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Amorphous packings have been generated from steepest-descent quenches applied to a monatomic
liquid simulated by molecular dynamics. The model for the interatomic forces employed here provides
both liquids and solids with a mean coordination as low as seven at low densities as well as the close-
packed configurations with a mean coordination of twelve at higher densities. The low-coordination

packings generated from the low-density liquid contain microcrystallites with a simple hexagonal struc-
ture which, with increasing density, are eventually suppressed in favor of microcrystallites with a body-
centered-cubic (bcc) structure. The abrupt growth of the bcc microcrystallites occurs at densities well

below the density for the hexagonal-bcc crystal transition at zero temperature and constant volume. The
high-coordination packings quenched from the high-density liquid contain truly amorphous clusters
which are neither crystalline nor icosahedral, but share attributes of both. The first result shows that mi-

crocrystalline clusters can be important structural elements of even simple amorphous substances. The
second result resolves the conflicting claims concerning the abundance or scarcity of icosahedra in the
densest amorphous substances. Both of these results challenge widely held pictures of simple amorphous
substances.

I. INTRODUCTION

This paper is devoted to the elucidation of the local mi-
croscopic structural motifs found in mechanically stable
amorphous packings of a simple monatomic model sub-
stance. The subject has a long history, in part due to the
early appreciation that its study is fundamental in the
theory of glasses, and also in part due to the simplicity of
the interactions in these substances. On the other hand,
the noncovalent monatomic substances represent the ex-
treme among glass-forming substances, in that they are
the most difBcult to quench into glasses. An explanation
for this is that the nuclei required for spontaneous crys-
tallization can be microscopically small, of perhaps only
a few atoms, and therefore even a mild density fluctua-
tion might generate critical nuclei. Therefore, Frank and
others have argued that the local structural motifs in
monatomic metals, for example, should be other than
crystalline. ' Consequently, the idea that crystalline local
order should prevail in simple amorphous deposits has
been explicitly dismissed by many experts. ' Instead, the
noncrystalline icosahedron has been ofFered as a candi-
date for the local structure of dense metallic or simple
glasses because the mean coordination in these substances
is typically near 12 and because the icosahedron possesses
the lowest energy among isolated 12-coordination cluster
for a wide variety of models. '

The suggestion that the icosahedron is the predom-
inant local structural motif in simple dense amorphous
substances has been pursued mostly in theoretical studies,
partly due to the di%culty of making the glasses and to
the difhculty of analyzing such small structural features.
Although the majority report among researchers in the
USA and Japan apparently favors icosahedra in amor-
phous packings of simple close-packed substances, objec-
tions have been raised on two different grounds. One is

direct and empirical: Serious efforts by some researchers
to identify icosahedra in dense glasses generated by com-
puter simulation of monatomic substances with simple
models for the interactions have found icosahedra to be
scarce, in contrast to the large populations anticipated by
theory. "One recent effort in computer simulations of
glasses has attempted to increase the population of
icosahedra by devising a special' model for the interatom-
ic forces, which specifically favors them, and consequent-
ly reports abundant icosahedra in the amorphous pack-
ings quenched from the computer-simulated liquid. ' The
other objection is indirect, pressed only by analogy to the
topological-constraint theory of covalent (network) glass
formers. ' In this theory, an analysis of the meaning of
glass formation in configuration space suggests that the
local order is much higher than suggested by the alterna-
tive and widely held continuous-random-network model.
The constraint theory leads to the argument that in some
cases the local order of the network glass quenched from
the liquid is essentially that of the high-temperature crys-
tal phase at that density; thus for amorphous quartz at
atmospheric pressures, for example, the local order
should consist of cristobalite crystallites. ' ' The con-
straint theory for network glasses has not been developed
for metallic or other simple glasses. Nevertheless, an ar-
gument has been offered by analogy that insofar as micro-
crystalline order appears in network glasses, then perhaps
it might be prominent in metallic glasses as well, even

though critical nuclei for crystallization are also micro-
scopic. ' In view of the direct observations cited above,
this analogy deserves further exploration. Therefore, the
amorphous packings of a model substance wi11 be exam-
ined not only for the presence of icosahedra and other
structures, which minimize cluster energy, but also for
the presence of microcrystalline clusters.

The study of local order in the close-packed amor-
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phous packings of substances with a Van der Waals —like
interaction {of which the Lennard-Jones model is a
famous example) has proven to require some care because
the various structures of high coordination can be
diScult to distinguish. For example, although the perfect
icosahedron and the perfect face-centered-cubic crystal-
lite are readily distinguished, only a little distortion is
necessary to transform one arrangement into the other.
The techniques applied in Sec. VI below provide one
solution to this problem. However, a potentially more re-
vealing alternative is simply to examine amorphous pack-
ings which are more loosely packed. It is possible in such
cases that the varieties of local order might be more easi-
ly distinguished. A simple model, which provides lower-
coordination amorphous packings, is the hx pair poten-
tial, described in detail in Sec. II below. Although the hx
model shares several qualitative features with the
Lennard-Jones model, the latter reaches the global energy
minimum with the hexagonal close-packed lattice, '

while the hx model finds it with a simple hexagonal lat-
tice. Therefore, the hx model is able to generate low-
coordination amorphous packings at low densities (and
positive pressures) as well as the usual high-coordination
packings at high densities.

