L due to correlations be-through a maximum aroun
~ ~

tween a given particle and th
'

ge ima es of its local environ-
ment trans at y1 ed b L in the six directions +1,+1,k .
This is an a i aTh' '

rtifact due to the periodic boundary con i-
ve c we havetions. However, for c values far above cg, we

of r values nearidentified a suSciently large range o. r
r =L /2 where g (r) stays equal to 1 with a very good pre-

~ ~

4 we show the g(r) curves obtained forIn Fig. , we s ow
L =57.7 and different c values by emphasizing g''

in the re ion
near the minimum. ne cannear

' . 0 can see that the location of the
c. The minimum corre-minimum strongly depends on c. e m' '

ds to distances between particles located at the peri-spon s o
phery of the clusters, where the local density is smaller.

timate of the mean cluster size. We wi.. try'll tr to be more
precise a out e c ub th 1 ster geometry in the discussion of
Sec. VI, but, since we have found a characteristic eng
let us call it g.

lo -lo lotThe dependence of g on c is reported in the og- og p o
of Fi . 5. Assuming that the clusters arer fractal with0 ig.
fractal dimension D, one shou d ge]d

c
—1/(3 D)—

(6)

The value g= repo ee =3 re orted for the largest concentration
c=0.1 should be considered as artifactual since or suc a
concentration the minimum o gf (r) sticks on the singu-
larit at r=3, as seen in Fig. 4. A straig. .t-' h-linefitoft earity a r=,
remaining points for the largest bo gix size ves a slope of—0 77+0.03 leading to D =1.70+0.06, again slightly
smaller but quite close to the fractal dimension

FIG. 4. Plots of g (r) —1 versus r for L—r L=57.7 and different c
= .0250050.1. These curves result from averagesvalues c =0.~ ~ ~

over 30, 20, and 20 simulations, respective y.l.

f 3D DLCA aggregates. The discrepancy can be ex-0
our values of gpaine y c1

'
d b orrections to scaling since o

correspond to quite small aggregates.

IV. CALCULATION OF THE SCATTERING
FUNCTION S{q)

From the single-scattering theory, the scattering func-
tion S(q) of a macroscopic system conta' '

g
'

partic es wi me
'

I 'th an volume fraction c is given by

10-

~ L=28.8

a L=577

0.02 0.1

FIG. 5. Log-log plot of g, location of tf the minimum of g(r)
r L=28.8 and L=57.7. The St by a straight line of

the L=57.7 data, excluding the c=0.1 point, is s o, g
slope of —0.77+0.03.
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g r4mr r= —1
0

(8a)

f 4nrdr =5', (8b)

where 5 is the total number of particles contained in the
macroscopic volume.

When applying formula (7) to real systems, it should be
remembered that the underlying theory considers only
the single scattering by static (quenched) particles.
Therefore the scattering by thermally activated (and
correlated) motions of these particles is not considered.
It is known that, in the case of liquids, the latter contri-
bution (which there corresponds to scattering by thermal-

ly activated density Iluctuations) gives a nonzero contri-
bution at q=O proportional to the product of tempera-
ture, bulk density, and isothermal compressibility. '

Since in the following, the formula wi11 be applied to solid
aerogels, of lower compressibility than the usual liquids,
we will assume that such a contribution is negligible.

In practice, we have calculated S(q} numerically from
the preceding g (r) results, by replacing formula (7) by

S(q}=1+ f [g(r) —1] 4~r dr .
0 ql

The infinite boundary of the integral means that the in-
cident beam is scattered by the particles located within
the whole macroscopic volume. This formula can be con-
sidered as an extension to a large system of formula (20)
of Paper I, since the distance distribution function f (r)
(with the normalization used in Paper I), is here equal to
(3c/m)g(r). However, there is an essential difFerence,
which is the presence of g (r) —1 instead of g (r). This is
due to the fact that, to obtain formula (7), one has sub-
tracted the intensity scattered by a quasi-infinite homo-
geneous object having the same boundaries as the macro-
scopic system considered. As a consequence, the formula
(7), S(q)~0 when q~0 (because the q=0 contribution
of the boundaries has been suppressed}. Quantitatively,
this q=O limit results from the following sum rules:

