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By means of ab initio pseudopotential theory and the local-density approximation various prop-
erties of monovacancies and self-interstitials in bcc Na, viz. the formation energies and formation
volumes and the electric Beld gradients in the neighborhood of the defects, are calculated. As in the
case of Li treated earlier, comparison with experimental results leads to the following conclusions. (i)
An interstitialcy mechanism of self-diffusion may be excluded. (ii) The vacancy formation enthalpy
is so close to the activation enthalpy of self-diffusion that either the vacancy migration enthalpy
must be extraordinarily small (this raises the question of the validity of the transition state theory)
or the low-temperature self-diffusion in Na is due to a direct exchange of neighboring atoms or to a
ring mechanism involving three atoms. A nonvacancy mechanism is supported by the fact that the
calculated monovacancy formation volume at 0.51 atomic volumes is substantially larger than the
experimentally determined activation volume of the low-temperature mechanism of self-diffusion.

I. INTRODUCTION HsD HF + HM
2 2 2

The simplest intrinsic defects we might have in a metal
are vacancies and self-interstitials. A monovacancy is
generated by removing an atom &om a lattice site and
inserting it at a typical surface site. The enthalpy dif-

ference between the 6nal and the initial states of this
process is the monovacancy formation enthalpy, Hz&. A
self-interstitial is generated by removing an atom from a
typical surface site and inserting it into an interstice in
the interior of the crystal. The enthalpy of self-interstitial
formation, Hl+, is obtained in analogy to Hz+&, but here
we have to keep in mind that even in metals with sim-

ple crystal structures several mechanically stable self-
interstitial con6gurations may exist with different forma-
tion enthalpies.

The migration of vacancies through a crystal leads to
self-diffusion. This is true also for the migration of self-

interstitials if it occurs, as is the rule, by an interstitialcy
mechanism, i.e. , by the exchange of an atom in an in-

terstice with a neighboring one located (approximately)
at a lattice site. In thermal equilibrium usually several
mechanisms contribute to the self-diffusivity D . If we

denote the contribution of a given mechanism by Dj
the corresponding self-diffusion activation enthalpy is de-

Bned as

If we leave aside the possibility of short-circuit dif-

fusion along extended defects, thermal-equilibrium self-
diffusion at sufBciently low temperatures is dominated by
the mechanism with the lowest H . Owing to the ex-
perimental progress of the last few years, for many metals
this value can be determined with an accuracy of the or-
der of magnitude of 1%. If we succeed in identifying the
underlying mechanism, Eq. (2) may give us important
quantitative information on the defects involved. Note
that in general the quantities on the right-hand side of
(2) are much more diKcult to determine from experiment
than the left-hand side. Moreover, in some metals the
assignment of measured migration enthalpies to intrinsic
defects is controversial.

Among the measurements that have proved helpful in
identifying mechanisms of self-diffusion are the depen-
dences of the self-diffusivity on the atomic mass, charac-
terized by the so-called isotope efFect parameter

where D (D~) denotes the difFusivity of the isotope with
atomic mass m (ml ), and on the hydrostatic pressure,
from which we may derive the self-difFusion volume

~SD . OlnDj
cl(1/kg) T) „

QSDV-:= —k T
Op T=const

(4)

where k~ denotes Boltzmann's constant, T the absolute
temperature, and p the hydrostatic pressure. For mech-
anisms involving lattice defects, H. is related to the
enthalpies of formation and migration of the j defects,
II& and HM, by

Application. of criteria which allow us to exclude certain
mechanisms of self-diffusion con6rmed the general belief
that the dominant mechanism of self-difFusion in metals
is the monovacancy mechanism for all face-centered-cubic
(fcc) and all hexagonal close-packed metals on which de-
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tailed experimental data are available but not for the
body-centered-cubic (bcc) metals. i Among the bcc met-
als there is only one, viz. , n-Fe, for which the domi-
nance of the xnonovacancy mechanism could be estab-
lished definitely. For two bcc xnetals, viz. , Li and Na, the
analysis of the experiraental results has lead to serious
doubts whether any defect mechanism can account for
the low-temperature self-difFusion data. i If these doubts
are confirmed, the only rexnaining mechanisms are those
involving the exchange of adjacent atoms without partic-
ipation of lattice defects. It has been shown that such
mechanisms are compatible with the experimental data
available on Li (Refs. 1 and 2) and Na. i