Following the review of the hx model below, a brief
description of the computational methods employed here
is provided in Sec. III. Section IV contains some results
for the local amorphous packings over the whole density
range. Section V contains results for the local structure
of the low-coordination packings. Section VI contains
the results for the high-coordination packings. This pa-
per concludes in Sec. VII with a discussion of the
significance of these results.

II. REVIEW OF THE Ax MODEL

The potential energy u(r ) between a pair of hx parti-
cles separated by the distance r is given by

u(r)=1.914166098(r ' r) exp[—1/(r —2)], r (2,

TABLE I. Transition densities for the zero-temperature crys-
talline phases of hx. The simple hexagonal phase is denoted by
hex, body-centered cubic is bcc, hexagonal close packed is hcp,
and face centered cubic is fcc.

Transition density

1.24
1.29
1.34

Transition type

hex ~bcc
bcc~hcp
hcp~fcc

2.5

HX

ee e e e

1.5 I

and its truncated variants produce only high-
coordination close-packed crystals at zero temperature
for the same density range, even at densities for which
the crystals would be under severe tension. Of course,
the Lennard-Jones potential was intended to model real
substances, but no such claim is made for hx; indeed, the
only elements with a simple hexagonal structure (and
comparable c/a ratios) are high-pressure forms of carbon
and silicon.

Figure 1 sketches the hx and the Lennard-Jones model
together, showing that the repulsions are much softer,
the minimum is much farther, and the attractive well is
much wider in the hx model than in the Lennard-Jones
model. These features account for the former's ability to
sustain the low-coordination structures at low densities.
On the other hand, at sufficiently high densities, hx
behaves in a fashion similar to the Lennard-Jones model
and its many variants, which sustain high-coordination
structures. Furthermore, hx shares with the Lennard-
Jones model the habit of obtaining the global minimum

u(r)=0, u'(r)=0, u"{r)=0, u'"(r)=0, . . . , r & 2 .
The distance r is written in reduced units so that the di-
ameter, defined by the first instance of u =0, is unity.
The energy is also written in reduced units, so that
u = —1 at the minimum.

The hx model' is so called because the simple hexago-
nal lattice, at the density n =0.8895 and c/a ratio of
0.9092, provides the global energy minimum, with a per-
particle energy of —7.3807. It was employed here for the
diversity of structures it produces. At zero temperature
and constant volume, the stable crystals range from sim-
ple hexagonal (with varying c/a near unity) to body cen-
tered cubic to hexagonal close packed to face centered
cubic as the density increases. Table I indicates the
constant-volume transition densities. ' This ability of hx
to support his diversity of low-coordination and high-
coordination structures is apparently unique among sim-
ple pair-potential models. For example, the Lennard-
Jones pair potential [u(r)=4(r ' r) in our units], —
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FIG. 1. Pair-potential energy for hx and Lennard-Jones mod-
els, respectively, in reduced units.
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energy of the isolated 12-coordination cluster with the
icosahedron, which for hx has (counting all 13 particles)
an energy of —41.802 and a radius of 1.29926. This en-
ergy is well below the energy of the cluster with either the
face-centered-cubic or hexagonal close-packed lattice,
which for either is —36.062 with lattice parameters cor-
responding to n =0.793.

III. COMPUTATIONAL PROCEDURES

This study was carried out by first simulating a liquid
of hx particles with molecular dynamics, then quenching
that liquid at several intervals, and finally by analyzing
the structural details of the collection of quenched amor-
phous packings. These procedures are described below.

Molecular dynamics was applied to a system of 500 hx
particles in a cubic box subject to periodic boundary con-
ditions in order to simulate a liquid at between three and
five times it s melting temperature. For each density, the
constant-volume equations of motion were solved with
the fifth-order Gear-Nordsieck algorithm, ' with time
steps (between 0.001 and 0.005 in reduced units) adjusted
to maintain energy conservation to at least five digits for
the duration of the runs. "Double precision" was main-
tained throughout the calculation. Following equilibra-
tion runs of between 5000 and 10000 steps, runs during
which the quenches were taken ran typically for 10
steps. At intervals of at least 2000 steps in a molecular-
dynamics run, the 500-particle conffguration was selected
and quenched at constant volume with an efficient algo-
rithm which alternates between steepest-descent and

quasi-Newton procedures. This implementation guaran-
tees that the quench instantaneously removes all the
kinetic energy and moves the configuration to the nearest
local potential-energy minimum without the possibility of
annealing. The amorphous packings must always be
mechanically stable, which was randomly checked by ex-
amining the eigenvalues of the dynamical (or "force con-
stant") matrix. It happens frequently in quenches gen-
erated either by simple but less eScient steepest-descent
procedures or by procedures that do not employ at least
the forces (such as setting T=0 in a canonical-ensemble
Monte Carlo calculation) that the quench is terminated
well before the packing reaches a genuine local potential
energy minimum. The algorithm employed here, on the
other hand, almost never fails to produce a packing at a
genuine minimum. However, both the algorithm itself
and the subsequent check of the dynanucal matrix severe-
ly limit the system size; consequently, quenches of a
much larger system were not attempted here.