sum rules (8a) and (8b) to be obeyed, and, instead of using

g0 = 1, we have computed this parameter from

mf g(r)4mrdr. +n/6. c
Ã0=

4mr dr
0

(10)

where, to compute the integrals, we have used the same
discretization as in formula (9a). We have checked that

g0 is always equal to 1 within less that 0.001; however,

using (10) instead of go = 1 ensures that S(q)~0 exactly
when q ~0. This trick, which allows one to obtain a con-
tinuation of S(q}below q;„, is expected to give a reason-

ably correct result if, in the corresponding infinite system,
g(r) is supposed to stay constant for r ) r . This has

been checked a posteriari by verifying that the numerical
results are the same (within the numerical uncertainties)
for different L values.

Typical S (q) curves are reported in Fig. 6 for diff'erent

concentrations and for L=57.7. The location of q,„ is

indicated by the arrow. All the curves exhibit the same

damped oscillations at large q, characteristic of short-

range correlations, which were already described in Pa-

per I. The linear fractal regime is quite narrow and is

more extended for low concentrations. It corresponds to
a fractal dimension D =1.75, as expected. In view of the
smallness of the clusters, it is quite remarkable that the
slope gives the right fractal dimension. However, for the
largest concentration c=0.1, it is hard to define a fractal
regime even if, accidentally, the apparent slope is close to
—1.75 near the inAexion point. At lower q values, all the
curves exhibit a maximum. The location of the max-

imum, q, as well as the intensity of the maximum,

S(q ), have been reported as a function of c in Table I
together with the corresponding values of g. If one for-

rnS(q)=1+ f [g(r) go] 4m—r dr .
VT 0 qr

(9a)
101

Here, g0 is a parameter which is very close, but not strict-

ly equal, to 1, r is an upper cutoff, and the integral is

computed numerically as a discrete sum. We have
chosen r =L/2, to avoid the boundary artifact men-

tioned above, but also we have averaged g (r) over many
simulations and we have limited ourselves to concentra-
tions sufficiently greater than the gel concentration to ob-
tain a significant range of r values below r where

g (r) = 1. Nevertheless, the truncation of the integral im-
plies that the numerical results for S (q) become meaning-
less for q values smaller than

100

10 10 10

qmin
rm

(9b)

and, indeed, we have observed that for q (q;„ the pre-
cise shape of the computed S(q} curve depends on both
r and g0. To avoid this problem, we have forced the

FIG. 6. Log-log plot of S(q) versus q for L=57.7 and

different c values. The parameters are the same as in Fig. 4.
Here and in the following figures the location of q;„ is indicat-

ed by the arrow.
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q. q. g s(q. )
S(q )

cg'

TABLE I. For each concentration c considered in the simu-

lations, we have reported the location g of the minimum of g ( r),
the location q of the maximum of S(q), the product q g, the
intensity of the maximum S(q ) the ratio S(q }/cg', the
characteristic length g entering the low-q expansion of S(q),
and the ratio g/g. We recall that q is here a dimensionless

quantity which is, in fact, equal to 2Qro where Q is the dimen-

sioned wave vector and ro is the radius of the primary particles,
and also that S(q) has been normalized to unity for large q.

10

101

CO

0.025
0.033
0.038
0.043
0.050
0.061
0.100

10.7 0.26 2.78
8.4 0.3 1 2.60
7.8 0.37 2.88
6.7 0.40 2.68
6.3 0.43 2.71
5.3 0.52 2.76
3.0 0.80 2.40

24.7
16.0
12.8
10.5
8.3
6.2
3.3

0.81
0.82
0.71
0.81
0.66
0.68
1.22

38.5 3.6
28.1 3.3
25.9 3.3
21.0 3.1

18.4 2.9
15.5 2.9
10.0 3.3

10 '-0

I

10
I

10
I

10

gets the artifactual situation c=0.1, the product q g is
almost constant, so that one has approximately

2.75

FIG. 7. Comparison between the S(q) curve for a gel with
c=0.025 and S(q) curves calculated with the hierarchical mod-

el for aggregates containing n =32 and 64 particles.