Under the circumstances just described, calculations
of H+ and H (whi. ch for p = 0 coincide with the en-

ergies of formation and migration, E+ and EM) on Li
and Na might provide help in clarifying the situation.
The inspection of existing calculations is not too encour-
aging, however. The results obtained by empirical or
semiempirical calculations depend very sensitively on the
values of the fit parameters. E.g., values for the mono-
vacancy formation energy E~+& of bcc Na calculated in
this way scatter between 0.42 eV (Ref. 4) and 0.15 eV.
The difference between these two values is highly signif-
icant in the present context, as may be seen as follows.
If the first value (obtained with empirical pseudopoten-
tials) was (approximately) correct, we could exclude the
vacancy mechanism of self-difFusion since then the mea-
sured activation enthalpy for the self-diffusion mecha-
nism dominating at low temperatures, HsD = 0.37 eV,s r

would be incompatible with (2). The second value (ob-
tained with interatomic pair potentials), however, leaves
enough room to accommodate a positive vacancy migra-
tion enthalpy in (2).

The preceding examples indicate that empirical or
semiempirical calculations are unlikely to be helpful in
the present context and that it is only from ab initio
calculations that we can hope to obtain quantitative the-
oretical information that can be relied upon. Recently, it
has indeed been demonstrated that a,b initio calculations
based on the local-density approximation (LDA) are ca-
pable of giving a value for E~+& in Al with an accuracy
which matches or possibly even exceeds that of the ex-
perimental determinations. s' LDA calculations on bcc
Li based on ab initio pseudopotential theory gave the
result that the formation energies E&+ of all conceivable
self-interstitial configurations are at least 40% larger than
the experixnentally observed ' low-temperature activa-
tion enthalpy for self-difFusion, HsD = (0.52 + 0.02) eV,
whereas the calculated value E&+& ——0.54 ev coincides
with H within the combined errors of experiment and
theory. Since in order to be physically meaningful, de-
fect migration energies must be positive and at least a
few times k~T, the results of the LDA ab initio calcu-
lations on Li support the conjecture that the dominant
mechanism of self-diffusion in bcc Li is neither a self-
interstitial nor a vacancy mechanism. The conclusion
that the dominant self-difFusion xnechanism must then
be a nondefect mechanism involving e.g. , the direct ex-
change between nearest-neighbor atoms or a so-called
ring mechanismx2 will be tested by ab initio calculations

of the saddle-point energies for vacancy migration and
for the direct exchange of neighboring atoms in bcc Li
(cf. Sec. IVB).

As mentioned above, the experimental situation with
respect to the mechanism of self-difFusion in bcc Na is
similar to that in Li, although the detailed reasoning is
different due to the fact that the available experimen-
tal information is not the same. It appeared therefore
appropriate to perform ab initio pseudopotential calcu-
lations in the local-density approximation on bcc Na,
too, in order to check whether a similar situation arises
as for bcc Li. The present paper considers monova-
cancies as well as various self-interstitial configurations,
viz. , octahedral and tetrahedral interstitials and the so-
called (100), (110), and (111) dumbbells. The general
guidelines in setting up the computations are outlined
elsewhere.

II. CONSTRUCTION
OF THE PSEUDOPOTENTIAL

AND THE COHESIVE PROPERTIES OF bcc Na

TABLE I. Calculated equilibrium lattice parameter ao and
elastic buIk modulus K of bcc Na, in comparison with other
theoretical and with experimental data. The experimental
value of K was obtained at 78 K, that of ao at 5 K.

This paper
FLAPW
APW
Experiment

a [10 '
m]

4.05
4.05
4.07

4.225

K [GPa]
9.12
9.2
8.7
7.3

Reference 15.
Reference 16.

'Reference 17.

The frozen-core pseudopotential was constructed ac-
cording to Hamann, Schliiter, and Chiang s with a ref-
erence configuration (Ne) 3ss 3p ' s 3d ' and r...=
r, „=1. 5.au. , r, g = 1.8a.u. The cutoff radius rpc for
the partial-core correctioni4 was chosen in such a way
that for r = rpg the core charge density was equal to
the valence charge density; the cutofF radius q ~ for the
pseudopotential in Fourier space was 7.9 (a.u. ) i. The
transferability of the pseudopotential was tested for sev-
eral exited states. The excitation energies computed with
the pseudopotential agreed with the all-electron results
within 10 4 Ry.

The cubic lattice parameter ao and the bulk modulus
K of the perfect lattice as obtained by converging the
results with respect to the plane-wave energy cutofF E
and the number ni of k points in the irreducible part
of the Brillouin zone are given in Table I. The cora-
parison of the present results with those of augmented-
plane-wave (APW) calculations and full-potential linear-
augmented-plane-wave (FLAPW) calculations of Sigalas
et aLis shows excellent agreement with the FLAPW cal-
culations (see Table I). In agreement with the general ex-
perience with LDA calculations, all three computational
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methods overestimate the bulk modulus and slightly un-
derestimate the lattice parameter.