Between 24 and 78 stable packings were collected from
the simulated liquid for each density. The ensemble of
stable amorphous packings quenched from the liquid is
called by Stillinger the "inherent structure" of the liquid
at that density. It has been established that the in-
herent structure of simple monatomic liquids is indepen-
dent of temperature for temperatures at or above the
melting temperature; in particular, temperature indepen-
dence was established for a liquid of hx particles. "

The analysis of the local structure in the amorphous
packings requires an unbiased and unambiguous method
for identifying nearest neighbors. This is done here by

TABLE II. Attributes of the inherent structure of hx at various densities. The relative uncertainties
associated with the energy are less than 1% for densities below 1.57; thereafter the uncertainties rise up
to 12% for the highest density. For the pressure, the relative uncertainties typically lie between 2%
and 5%, except near zero pressure, where they rise up to 20%. No estimate of the uncertainty was
made for rNN, which was found by the three-point Lagrange interpolation for the interval in g(r)
around the minimum between the Srst and second peaks. For the mean coordination the absolute un-

certainty is 1. All of these values were taken at zero temperature.

Density

0.7800
0.8400
0.8750
0.8895
0.9050
0.9500
1.0000
1.0500
1.1327
1.1762
1.2198
1.2672
1.3200
1.4000
1.4500
1.5200
1.5710
1.6200
1.9726

Number of
quenches

49
24
74
54
74
74
58
44
32
36
78
60
45
52
65
50
39
50
40

Energy

—6.66
—6.76
—6.80
—6.80
—6.81
—6.79
—6.73
—6.63
—6.41
—6.27
—6.10
—5.92
—5.40
—5.31
—4.98
—4.40
—3.88
—3.28

4.61

Pressure

—1.10
—0.67
—0.29
—0.09

0.12
0.80
1.6
2.4
4.0
4.9
5.8
6.8
8.4

12
16
23
29
37

132

rNN

1.293 485
1.265 502
1.240 522
1.229 910
1.225 462
1.217 249
1.216266
1.217 785
1.210 801
1.209 631
1.212 166
1.215 535
1.220 395
1.218 336
1.216 921
1.206415
1.205 646
1.184 981
1.091 842

Mean
coordination

6.7
6.9
6.9
6.9
6.9
7.3
7.9
8.5
9.3
9.7

10
11
11
11
12
12
12
12
12
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examining the pair distribution function, presented in the
next two sections. The first peak of the pair distribution
function represents the clustering of the nearest neigh-
bors around a given particle; therefore, the minimum rNN
between the first and second peaks of the pair distribution
function provides a statistically and physically significant
criterion for selecting nearest neighbors. All particles
whose centers are within rNN of the central particle are
regarded as its nearest neighbors. The radius rNN is sen-
sitive to the density of the packings, as indicated in Table
II (cf. Sec. IV below).

With rNN in hand for each density, every particle in
every inherent structure is classified according to its coor-
dination number. Furthermore, the arrangement of the
nearest neighbors in each cluster can be studied in detail.
For example, the principal axes, the distribution of pair
distances, and the distribution of angles between the
nearest neighbors, can be calculated for each of the
thousands of clusters found in the inherent structure. Of
these measurements, the last provides the most insight
into the local structure of amorphous packings. The fol-
lowing three sections contain the results of these calcula-
tions.

IV. RESULTS FOR THE WHOLE DENSITY RANGE

At each of the densities listed in Table II, the quenched
amorphous packings are collected and assayed for their
properties at constant volume and zero temperature. The
energy and pressure are tabulated in Table II. Interpola-
tion suggests that the energy minimum for the inherent
structure is found at about n=0. 915, near the corre-
sponding minimum (n =0.8895, cf. Sec. II) for the crys-
tal energy. The per-particle energy of the inherent struc-
ture at this density is —6.82, substantially above the en-
ergy of the underlying simple hexagonal crystal at this
density of —7.37 (with c/a=0. 9165). Although the
mean coordination is about seven in the inherent struc-
ture compared to exactly eight in the simple hexagonal
crystal, the mean bond energy in the inherent structure is
actually about 5% lower than that in the crystal. The en-
ergy variation with density is otherwise unremarkable,

providing little insight into the local structure of the
amorphous packings. Much the same can be said for the
equation of state, which also reveals little about struc-
ture. For example, no sensitivity to the phase transitions
in the underlying zero-temperature crystal is found in ei-
ther the energy or the pressure. Figure 2 shows that the
enthalpy (per particle) for the inherent structure increases
monotonically and unremarkably with increasing density.