On the other hand, one observes that the intensity of the
maximum S(q ) is roughly proportional to cg, which is
the number of particles contained in a sphere of diameter

S (q )=0.75cg (12)

For very low q values (smaller than q ) we get a linear
behavior with slope +2. This is consistent with the low-q
expansion of formula (7), which predicts

S(q)=g q

with

(13a)

J [go g(r))4nr dr .—
0

This result is derived from a Taylor expansion of
sinqrlqr inside the integral of (7). Note that, for an
infinite system (where r =a& and go=1), such a pro-
cedure is mathematically justified if g (r)—1 tends to zero
more quickly than any power law when r tends to
infinity. Our numerical results, which lead to a quite
size-independent result for g, strongly support a large-r
exponential decay for g(r}—1. This defines another
characteristic length g which can be usefully compared to

In Table I, we have reported the numerical estimates
of g from our computed S(q} curves for the different c
values considered. We find that g is roughly proportional
to g.

It is instructive to compare the present S(q) curves for
gels with the corresponding curves for isolated aggre-
gates. Such a comparison is done in Fig. 7, where we
compare the S(q) curve for c=0.025 with the ones ob-
tained with the hierarchical model for aggregates con-
taining n=32 and 64 particles. As expected, the three
curves are superimposed in the high-q regime as well as

in the fractal regime; the difference occurs at low q when
one starts to investigate correlations between particles in

the "active" region, i.e., near the external surface in the
case of an isolated aggregate, or in the intercluster region
in the case of a gel. Since the structure of the connected
clusters results from sticking of aggregates, neighboring
connected clusters can be viewed as interpenetrating ag-
gregates. Therefore the deviations to the fractal regime
at low q should be almost the same for the S(q) curve of
the cluster and for the one of the corresponding isolated
aggregate, and the differences should occur only slightly
above the location of the maximum of the gel curve.
Therefore the number of particles per cluster can be es-
timated by fitting at best the whole gel curve after the
maximum with the curve of a single aggregate containing
n particles. Here, in the case c=0.025 one can estimate
that the mean number of particles in a cluster is between
32 and 64. This estimate is greater than the number cg
calculated above. We will come back to this in the dis-
cussion of Sec. VI.

As should be expected, the characteristics of the max-
imum of S(q) do not depend only on the mean cluster
size g', but also on the extension of the cluster size distri-
bution. The cluster size distribution is reminiscent of the
size distribution of the aggregates observed during the ag-
gregation process and therefore it strongly depends on
the nature of the aggregation mechanism. As a conse-
quence, all the quantitative analysis done above, as well
as the values of the constants appearing in formulas (11)
and (12), are only valid for DLCA where it is known that
the aggregate size distribution presents a well-defined
maximum. A simple way to check that is to vary the
kinetic exponent a appearing in formula (3}. It is known
that, if a does not become larger than a threshold value
a, =0.5, the fractal dimension of the aggregates does not
depend too much on a, but the shape of their size distri-
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bution changes. ' For a large and negative, the distri-
bution is quasimonodisperse while, when o. increases, po-
lydispersity increases. In Fig. 8, we give the S(q) curves
obtained for three values of o.. As expected, the max-
imum is sharper for cx large and negative and broader for
the positive +=0.1 value. %e have observed that, for
large o. values, another sharp peak appears, which corre-
sponds to a breakdown in the cluster size distribution an-
nouncing the transition to particle-cluster aggregation at

4, 22

10

V. SCATTERING INTENSITY AND COMPARISONS
WITH EXPERIMENTS

To better compare with experiments, we have comput-
ed the theoretical I (q) curve by using

10

0.025
—- —-- 0.05

I(q) =S(q)P(q), (14)
———- 0.1

where P(q) is the normalized form factor for spherical
particles of unit diameter:

10
10

i I

10
1

10
, il

10 10

sinq /2 —(q /2)cosq /2Pq= 24
q

'2

(15)
FIG. 9. Log-log plot of the scattering intensity curve I(q)

versus q for different c values. The parameters are the same as

in Fig. 4.