III. PROPERTIES OF MONOVACANCIES
AND SELF-INTERSTITIALS

cancy formation volume is given by

V~v —~o+ +V

and the self-interstitial formation volume by

A. De6nitions and some computational details where 6V~ (j = 1V, I) denotes the change of the vol-
ume of a large crystal with traction-free surfaces per
j-type defect introduced. For both vacancies and self-
interstitials the quantity AV~ may be determined from a
supercell calculation according to

The present computations of defect properties in Na
use periodic arrangements of supercells with either 16 or
54 atoms in the defect-free cells. The defects are inserted
in the supercell centers. Since in this approach there
are no surfaces, the recipe of Sec. I for the calculation
of the formation energies of interstitials and vacancies
cannot be followed. Instead, the formation energies are
calculated according to

AV~ = A~ —NOO

The quantities A~, already introduced in Eqs. (5) and

(6), are the volumes of the supercells into which one va-

cancy or one self-interstitial has been introduced and on
which the complete relaxation procedure described above
has been carried out. AV~ is to be distinguished from the
local relaxation volume AV, which does not include the
volume change that results from the "image defects" that
one requires in order to have traction-free surfaces of a
finite crystal and which is therefore a better measure of
the local relaxation around a defect than AV~. The two
quantities are related to each other by

Ei:E(N + 1 1 Ai) — E(N 0 NOO)F N+1
(5)

or

Eiv = E(N —1, 1, Oiv) — E(N, 0, NBp) . (6)

Here E(N + 1, 1, A~) denotes the energy of a supercell
with N + 1 atoms and either one self-interstitial or one
vacancy at the respective equilibrium volume O~, and
E(N, O, NOo) the energy of an ideal supercell with N
atoms at the equilibrium volume NOD. The relaxation
of the atomic positions around the defects is performed
by first moving the atoms according to the Hellmann-

Feynman forces until the forces acting on the atoms are
zero ("structural relaxation" ). During this first step the
supercell volume is kept constant; i.e. , O~ = NOO is
maintained. In a second step the system is allowed to
shrink or expand homogeneously ("volume relaxation" )
until the total energy reaches its minimum. The handling
of numerical problems encountered in the second step is
described elsewhere. For a vacancy in Li, the forces on
the atoms were calculated again after this second relax-
ation step. Since it turned out that these forces were

very small and that the corresponding relaxation of the
atomic positions had virtually no e8'ect on the forma-
tion energy, in the present work we have refrained from
recalculating the forces after the volume relaxation.

The formation volume

AV~ = AV. (1+p)

where p & 0 is the so-called Eshelby factor. The
Eshelby factor may be calculated from the elastic con-
stants. Its numerical values are p = 0.37 for Na and

p = 0.40 for Li. 2

B. Relaxation displacements of atoms

Figure 1 shows the differences between the distances d

of the individual atoms from the supercell center as ob-
tained after the first relaxation step (i.e., without volume

relaxation) and the distances do in the. perfect crystal. It
should be noted that for atoms on the supercell bound-

ary, symmetry restrictions force components of the dis-

placement vector to be zero (see caption of Fig. 1). The
relaxation around the vacancy looks very much like that
obtained for Li. ' ' The introduction of a dumbbell
at the center of the supercell breaks the cubic symmetry
of the ideal lattice. As a result, atoms which originally
had the same distance from the center of the unit cell
may experience di8'erent displacements when a dumbbell
is introduced, as shown in Fig. 1 for a (100) dumbbell.
The separation of the dumbbell atoms after the struc-
tural relaxation is 5.31 a.u. , 5.51 a.u. , and 5.47 a.u. for
the (100), (110), and (111)dumbbells, respectively.

V,. := —OG,. lOp

C. Vacancy formation energy and formation volume

Table II gives the results for the vacancy formation en-

ergy as calculated without relaxation (n.r.) and after the
first relaxation step (w.r.) for N = 16, 54, and for vari-

of the j defects is defined in terms of the pressure de-
pendence of their free enthalpy of formation (Gibbs &ee
energy), G. , which at T = 0 reduces to H+ The self-.
difFusion volume V. D [defined by Eq. (4)] is related to
V- and is, as experience shows, numerically not too dif-

ferent &om it. Comparison of calculated V. volumes
2

with measured self-diffusion volumes can therefore give
an important hint of the di8'usion mechanism.