The order parameter usually employed in the study of
liquids and amorphous solids is the pair distribution
function g(r ), and is sketched for various densities in Fig.
3. Although the variation due to density is more interest-
ing, it is also quite gradual. At the higher densities, g(r )

closely resembles the pair distribution function, which
would be found for an amorphous packing of Lennard-
Jones particles, and like those found experimentally for
amorphous films of monatomic metals. At the lower den-
sities, g(r) at first appears radically different, but closer
inspection shows that essential similarities remain. The
second and third peaks, for example, still correspond to
the split second-neighbor distribution which is charac-
teristic of all monatomic amorphous packings. In every
case the order is short ranged, assuring that the packings
are indeed amorphous, for g(r) flattens out to unity
beyond the fifth-nearest neighbors, as would be found for
a uniform Quid.

The nearest-neighbor distance rNN was determined for
each density from the corresponding-pair distribution, as
described above in Sec. III, and is also listed in Table II.
The mean coordination number (NN) is listed in Table
II and displayed in Fig. 2. For low densities, (NN)
ranges between about seven and ten, gradually increasing
to twelve for the higher densities. The variation is for the
most part a gradual monotonic increase with density.
Again, no sensitivity to the phase transitions in the un-
derlying zero-temperature crystal is evident. The distri-
bution of coordination numbers is roughly a normal dis-
tribution with a dispersion of unity.

There is little in these conventional measures to sug-
gest that the amorphous packings possess any unusual or
otherwise interesting structural features. The usual order
parameter g(r) provides a standard by which most mod-
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FIG. 2. Mean coordination
number and enthalpy ( U/N
+p/n) for the inherent struc-
ture at zero temperature as a
function of density.
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FIG. 4. Minimum-energy structure of the isolated eight-
coordination cluster of hx particles. The particle nearest the
center of mass is not shown. The structure, referred to as hxg in
the text, is a slightly distorted fragment of an icosahedron.
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loosely speaking, they might reasonably be expected to
span the set of all eight-coordination structures, which
could be encountered in the low-density inherent struc-
ture.

The analysis of the local structure of the low-density
packings then becomes the calculation of the composition
of the hex, bcc, and hxg structures among the eight-
coordination clusters. This calculation depends on the
choice of a property P of all the clusters so that for each
density

FIG. 3. Pair-distribution function of the inherent structure at
three densities.

P=
m = Ihex, b(:c,hxgI

cm Pm (2)

els and theories judged, yet here does little more than
refiect the fact that the coordination changes with density
and that the packings possess only short-ranged order.
Therefore, the next two sections are devoted to a more
detailed analysis of the packings in order to elucidate
their local structure, first for the low-density range, and
then for the high-density range.

V. LOCAL STRUCTURE
OF THE LOW-DENSITY PACKINGS

Eight-coordination clusters are the focus of this inves-
tigation in the low-density range (0.78+n +1.27) be-
cause first, the two underlying crystal structures in this
range (simple hexagonal and body centered cubic) are
eight coordination, and, second, because eight-
coordination clusters are abundant throughout this densi-
ty range. Among the many possible eight-coordination
arrangements, only three structure types are considered:
simple hexagonal (hex), body-centered cubic (bcc), and
the irregular structure (hxg), which provides the global
energy minimum for the eight-coordination cluster in the
ideal gas. Further inspection shows that the hxg cluster
is a slightly distorted fragment of the icosahedron, and is
displayed in perspective in Fig. 4. The idea that all clus-
ters are either hex, bcc, or hxg clusters is based primarily
upon inspection, and secondarily by reasoning that each
of these structures is so different from the other that,

where c is the concentration of one of the structures,
and P is the mean value of the property for that struc-
ture. Some of the properties that were considered, tried,
and rejected were the energy, the principal axes of the
cluster, and the cluster pair distribution. The diSculty
with each of these properties is their poor selectivity;
these properties are each too insensitive to the difFerences
between the three structure types.