101 0.1

—0.55

The log-log plots of I (q) versus q for different concentra-
tions are reported in Fig. 9. As a result of the multiplica-
tion by P(q) and the use of the logarithmic scale, the
maximum appears to be relatively less pronounced than
in the S(q) curves.

Before comparing with experiments, we recall that our
group has performed several SANS experiments on
different kinds of silica aerogels that are called "col-
loidal" and "polymeric" aerogels. ' ' The colloidal
aerogels, which are synthesized from a silica sol, are
made of quasimonodisperse spherical particles whose size
can be determined directly on a micrograph. The poly-

meric aerogels instead are prepared by chemical reactions
(hydrolysis and condensation) of organosilicates. Ac-
cording to the pH value of the hydrolysis aqueous solu-

tion, we can distinguish "basic" and "neutral" aerogels.
The basic aerogels are made of larger-sized, but strong-
ly polydisperse, primary particles while, for the neutral
aerogels, particle sizes are smaller and extend down to
the atomic scale. According to previous studies, '

only colloidal and basic aerogels can be considered as
grown according to DLCA while the neutral aerogels are
more likely grown according to the chemically limited
cluster-cluster aggregation process. '

Three experimental I (q) curves for basic aerogels with

different densities are shown in Fig. 10. Both the Porod
regimes and the fractal regimes are nicely superimposed,
indicating that the mean average size of the primary par-
ticles is the same for the three samples, as well as the
fractal dimension of the clusters. Apart from the absence
of large-q oscillations in the Porod region, as a result of
the large dispersity in the particle diameters, these I(q)
curves behave pretty much as in Fig. 9: the location of
the low-q maximum increases with the gel density.

Quantitative fits are reported in Fig. 11. The concen-
trations that we have used for the fit are those corre-
sponding to the aerogel density p, according to the for-
mula

10 10 10

FIG. 8. Log-lot plot of S(q) versus q for L=57.7, c=0.05,
and different a values, a=0. 1, —0.55, —18. These curves result

from averages over 50, 20, and 40 simulations, respectively.

where po=2. 2 gem is the density of silica. The only

two adjustable parameters are the mean particle diameter
value and a rnultiplicative constant for the intensity.
Note that varying these parameters in a log-log plot does
not change the shape of the curve but only leads to
translations along the x and y directions. The three fits

have been performed together using the same values for
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FIG. 10. Log-log plot of the experimental scattering intensity
curve I(Q) versus Q for three basic aerogels of the same family,
i.e., with different densities (p=0.073, 0.095, 0.121 g cm ) but
with the same average size of the primary particles.

these parameters. A discrepancy occurs in the Porod re-
gion where the experimental curves stay slightly below
the maxima of the large-q oscillations of the theoretical
curves. Such a discrepancy can be attributed to the
strong polydispersity of the primary particles. Prelimi-
nary calculations of DLCA with polydisperse particles
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FICx. 11. Comparison between simulations and experiments
for three basic aerogels of the same family. The concentrations
used in the simulations c=0.033,0.043,0.05 are calculated from
the aerogel densities (p=0.073,0.095,0.110 gcm ) using for-
mula (12). The two adjustable parameters, which are a multipli-
cative constant for the intensity and the particle diameter, taken
to be 46 A, are the same for the three curves. The curves have
been arbitrarily shifted vertically for clarity.

FIG. 12. Comparison between a simulation and an experi-
ment in the case of a colloidal aerogel for which both the densi-

ty and the diameter of the primary particles are known. The
concentration is c=0.1. The only adjustable parameter here is
the multiplicative constant for the intensity.

(which will be published elsewhere ) indicate that, for
very large polydispersities, not only are the Porod oscilla-
tions washed out but also the entire curve is shifted to-
wards lower q values.