From the procedure of generating a vacancy or a self-
interstitial as described in Sec. I it follows that the va-
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FIG. 1. Displacement of the neighboring atoms around the
vacancy (top) and the (100) dumbbell (bottom). The figure
shows the modi6cation of the distance d from the defect cen-
ter as a function of the original distance do, in units of the
original lattice constant ao. The lines are guidelines for the
eyes. There is no displacement of the outermost atom due to
the periodicity of the superlattice. For the (100) dumbbell
we present for do ——0 the distance of the dumbbell atoms
from the center of the supercell, i.e., half the separation of
the dumbbell atoms. Atoms denoted by the symbol 6 (~)
are located on a supercell boundary and hence one (all) com-
ponents of their displacement vector are forced to be zero due
to symmetry restrictions.

TABLE II. Vacancy formation energy EIv as calculated for
difFerent numbers N of sites in the supercell, different cutoff
energies E, of the plane-wave basis, and difFerent numbers n
of k points in the irreducible Brillouin zone of the superlat tice.
The corresponding numbers nI of k points in the irreducible
Brillouin zone of a one-atom unit cell are also given. The
superscripts a and b denote high-symmetry and low-symmetry
k points, respectively ( 1 Ry = 13.6058 eV).

N
16

54

E. [Ry]
8.5
8.5
8.5
8.5
10.5
10.5
8.5
8.5
8.5

4
4

10
20

1
4
1

4'
4a

A: points
n1
14
40

112
240

5
14
8

30
112

Eiv [eU]
n.r. w.r.
0.55

0.44

—0.21
0.55

0.45

0.40
0.40
0.40

0.47
0.40
0.36

ous values of E and numbers n of k points used in the
Brillouin-zone sampling. In order to facilitate the com-
parison of the convergence with respect to the Brillouin-
zone sampling for various supercell sizes, we also exhibit
the number nq of k points which had to be used in a one-
atom supercell in order to get the same single-particle
states as in a perfect 16- or 54-atom supercell ("equiva-
lent set"). The convergence of the data for N = 54 with

respect to n~ resembles very much that found in Li:
Eiv decreases by 0.11 eV when going from ni ——8 to
ni ——112. In earlier calculations on Li the step from
nq ——112 to nq ——728 had virtually no effect. Analogous-
ly, we found for Na (N = 54, E, = 8 Ry) a change of
only 0.006 eV when going from n~ ——112 to n~ ——330.
The comparison of the results for N = 16, nq ——14,
and E, = 8.5 Ry or 10.5 Ry shows that the E&& values
are already very close to convergence at E = 8.5 Ry,
again as was the case in Li. (The reason for this is that
EP&, representing the difference between two total en-

ergies, converges much more rapidly than the individual
total energies. ) We therefore suppose that our results
for N = 16 and N = 54 are very close to convergence
already at E, = 8.5 Ry and ni ——112.

Concerning the convergence with respect to the super-
cell size, it has recently been shown that for cubic crys-
tals that part of the vacancy formation energy which
depends on the supercell size N originates almost ex-
clusively from elastic interactions between the vacancies.
Correcting for these elastic interactions, we arrive at an
extrapolated value of E~& ——0.340 eV for an isolated va-
cancy in Na. The uncertainty of this value due to the
limitation of the LDA is difficult to estimate from the-
ory, but the comparison between experiment and theory
on Al (Refs. 8 and 9) referred to in Sec. I leads us to
believe that the uncertainty resulting from this does not
exceed 5%.

Finally we have to discuss the effect of the second re-
laxation step, the so-called volume relaxation, on Ey~.
This step involves finding that supercell volume at which
the energy of a supercell containing a vacancy is lowest.
It turns out that the dependence of Ez+& on the relax-
ation volume is rather weak. This has the advantageous
consequence that the volume relaxation has a very small
e8'ect on E~&. E.g. , the vacancy formation energy as ob-
tained from a supercell with N = 54 was reduced by only
4 meV. We thus obtain as our final result

E,v(Na) = (0.34 6 0.02) eV (12)

On the other hand, the weak dependence of E&& on
Oq~ has the consequence that the accurate determina-
tion of the vacancy formation volume requires extensive
and careful numerical work. The supercell volume Oq~
was determined by the second relaxation step described
in Sec. IIIA for N = 54, E = 8.5 Ry, and nq ——112.
Since the Oqv obtained in this way could not be expected
to be close to convergence with respect to E, and nq, we
calculated AViv by inserting into Eq. (10) the perfect-
lattice value Op following from a one-atom-unit-cell cal-
culation using the same E and an equivalent set of k
points. In this way we found from Eq. (10)