One property for which the differences between the
structure types are striking is the angle between pairs of
the eight particles on the perimeter of the cluster, with
the center of mass as the vertex. The angles and their
populations for each of the structure types is tabulated in
the first two columns of Table III. For example, only the

bcc
hex
hxg

71,109,180
60,90,120,180

58,65,67,83,93,110,
122,143,145,159

ak*28

12,12,4
6,12,6,4

2,4,4,4, 1,
2,4,4,2, 1

1,1,2
2,1,2,2

1,1,1,1,1,
1,2, 1,1,1

Shifts

0,0,—5

0,0,0,—5

0

TABLE III. Parameters for the normalized Gaussian func-
tions P employed in Eq. (3). Unshifted angles 8& are given in de-

grees. The frequency ak of the angles multiplied by the number
of distinct angles in each eight-coordinated cluster gives the
respective angle populations. Both the empirical multipliers bk

and the shift to Ok (also given in degrees) were determined by
examining the effect of random displacements on the structure

type.
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FIG. 5. Angle distribution for
each of the eight-coordination
structure types. Each of the an-

gle distributions have been
broadened with a Gaussian
spreading function (see Table
III).
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hex structure type possesses perpendicular angles. Fur-
thermore, although both hex and bcc types possess a
center of inversion, hxg does not, and consequently it
possesses no angles of 180'. Each of the angle distribu-
tions is sufficiently distinct that it makes to attempt a fit

as outlined in Eq. (2}, where P is the angle distribution
sampled from all the eight-coordination clusters in the in-
herent structure. Another advantage offered by the angle
distribution is that it appears relatively insensitive to dis-
tortions, unlike the pair distribution, for example. In or-
der to assess in advance the eff'ect of distortions upon the
angle distributions for each of the structure types, each
type had each of its eight perimeter particles randomly
displaced (taken from the normal distribution) about
5000 times. The resulting distributions are shown in Fig.
5 for one choice of dispersion (rr =0.15) in the normal
distribution of displacements. One noticeable efFect on
the crystalline structure types (hex and bcc) is the dis-
placement of the peak at 180'. For hxg, several of the
peaks combine into a single broad peak. The trends for
the peak positions and widths portrayed in Fig. 5 are
maintained for a wide range of values of the dispersion.
These trends are incorporated into a fitting scheme
designed to determine the c, the concentration of the
structure type m in the inherent structure, as follows.

First, the P in Eq. (2) is written as

P (o ) = g a„p(8k,bko ),

where ms is the number of angles in type m, P is the
Gaussian function centered at 8 and normalized over the
range of angles 0(8(n, ok is the fraction of angles in
the distribution for type m, and bk is a multiplier of
dispersion o deduced from the trends portrayed in Fig. 5.
Table III lists the 8k, ak, and bk for each structure type.
The 8k used in P are shifted by the amount listed in the
last column in Table III. With only one varying parame-
ter (rr) for each of the structure types, the fitting pro-
cedure employs a search in the three-dimensional o space
via simulated annealing. For each guess of
Ioh,„,ob, trh„),Eq. (2} was solved for the c with the
singular-values decomposition (SVD} linear least-squares
algorithm. The search in o space continued until the y
produced by the SVD fit was at a global minimum; y
was found to be between one and two at the minimum in
all cases considered. At the beginning of the minimiza-
tion procedure, the population of the hxg icosahedral-like
clusters always appears dominant, but as the minimiza-
tion proceeds and the fit is refined, the population of the
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i data

best fit FIG. 6. Comparison of the 6t
of Eq. (2) with the measured an-

gle distribution of eight-
coordination particles for the in-
herent structure at n =0.905.
The distributions have been nor-
malized for angles on the inter-
val [O,n]; angles in degrees are
shown on the abscissa for con-
venience.
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FIG. 7. Comparison of the fit
of Eq. (2) with the measured an-

gle distribution of eight-
coordination particles for the in-

herent structure at n = 1.133.
The distributions have been nor-
malized for angles on the inter-
val [0,~]; angles in degrees are
shown on the abscissa for con-
venience.
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TABLE IV. Populations of structure types among eight-
coordinated clusters. The rows do not all add up to 100% be-
cause of rounding errors.

Density

0.7800
0.8400
0.8750
0.8895
0.9050
0.9500
1.0000
1.0500
1.1327
1.2198
1.2672

hex

30%
30%%uo

40%
40%
40%
40%
40%
40%
20%
10%
10%

bcc

0%
0%
0%
0%
0%
5%
10%
20%
40%
60%
60%

hxg

70%
70%%uo

60%
60%
60%
50%
50%
40%
40%
30%
30%%uo

crystallization-like clusters hex and bcc always increases.
Typical results for the fit of the angle distribution are

shown in Figs. 6 and 7, which also present the computed
angle distribution. Even apart from the fitting procedure,
comparison of Figs. 6 and 7 shows that clusters with per-
pendicular angles are most important at the lower densi-
ties; these clusters must be the hex structure types (cf.
Fig. 5). Although the fits are far from perfect, they are
good considering that only three parameters are varied.
Presumably even better fits could also be had by varying
the Hk and bk for each of the structure types, but the fits

obtained with only three independent parameters are
sufficient to measure the changes in composition of the
inherent structure with increasing density. Furthermore,
the deviations between the fits and the computed distri-
bution are almost entirely due to an overestimate of the
contribution of the hxg icosahedral-like structure types.
Therefore, conclusions about the importance of
crystalline-like structure types are likely to be
strengthened by improvements in the fit. For now, we
are content to perform a qualitative rather than a precise
quantitative assay of the cluster types in the deposits. Fi-

nally, we note that when the same procedure is applied to
a fiuid, using the nearest-neighbor distance determined by
its g(r ), the distribution is essentially featureless.