Another fit is reported in Fig. 12 for a colloidal aero-
gel. Here the particle diameter is known. Therefore the
fit has been obtained with only one adjustable parameter
which is the multiplicative constant for the intensity (cor-
responding to a vertical translation of the curve). Here
the polydispersity is smaller and therefore the experimen-
tal curve goes through the maxima of the oscillations in
the Porod region. However, small discrepancies occur at
low q values in this fit as well as in the fits of Fig. 11. It
seems that the theoretical maximum is systematically a
bit sharper than in the experiments. We might invoke
some approximations of our DLCA model which neglects
rotational diffusion, aggregate deformations, as well as all
kinds of restructuring effects. In Paper I, we have shown
that large restructuring is certainly not present, at least in
the early stages of the aggregation process. However, in
the last stages, when the gel structure is under formation,
the diffusion process loses its leading character and it
might be that restructuring and rotational motions have
some inhuence on the gel structure and the intercluster
correlations.

VI. DISCUSSION ABOUT THE CORRELATION LENGTH
AND THE CLUSTER STRUCTURE

Since, in the past, many authors have given estimates
not only for the fractal dimension D but also for the
correlation length g by fitting the experimental I(q)
curves for gels or aerogels, we think it might be useful to
make more precise the meaning of g in our approach and
to compare with previous investigations.
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As introduced in Sec. III, g is defined here as the
minimum of the g(r) curve. The large r behavior of g(r)
is characteristic of intercluster correlations. Since the
disordered array of clusters is like an amorphous struc-
ture, its correlation function should tend to unity with
damped oscillations as r tends to infinity. However, due
to the strong disorder and the cluster size polydispersity,
these oscillations are highly damped and here one can
only detect the first minimum. Knowing that for a disor-
dered sphere packing of diameter 0., the first minimum of
g (r) is always located just above the 5 peak at r =o, one
can deduce that our g is only slightly larger than what we
will call a mean "hard-sphere" diameter 0. of the clusters,
which can also be defined as the mean distance between
the centers of two neighboring connected clusters. If we
remember that the connection between two neighboring
clusters results from the last stages of the DLCA process,
i.e., from the sticking of two fractal aggregates of almost
the same radius of gyration R, one can relate 0 and R by

(17)

R and n as a function of c, assuming o =g [Table II(a)] or
0=0.85( [Table II(b)]. Knowing also from previous
studies that the mean maximum diameter of a DI.CA ag-

gregate is about four times greater than its radius of gyra-
tion R, one can check that it is always greater than a, as
a consequence of the Interpenetration between connected
neighboring clusters.

Using the concept of hard-sphere diameter introduced
above, the disordered lattice of interpenetrating connect-
ed aggregates can be viewed as a random packing of
tangent spheres of mean radius 0.. One can characterize
this packing by its packing fraction f, which is the
volume occupied by the spheres divided by the total
volume:

(19)

where N, is the total number of clusters. Since the total
number of particles N in the volume V is related to N,
and the mean number of particles per cluster n by

N =nN, (20)

TABLE II. (a) For each concentration c considered in the

simulations, we have reported the value of the "hard-sphere di-

ameter" 0, here taken equal to g, the mean radius of gyration R
of the clusters, the mean number of particles per cluster n, the

product ccr', and f, the packing fraction of the random packing

of hard spheres equivalent to the cluster structure. (b) Same as

(a) but with a =0.85$.

0.025
0.033
0.038
0.043
0.050
0.061
0.100

10.7
8.4
7.8
6.7
6.3
5.3
3.0

4.93
3.87
3.59
3.09
2.90
2.44
1.38

(a)
65.8
43.6
38.4
29.7
26.7
19.9
7.57

30.3
19.6
18.0
12.9
12.5
9.08
2.70

0.47
0.45
0.47
0.44
0.47
0.46
0.36

This relation, which has been established rigorously in

the hierarchical model, ' is also quite well verified in

the case of the DLCA process in a box. Taking D=1.70,
which is the efFective fractal dimension for small DLCA
aggregates containing from 10 to 1000 particles, one gets
R =0.460.. Then, using the scaling law