Z V,v = —o.49n,

which is close to the result AVj~ ———0.51Op obtained
for Li

The preceding procedure was based on the assumption
that the errors in Oqv and NOp due to the incomplete
convergence tend to cancel in the determination of AVqv
from Eq. (10) (cf. the analogous reasoning in the calcula-
tion of the formation energy given above). The validity of
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this assumption was tested by computations on a super-
cell with N = 16. The calculations with E, = 8.5 Ry
and a set of k points equivalent to that used for the
N = 54 calculations gave us AV~v ———0.450p. Going
to E = 10.5 Ry but keeping the number of k points
constant led to 4'~ ———0.460p, i.e., to a rather small
change. We take these results as evidence that the value

(13) obtained for a supercell with N = 54 is indeed close
to convergence with regard to E, and nq. We have also
determined AVqv &om the pressure generated by form-
ing a vacancy at constant volume, ~ yielding again the
result (13). Insertion of (13) into (8) gives us as the cal-
culated value of the monovacancy formation volume of
bcc Na

Viv = 0.510 (14)

From (14) and the Eshelby factor for Na follows the local
relaxation volume as b,VPv ———0.360o. Nearly the same
value was found in the computations on Li.

D. Formation energies and formation volumes
for self-interstitials

TABLE III. Results for the formation energies EI of vari-
ous self-interstitial configurations for a N = 16 supercell with-
out relaxation (E, = 8.5 Ry, nz = 14).

Tables III and IV give the formation energies EI of
the various self-interstitial configurations as calculated
without taking into account the volume relaxation. Ta-
ble III shows the data for the unrelaxed X = 16 super-
cell with E, = 8.5 Ry and nq ——14. Because EI is
much higher for the octahedral and the tetrahedral in-
terstitials than for the dumbbell configurations, we have
performed the N = 54 supercell calculations only for
the dumbbells. Prom Table IV it becomes obvious that
the structural relaxation affects their formation energies
much more than the vacancy formation energy. As in
the case of Li, even the lowest self-interstitial formation
energies, those of (110) and (ill) dumbbells, exceed the
vacancy formation energy considerably.

Because the inBuence of the volume relaxation was ex-
pected to be larger for self-interstitials than for vacancies,
we have estimated the order of magnitude of the reduc-
tion of El by calculations on the (110) dumbbell in a
X = 54 supercell for cell volumes Ol that had been in-
creased by one and two atomic volumes (for 30 k points
in the irreducible Brillouin zone; see Table IV). In both
cases the formation energy 0.59 eV obtained with the cell
volume NAp was reduced by 0.039 eV. From this result
we conclude that the equilibrium volume lies between

TABLE IV. Results for the formation energies of various
self-interstitial configurations for a N = 54 supercell without
relaxation (n.r. ) and with relaxation (w.r.), E, = 8.5 Ry. The
superscripts a and 6 denote high-symmetry and low-symmetry
k points, respectively.

k points

1
4a
4b

Ag

8
30
112

(111)
n.r. w.r.

0.97
0.60
0.64

1.99

EI [eV]
(110)

n.r.

1.70

w.r.
0.99
0.59

(100)
n.r.

1.46

w.r.
1 ~ 10
0.?3

E. Electric field gradients

The lattice sites in bcc and fcc crystals have cubic point
symmetry. Hence the electric field gradients at these sites
are zero. The introduction of defects, e.g. , of vacancies
or self-interstitials, destroys the symmetry at neighbor-
ing sites. As a consequence, electric field gradients act
on the nuclei of neighboring atoms. If these nuclei pos-
sess sufficiently large nuclear quadrupole moments Q, as

Na with Q = (109+3)x 10 m does, those electric
field gradients may be investigated by nuclear magnetic
resonance (NMR) techniques. If we adopt for the princi-
pal components of the (traceless) tensor V of the electric
field gradient (EFG) the convention IV„I & IV„„I & IV
the so-called asymmetry parameter

Vy„—V
7l =

V,

obeys 0 & g & 1. For a nucleus such as Na with
spin I = 3/2 each electric field gradient gives rise to
a quadrupolar resonance &equency

(N + 1)Qo and (X+ 2)Qo and that the infiuence of the
volume relaxation on the formation energy of the self-
interstitial exceeds that on Ez+& but is nevertheless not
large enough to reduce E&+ to values comparable with the
vacancy formation energy.

Since on the basis of the computed formation energies
we can rule out the possibility of a significant intersti-
tialcy contribution to self-difFusion in Na, there was no
great interest in determining b,VI accurately From. the
calculation of E&+ for (110) dumbbells at prescribed val-
ues b, VI = 0, Ao, and 20o (see above) we may conclude
that Vi+ is positive but not larger than one atomic vol-
ume.