Table IV contains the results for the composition in the
low-density range 0.78 ~ n ( 1.27, which are also
displayed in Fig. 8. This is the main result for this sec-
tion. The hxg clusters are in the majority for most of the
range. For the lowest density, a substantial presence of
hex clusters is found, with a maximum near n =0.92,
where about 45% of the clusters are hex. This maximum
is achieved just before the abrupt growth of bcc clusters,
which begins in the interval 0.95 & n & 1.00, below which
the population of bcc clusters is negligible. The popula-
tion of bcc clusters grows with increasing density at the
expense of first hex then hxg clusters at densities well
below that of the transition between the simple hexagonal
and the bcc phases in the corresponding zero-
temperature crystal (cf. Table I). For densities above
n=1. 1, bcc clusters dominate the eight-coordination
cluster population. Again, a precise assay is neither in-
tended nor achieved here, but the qualitative picture is
clear: A transition occurs between the crystalline-like
clusters, and crystalline-like clusters are always impor-
tant, even though icosahedral-like clusters are also found
at all densities.

The temperature independence of the inherent struc-
ture is expected to break down as the liquid is super-
cooled. As a test, the liquid was supercooled at two den-
sities (n =0.905 and 1.133) without nucleation of a crys-
tal phase to about one-fourth their respective freezing
temperatures. Even at such low temperatures, however,
the pair-distribution function and the results presented
above in Fig. 8 and Table IV, respectively, remain essen-
tially unchanged.

VI. LOCAL STRUCTURE
OF THE HIGH-DENSITY PACKINGS

Twelve-coordination clusters are the focus of the inves-
tigation in the high-density range (1.32 n~~1. 97), in
which they are abundant. As discussed elsewhere, the
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two principal structure types are the icosahedron (ico)
and the two closed-packed crystal structures, hexagonal
closed packed hcp and face centered cubic fcc (together
denoted as clased-packed crystal, cpc). The icosahedron
is the minimum-energy structure for the isolated 12-
coordination cluster; the corresponding zero-temperature
crystal phase is face centered cubic far n & 1.34 (cf. Table
I). Once again the angle distribution of the 12-
coordination clusters in the inherent structures are com-
pared with the angle distributions of the now two struc-
ture types, ico and cpc. The comparison is facilitated by
the abservation that the icosahedron possesses no perpen-
dicular angles but only angles of 63', 114', and 180', while
the fcc and the hcp crystallites each possess exactly 12
perpendicular angles aut of the 66 distinct angles, besides
angles of 60', 120', and 180' for the fcc and 60', 109',
120', 146', and 180' for the hcp crystallite. Figure 9
shows the angle distribution for the inherent structure at
n =1.45, typical for this density range. First, it is quite
difi'erent from the angle distributions shown for the low-
density range in Figs. 6 and 7. Second, the peak about the
perpendicular angle is quite sharp, thereby permitting a
statistical identification of the perpendicular angle as fol-
lows: all angles that lie between the minima on either
side of the peak about 90' shall be regarded as a perpen-
dicular angle. This definition provides a natural criterion
for selecting perpendicular angles, and therefore struc-

ture types. It avoids the arbitrary cutoffs, which some
other procedures must invoke when discriminating be-
tween icosahedral and close-packed structures, including
the one previously employed by this author. Therefore, a
cluster is here regarded as icosahedral anly if it contains
no perpendicular angles as just defined. On the other
hand, a cluster is regarded as cpc only if it contains ex-
actly 12 perpendicular angles. Clusters that contain an
intermediate number of perpendicular angles in fact
display characteristics of both icosahedral and face-
centered-cubic structures and may be regarded as truly
amorphous, as they are not otherwise easily classified. It
turns out that this identification of icosahedra is substan-
tially more generous towards them than some other cri-
teria. For example, another reasonable criterion is that
icosahedra should have all 12 perimeter particles coordi-
nated with exactly five near neighbors (and cpc clusters
should have no such perimeter particles), using the rNN
calculated for the inherent structure. Only about one-
fifth as many clusters identified in Table V below as
icosahedral would qualify with this much more strict cri-
terion; typically, the majority of 12-coordination clusters
in any inherent structure possess between zero and five
five-coordination perimeter particles. Yet another cri-
terion, employed earlier by the author and that sorts clus-
ters according to the distributian of the pair distances be-
tween all the perimeter particles is even more demanding,
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FIG. 9. Angle distribution for
12-coordinated particles in the
inherent structure at n = 1.32.
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TABLE V. Distribution of perpendicular angles among 12-coordinated clusters. The first row shows
the density of each of the inherent structures surrounded to two decimal places; see Table II for the
densities to four places. The first column shows the number of perpendicular angles. The values 0 and
12 correspond to the ico and cpc clusters, respectively. The marks the maximum in the distribution
for each density. The columns do not add up to 100% in part due to rounding errors and in part due to
the neglect here of the statistically insignificant population of clusters with more than 12 perpendicular
angles.