(18)

with C=4.36 and D=1.70, which are appropriate values

for such small DLA clusters, one can obtain an estimate
of n, the number of particles in an aggregate of radius of
gyration R, which is therefore the mean number of parti-
cles per cluster. In Table II, we have listed the values of

and using relation (1), one gets

(21)

S(q) =S(0} 1+ gq
2 2 2 (22)

The packing fraction deduced from this formula has been

reported in Table II. In the case cr=(, f is of order 0.46,
and in the case cr =0 85(, i.t is of order 0.38. In all cases
this is typical of a quite loose random packing. It might
not be fortuitous that, for the reasonable choice of cr

slightly smaller than g, one recovers the packing fraction
corresponding to the jamming situation, as if the aggrega-
tion process has been stopped when the clusters become
so large that they can no longer fill the space, as in a ran-

dom sequential addition process. In practice, the actual
ratio between o and g might be a bit larger since the jam-

ming threshold can be slightly increased due to the clus-

ter size polydispersity. Such reasoning is approximate
and it should not be pushed too far. However, it is re-

markable that the estimates for n listed in Table II(b) are

compatible with the analysis made above when compar-

ing the S(q) curve for a gel directly with single-aggregate
curves (Fig. 7).

It should be emphasized that the present approach is

completely different than most of the previous ones,
which used phenomenological formulas, based on the

single-aggregate theory, to fit the experimental results.
This difference needs some discussion. Some authors '

have used the Fisher-Burford formula'
—D/2

0.025
0.033
0.038
0.043
0.050
0.061
0.100

9.20
7.22
6.71
5.76
5.42
4.56
2.58

4.24
3.33
3.09
2.65
2.50
2.10
1.19

50.9
33.7
29.7
23.0
20.7
15.4
5.86

19.5
12.4
11.5
8.23
7.95
5.78
1.72

0.38
0.37
0.39
0.36
0.38
0.37
0.29

S(q) =S(0)(1—
—,'q2g) (23}

so that the Guinier regime is well reproduced if g', is the

with various coefficients in front of the q term. Here we

have adopted the coefficient which leads to the following

low-q expansion:
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S(q)=S(0) 1 —
q g (2&)

the value of g2 should correspond to
1/2

D(D+1) (26)

The apparent improvement of formula (24) compared
to formula (22) is that both low-q and large-q deviations
from the fractal regime are accounted for and conse-
quently there is one parameter left. In the same Fig. 13
we have represented the curve obtained from this formula
using D=1.70 and the value of g2 corresponding to
R =4.24. Not only is the low-q region badly reproduced
but also the slope of the fractal regime is erroneous. This
comes from the fact that formula (24) reproduces the
right slope only when $2 is very large. In practice most of
the authors did not make any attempt to fit the large-q re-

radius of gyration R of the aggregate. In Fig. 13 we have
compared our S(q) curve for c=0.025 with that given by
the above formula using D=1.70, gI =R =4.24, as taken
in Table II(b), and adjusting S(0) to fit the fractal regime
at best. A compromise is made near the maximum and
only a small part of the Hnear fractal regime is fitted.

Other authors ' "" have used the more sophisticated
formula

D2Dp(D —1) sin[(D —1)tan '(qg2) j
S(q)=1+

D
[ 1+( I / g )2)(D —I )/2 (24)

in which $2 is a phenomenological correlation length in-
troduced in an exponential cutoff function to limit the
fractal scaling at large interparticle distances. If one no-
tices that the low-q expansion for this formula leads to

gime and they did use this formula to fit the low-q and
the fractal regime, as done with the Fisher-Burford for-
mula. Consequently, they replaced formula (20) by

S(0) sin[(D —1)tan '(q(2)]
S(q) =

[1+( g )2)(D —I)/2 (27)

4(q) = 1

I+pe(o q)

with

(28a)

Q( ) =3 slnoq uq cosoq
(oq)'

(28b)

c=0.025

In practice the S(q) curve obtained with this formula is
almost superimposed on the Fisher-Buford curve, if one
chooses $2 related to R =/I through Eq. (26). The con-
clusion is that, if such formulas may give nice results in
the diluted cases and can give an estimate of R (if one
knows the relation between g and R },they are not so use-
ful in the case of gels since the maximum cannot be fitted.
Using them to get the fractal dimension does not give im-
provement compared to a simple fit of the linear regime.