Configuration
Octahedral site
Tetrahedral site
(111)dumbbell
(110) dumbbell
(100) dumbbell

E~ [eV]
2.67
3.88
1.37
1.65
1.21

where e is the elementary charge. Since V, and g at
the nuclei in the various shells around the defects are
diferent, the set of quadrupolar resonance frequencies
associated with a given defect constitutes a "fingerprint"
of that defect. Calculations of V„and g are therefore of
considerable interest.
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TABLE V. The frequencies vq of the quadrupolar splitting
at nuclei close to a vacancy and to a (100) dumbbell. The in-
teger m denote the shells around the defect center a&here the
considered atom is located in the unrelaxed supercell (m = 0
corresponds to the dumbbell atoms). Note the symmetry
breaking due to relaxation after the introduction of the dumb-
bell for m = 2, 3, 4, 6. The quantity N denotes the number
of atoms in the corresponding crystallographically equivalent
positions. For atoms at the supercell boundary the results are
strongly inauenced by the supercell geometry. E.g. , the large
value of g for m = 4 arises from the fact that these atoms lie
on the supercell boundary.

Shell
m
0
1
2

Vacancy
N vQ [10 s ]

0
8 5.4
6 9.7
0
12 3.7
0

24 4.1
0
8 2.0
24 4.3
0
8 0

0.00
0.00

0.03

0.97

0.00
0.00

0.00

(100) dumbbell
N vo [10 s ]

2 66.1
8 13.7
4 2.8
2 38.5
8 43
4 3.6
16 4.7
8 3.9
8 7.1
8 4.2
16 4.3
8 3.2

rl

0.00
0.17
0.08
0.00
0.01
0.75
0.98
0.92
0.35
0.79
0.00
0.00

Admittedly, the present pseudopotential calculation is
not the most suitable method to obtain accurate numer-
ical results for the electric field gradients. First, the
frozen-core approximation neglects the contribution aris-
ing &om the polarization of the ionic cores in the inho-
mogeneous potential fields. However, for the electric Geld
gradient acting on the nuclei in ideal hexagonal metals,
these core polarization eH'ects play only a minor role.
To which extent this is also true for nuclei close to atomic
defects has not yet been investigated. Second, the valence
contribution to the electric field gradient is not correctly
represented by the pseudo-wave-function, since it may
exhibit the correct asphericity but not the correct radial
dependence, which also affects the electric Beld gradient.
In spite of these shortcomings we think that the general
behavior and the order of magnitude of our results on the
EFG are correct. (See, however, note added in proof. )

Table V summarizes the results for the vacancy and
the (100) dumbbell in Na. The general features resemble
very much those of Li.2s Some of these presumably ap-
ply to other metals, too. E.g. , the result that in Li and
Na the electric field gradients at the next-nearest neigh-
bors of a vacancy are considerably larger than those at
the nearest neighbors and that hence the sites with the
largest value of [V„[are not necessarily those closest to
the defect may hold for other bcc metals as well. An-
other result that is likely to be of general validity is that
the largest values of [V„[associated with dumbbell self-
interstitials (which appear to occur always at the sites of
the dumbbell atoms, i.e. , in the m = 0 shell) are much
larger than the largest )V„[ associated with vacancies in
the same metal. This result, which is supported by re-

cent experiments on irradiated and quenched copper, 27'2s

is clearly very helpful in assigning the EFG "fingerprints"
to definite defects.

IV. DISCUSSION

A. Enthalpies of formation

One important result of the present computations is
that in Na the enthalpy of formation of self-interstitials
is by about a factor 1.8 larger than that of monovacan-
cies, which means that we may disregard the contribu-
tions of self-interstitials to the defects in thermal equi-
librium. We are thus justified in interpreting the high-
temperature measurements of the relative change of the
lattice parameter, b,ao/ao, and of the specimen's length,
b, //l, in terms of

1 b l Lap
3 l

(17)

where C& is the total atomic concentration of vacancies
in thermal equilibrium. Feder and Charbnau carried
out such measurements on Na and found, by fitting their
results to

[S~,l ( H~ l
Cvq(T) = exp

/

'
/
exp ]-

( kg ) ( kgyT)
(18)

an efFective formation enthalpy H+& ——(0.42 6 0.03) eV
and an efFective formation entropy S+& ——(5.8 + 1.1)k~.
By combining the x-ray determinations of b,ao/ao of
Feder and Charbnauso with their own b, l/l data as ob-
tained by means of a capillary method, Ritter et al. ~

derived H+& ——(0.40 6 0.05) eV and S+& ——(7.2 + 1.5)kgb.
Adlhart et al.s2 determined b,ao/ao by neutron scatter-
ing. Combining these data with the b, l/l measurements
of Feder and Charbnaus gave them H,&