Density

0
1

2
3
4
5

6
7
8

9
10
11
12

1.32

2%
3%
5%
8%%uo

14%
16%%uo

17%
14%
10%

6%%uo

3%
l%%uo

0.3%

1.40

3%
4%
6%%uo

8%
12%
15%
16%
14%
10%

7%%uo

4%
2%
0.7%

1.45

5%
6%
7%

10%
13%%uo

*16%
15%
12%

8%%uo

5%%uo

2%
0.8%
0.3%%uo

1.52

5%
6%
7%
9%

12%
15%
15%%uo

12%%uo

9%
6%%uo

2%
l%%uo

0.8%%uo

1.57

4%
5%
6%%uo

8%
11%
13%

*15%
14%
11%%uo

7%%uo

3%
2%
1%

1.62

4%
6%%uo

9%
12%

*17%
17%
14%%uo

10%
6%
3%%uo

1%
0.4%
0.1%

1.97

2%
3%
5%
9%

12%%uo

16%
16%%u

13%%uo

10%
6%
4%%uo

3%%uo

2%

for with this criterion, the concentration of icosahedra
listed in Table V would fall by at least an order of magni-
tude.

The distribution of perpendicular angles among the
12-coordination clusters is listed in Table V; a typical dis-
tribution (at n= 1.45} is shown in Fig. 10. Typically,
more than half of the clusters contain between four and
seven perpendicular angles; fewer than 5% are
icosahedral (0 perpendicular angles), and fewer than 1%
are cpc (12 perpendicular angles). Inspection of a few of
the clusters with six perpendicular angles revealed that
the clusters appear icosahedral in one hemisphere, and
crystalline in the other.

Inspection of a few cpc clusters suggested that they
were strained, or at least compressed, that is, they ap-
peared to correspond to lattices of a higher density than
the density of the inherent structure. In order to quantify

this observation, the energies of all the 12-coordination
clusters (including the 13th central particle) were sorted
according to the number of perpendicular angles in the
cluster; the results are displayed in Table VI. A compar-
ison was made between the mean energies of the cpc clus-
ters and the energies of the 12-coordination cluster ex-
tracted from the fcc lattice of various densities (the ener-

getic differences between the clusters with hcp and fcc
lattices, respectively, are small enough to be ignored for
the purposes of this comparison). It was determined that
the cpc clusters in the inherent structure were slightly
compressed relative to the inherent structure. These re-
sults are also included in Table VI. The icosahedra also
are compressed, which may account for the observation
(cf. Table VI} that here the icosahedral clusters possess
the highest energies of all the 12-coordination cluster

types at every density.

16%—
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12%--

10%--

6%--

4%--

2%--

0%

4 5

NUMBER OF PERPENDICULAR ANGLES

10 12

FIG. 10. Distribution of per-
pendicular angles among the
12-coordinated particles in the
inherent structure at n = 1.52
(see Table V).
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TABLE VI. Lattice densities and mean energies of 12-coordinated clusters distributed according to
the number of perpendicular angles. The Srst row shows the density of each of the inherent structures.
The second row shows the efFective density of cpc clusters (those with 12 perpendicular angles) obtained

by matching their energy with that of the fcc cluster with the appropriate lattice parameter. The next
13 rows show the energy of the clusters according to the number of perpendicular angles, respectively.
The + marks energy minima for each density. The last row shows the energy of an isolated 13-particle
cluster with the fcc structure at the density of the inherent structure, where the density was taken to
four decimal places rather than to the two shown above. The lowest energy of an isolated fcc or hcp
crystallite of 13 hx particles is —36.062 (with lattice parameters corresponding to a density of 0.793);
the global energy minimum for a cluster of 13 hx particles is —41.802, in an icosahedral cluster with a
radius of 1.299 259 6.