Recently Posselt, Pedersen, and Mortensen' have pro-
posed to account for the low-q maximum in the I(q)
curve using some phenomenological function to describe
the intercluster correlations, assuming that the clusters
are arranged as in a random packing of hard spheres (fol-
lowing a reasoning quite close to that developed in the
beginning of this section). In their approach I(q) results
from the product of P (q) (particle form factor) with S(q)
(single-aggregate scattering function}, but they consider
an extra factor

10
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I I

10

I

10 10 10

FIG. 13. Comparison of the S(q} curve for c=0.025 (solid
curve) with the S(q) curves obtained using formula (18) (dot-
dashed curve) and formula (20) (dashed curve), as expected in
text.

FIG. 14. The solid line corresponds to the S(q) curve for a
gel with c=0.025. The dash-dotted line corresponds to the S(q)
curve for a single aggregate containing 32 particles. The dotted
and dashed lines correspond to the curves obtained by multiply-
ing the single-aggregate S(q) curve by the @(q) function of Pos-
selt, Pedersen, and Mortensen (Ref. 13) with o =18 and p=2.0
and 0.5, respectively.
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This function depends on two parameters, o., which is the
cluster mean diameter, and p, which is proportional to
what they call the "packing ratio. " In Fig. 14, we show
two curves obtained when multiplying the n=32 single-
aggregate S(q) curve by such a 4(q) factor with tr =18
(in particle diameter units) and two different values of p,
and we compare with our gel curve for c=0.025. The
best fit of our maximum is obtained with p=0.5 and with
larger p values the peak becomes too narrow. Posselt,
Pedersen, and Mortensen' claim to have used p -4 to fit
their experiments, but it has been discovered that there
was an errr by a factor of 3 in their definition ofp, and
therefore the true value of p becomes p=1.333, between
the two p values used in Fig. 14. Nevertheless, with our
best choice (p=0.5), only the region close to the max-
imum is reproduced. At low q, their curve strongly devi-
ates from our gel curve since 4(q) saturates to a constant
value as q tends to zero. Note also that the value chosen
for o to obtain the best fit is about twice our estimate of
the cluster diameter.

VII. CONCLUSION

In this paper we have shown that the presence of a
low-q maximum in the experimental I (q) curve for a gel
structure made of connected fractal clusters resulting
from the DLCA growth process is well accounted for by
a direct numerical calculation based on simulation of
DLCA in a box. As in the experiments, the location of
the maximum increases when increasing the gel density
and we have been able to present some reasonable fits of
experimental data with only two (or even one) adjustable
parameter. We have given (Fig. 9) a series of theoretical
I(q) curves for different concentrations which, we hope,
will be very useful to fit other experimental curves in the

future, at least in the cases where the gels have been
grown according to the DLCA process. One advantage
of such direct comparison with simulations is that it
remains valid for high concentrations (such as c=0.1)

where the fractal character of the clusters disappears.
However, even if we have obtained quite good agreement
between simulations and experiments, it should not be
forgotten that the DLCA process, as considered here,
neglects some important physical processes such as rota-
tional difFusion and restructuring effects. Including res-
tructuring is more difFicult here, in a box, than within the
hierarchical scheme (as the one used in Paper I), but it is
not too hard to include rotational difFusion and we will

certainly try to do it in the future. Also, the extension to
chemically limited cluster-cluster aggregation (CLCA) is

in progress. It is expected that the maximum of I(q)
should be broader due to the larger cluster size po-
lydispersity of CLCA compared to the one of DLCA.
We also intend to perform DLCA, as well as CLCA, cal-
culations starting with polydisperse spherical particles.
Studies of the evolution of the I(q) curve during the ag-

gregation process are also in progress. Finally, in the fu-

ture, we would like to investigate the order of magnitude
of the intensity scattered by thermal fluctuations in aero-

gels to check if such scattering has no in6uence on the
shape of the maximum of I (q).
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