——(0.354 +
0.025) eV, S,& ——(3.9 6 0.7)k~, whereas combining them
with those of Ritter et al.s~ gave H+& ——(0.36+ 0.03) eV,
S,z ——(4.0+0.9)k~. From specific heat measurements at
high temperatures Martin found H+& ——(0.35+0.05) eV
and S,& ——(5.2 + 1.3)kB.

Since at the beginning of this section a significant con-
tribution of self-interstitials to the thermal-equilibrium
population of intrinsic atomic defects in Na has been
excluded, the differences between the effective enthalpy
of formation, H, ff y and the monovacaney forxnation en-
thalpy H~+& (which for atmospheric pressure is numeri-
cally indistinguishable &om Ezv, the quantity calculated
in Sec. III C) must mainly come from divacancy contri-
butions. As the formation enthalpy of divacancies ex-
ceeds that of monovacancies, the ratio of divacancies and
single vacancies in thermal equilibrium increases with in-
creasing temperature. A direct consequence of this is the
inequality

1V ++fFF

Equation (19) is indeed compatible with the calculated
value (12) and the various experimental data discussed
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in the preceding paragraph. The scatter in H & is too
large to allow a quantitative estimate of the divacancy
contribution to C&q.

of the monovacancy mechanism and

Oln DsD
VSD k T exch

exch
T=const

B. Self-difFusion

SD
1V

T=const
(20)

In Na the Arrhenius plot lnD (T) vs (kBT) is

strongly curved. Together with the temperature de-
pendences of the activation volume of self-difFusion [cf.
Eq. (4)] and of the isotope energy parameter [cf. Eq.
(3)], this indicates strongly that in Na several mech-
anisms with different enthalpies of self-difFusion, H
contribute to self-diffusion. The key problem is to iden-
tify the mechanism that has the lowest activation en-

thalpy, which will be denoted by H1 . It should be
noted that the curvature of the Arrhenius plot was ten-
tatively ascribed to a temperature dependence of the de-
fect parameters rather than to the appearance of several
mechanisms by Jacucci and Taylor. The discussion of
such a probable temperature dependence is not relevant
for the present paper, where we consider exclusively the
low-temperature limit of the effective enthalpy of self-
diffusion obtained by extrapolation of the experimental
data (see below).

At low enough temperatures the effective enthalpy of
bulk self-diffusion, H,&, should approach H1 . The
measurements on Na do not extend to sufFiciently low

temperatures for H,& to become temperature indepen-
dent; H1 must therefore be found by extrapolation. By
fitting his Na tracer data, which extend down to a self-
diffusivity of about 10 i m2/s, to the superposition of
two Arrhenius laws, Mundy obtained H1 ——0.37 eV.
The same value was derived from an analogous fit to the
dipolar contribution to the Na spin-lattice relaxation
time. If we assume that H1 is to be attributed to
monovacancies and that hence Eq. (2) holds, we arrive
at the conclusion that in Na the monovacancy migration
enthalpy is only about 0.03 eV. This is such a small value
(note that 0.02 eV = 230k~ K) that the validity of the
physical picture leading to Eq. (2) cannot be taken for
granted. Alternatively, we may argue that the monova-
cancy migration enthalpy is large enough for Eq. (2) to
be valid, say, larger than 3kI3T —0.06 eV. We then have
to conclude that the monovacancy mechanism cannot be
responsible for the low-temperature bulk self-diffusion of
bcc Na. Since interstitialcy and multiple-vacancy mech-
anisms for self-difFusion may be excluded a fortiori, the
only remaining possibilities are nondefect mechanisms,
e.g. , the direct exchange of neighboring atoms or a ring
mechanism. It remains to be seen whether further cal-
culations will be able to demonstrate that a nondefect
mechanism can give H1 values that are compatible with
the experimental data.

Another way in which ab initio calculations may help
to distinguish between the monovacancy mechanism and
a nondefect mechanism of self-difFusion is to consider the
activation volumes

of a direct exchange mechanism. Analogous equations
hold for ring mechanisms. In the first case we may write
in analogy to Eq. (2)

SD F M
V1V = V1V+ V1V (22)

where V1v is the vacancy formation volume. This quan-
tity may be obtained experimentally by measuring the
pressure dependence of Czv, or calculated as discussed
in Sec. III. The so-called migration volume V&v then
may be obtained from Eq. (22) with VisD determined ex-
perimentally according to Eq. (20). We should realize,
however, that Eqs. (20), (22) are little more than an op-
erational definition of the migration volume V v, since at
present we do not know how to calculate Viv from first
principles. An analogous situation obtains for V,h.