Density
Effective

cpc density

0
1

2
3
4
5

6
7
8

9
10
11
12

fcc lattice

1.32
1.41

—15.26
—15.67
—15.72
—15.74
—15.88
—16.13
—16.27
—16.49
—16.66
—16.89
—17.12
—17.06

*—17.91
—22.26

1.40
1.49

—11.18
—11.11
—11.44
—11.32
—11.43
—11.66
—11.74
—11.88
—12.03
—12.24
—12.38

12.40
—12.74
—18.25

1.45
1.55

—7.32
—7.64
—7.75
—7.83
—7.90
—7.93
—8.08
—8.29
—8.40
—8.57
—8.67
—8.65
—7.90

—15.23

1.52
1.61

—1.41
—1.66
—1.50
—1.52
—1.60
—1.62
—1.77
—1.69
—1.89
—2.09

*—2.42
—2.32
—1.52

—10.19

1.57
1.65

4.09
3.29
3.89
3.97
3.75
3.75
3.65
3.62
3.42
3.40
3.09
2.94

*2.79
—5.81

1.62
1.71

9.88
9.77
9.69
9.88
9.59
9.74
9.68
9.39
9.19
8.93
8.80

'8.77
9.81

—0.99

1.97
2.00

78.31
77.48
78.04
77.84
77.15
76.81
76.11
74.80
73.37
71.22
66.76
64.04
62.34
54.88

VII. CONCLUSIONS

One of the lessons learned here is that the usual bulk
measures, such as the equation of state, or the usual order
parameters, such as the pair distribution function, are
inadequate for resolving the details of the local structure
of amorphous packings. Even "computer experiments"
are difficult to analyze, in spite of the advantages of
knowing precisely the coordinates of each particle. These
remarks suggest that decisive experimental determina-
tions of the structure of these kind of amorphous sub-
stances will be difficult and therefore may not be rapidly
forthcoming. On the other hand, as discussed below, a
simple theoretical description of these packings also may
be far in the future.

The Srst part of Frank's suggestion for the local struc-
ture of amorphous packings, ' namely, that in the densest
packings the local structural motif should be noncrystal-
line, was well founded and is verified in this work. How-
ever, the second part of his argument, namely, that the
noncrystalline alternative should be instead icosahedral,
fails in the cases considered here. First, icosahedra are
always rare. Second, the icosahedra possess the highest
potential energy among the 12-coordination clusters,
even though they have the lowest energy in isolation.
Third, the 12-coordination clusters that do possess the
lowest energy are not the most abundant, as a compar-
ison between Tables V and VI reveals. The most com-
mon 12-coordination clusters are, with respect to the
geometrical attributes considered in Sec. VI above, al-

most perfectly halfway between the crystal close-packed
and icosahedral arrangements. The fact that the most
abundant 12-coordination clusters share attributes of
both icosahedral and crystalline arrangements also shows
how easily both pure theorists and "computer experimen-
talists" might have oversimplified the picture of the local
structure because those looking for either one or the oth-
er arrangement would have found evidence to support
their case. Finally, the most common 12-coordination
clusters do appear to contain at least a hemisphere that is
crystalline and therefore could serve as a nucleation site
or template. The argutnent against microcrystallites that
is derived from a requiretnent for an absence of crystal
nucleation sites does not succeed here.

These remarks also suggest that a simple theory of the
densest amorphous packings is not likely to appear soon,
for the local structural motifs cannot be resolved into a
simple dichotomy. The last significant theoretical ad-
vance on this subject was a mathematical tour de force,
which nevertheless failed to correctly identify the
predominant local structure. Apparently a much larger
number of structure types now must be considered by
theory. Theory wi11 also require a more accurate ap-
proach to untangling the complicated interactions be-
tween atoms in a given cluster with the rest of the system,
and a more accurate treatment of the entropy of the clus-
ter. In circumstances where everything seems important,
theory is often found to fall short; this study apparently
provides such a circumstance.

In the case of the lower-density packings, the theoreti-
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cal situation may be more promising. In these cases, even
the first part of Frank's suggestion fails to describe the
dominant local structure for most of this density range,
although in retrospect it might have been unreasonable to
apply it at all to the lower-coordination packings. In-
stead, crystalline local order is abundant, except at the
very lowest densities. Even a transition is observed be-
tween two crystalline types of the same coordination. It
is likely that either the continuous random-network mod-
els or the dense random-packing models would predict
that nearly all the clusters would be like hxg, the non-
crystalline icosahedral fragment, which minimizes the
isolated cluster. However, Phillips' constraint
theory' ' apparently does possess the essential in-
gredients which might provide a prediction for these ob-
servations. The constraint theory recognizes that crystal-
line arrangements might dominate the local order. Fur-
thermore, the idea in constraint theory that the represen-
tative crystallite comes from the high-temperature phase
might explain the sudden appearance of bcc clusters at
densities well below the bulk crystalline hex-bcc transi-

tion. Although the phase diagram for the hx model has
not been elucidated, it is likely that there is a high-
temperature bcc phase at densities where the low-
temperature crystal phase is simple hexagonal, under
constant-volume conditions. '

Evidence has been presented for the presence and even
dominance of crystalline local order in amorphous
quenches of this model liquid. This observation removes
the widely accepted explanation for what Hoare calls
self-limiting growth, namely, that the local order is non-
crystalline (or presents no nucleation sites for crystal
growth). What then limits the growth of the crystalline
phase in the quench? It is likely that the answer is more
complicated than any of the explanations proposed so far.
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