The main difficulty in calculating ViMv and V,„,& is as
follows. Both quantities are related to the energy bar-
rier over which the system has to pass during a difFusion

jump. Since the crystal can respond to the movement of
a jumping atom not faster than with the speed of sound,
the atomic relaxation during this movement is confined
to a rather small neighborhood of the atom that passes
over the energy barrier. The fact that during jump pro-
cesses the relaxation is necessarily incomplete means that
the true activation enthalpy is larger than the saddle-
point energy as calculated by the present (or any other
static) computational technique. In situations in which
the relaxation has only a modest effect on the computed
energies this violation of one of the basic assumptions of
the so-called transition state theory of rate processes may
be a small effect. It is indeed likely that the above com-
parison between H1 and H&Fv is valid to quite a good
approximation. The situation is, however, completely
different when we consider activation and migration vol-

umes. We must expect substantial difFerences between
the numerical values deduced from experiment by means
of Eqs. (20)—(22) and those obtained from static treat-
ments of saddle-point configurations. As in the case of
the formation volume (Sec. III A) the volume changes ob-
tained for the saddle-point configuration from static su-

percell calculations are identical to the ones found from
static calculations for a finite sample with a traction-free
surface. However, it is obvious that the image forces that
are necessary to keep the surface of a large but finite sam-

ple stress free cannot respond to the movements during
a jump. This means that the measured values of ~Viv~
or ~V,„,h~ cannot exceed the so-called "local volumes, "
which are the static values divided by (1 + p), where p
is the Eshelby factor (see Sec. III A). However, even
these values will be too large since during the jump the
relaxation is confined to the close neighborhood of the
jumpm. g atom.

The preceding considerations f1nd experimental sup-
port on the one hand in the measurements of the pressure
dependence of the difFusivity of foreign atoms such as C,
N, and 0 interstitially dissolved in metals, and on the
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other hand in all those cases where both Vz& and Vz&
have been determined experimentally. The experiments
on N and 0 in vanadium, on N and C in a-Fe, and on C
in Ni and a-Co have all given migration volumes that are
small compared with the atomic volume (in some case,
e.g. , C in Ni, they were even negative). s On all metals
on which there is experimental information on both Vz&
and Vi+&, the difFerence

~

V~~g —V~+&
~

was found to be much
smaller than Vyy' .

The two-mechanism 6t to the tracer self-diffusion data
of Na mentioned above gave for the activation vol-
ume of the low-temperature mechanism of self-diffusion

Vj = 0.320p. However, this involved considerable
extrapolation since the highest pressure employed was
only 0.95 GPa and the lowest temperature as high as
288 K. The more directly obtained value VisD = 0.180o
(Refs. 35, 38) following from recent 2sNa NMR measure-
ments down to lower temperatures and to much higher
pressures appears to be considerably more reliable. The
Vz values just mentioned are distinctly smaller than
the calculated monovacancy formation volume Vi+v [cf.
Eq. (14)]. While we cannot exclude the possibility that
V&+v —Visv ) 0 (i.e. , that —if the low-temperature diffu-
sivity is determined by vacancies —the migration volume
is negative), by the theoretical arguments given above

~Viv —Viv ~

should be much smaller than Vi+v or VisvD,

in conBict with the experimental data. On the other
hand, an activation volume of the order of magnitude
0.20p appears quite plausible for a direct-exchange or
ring mechanism of self-diffusion.

Finally, we consider the isotope effect parameter E '~

[cf. Eq. (3)]. It increases rapidly as the temperature
is lowered f'rom the melting point (this is a very strong
indication that self-difFusion in solid Na involves more
than one mechanism, in contrast to a recent viewpointsg)
and reaches the level 0.38 below room temperature. The
deviation from the maximum value E 'l = 1 is deter-
mined by the so-called correlation factor and the number
of atoms participating in the diffusion jumps in addition
to the tracer atom. E ~ = 0.38 is very well compati-
ble with strongly relaxed monovacancies as the vehicles
of self-difFusion. It is also fully compatible with a direct
exchange of neighboring atoms, for which the maximum
value is E ~ = 0.5. For a ring mechanism involving

n atoms one expects E '~ = n . Since at the lowest
temperature investigateds (T = 248 K) a second mecha-
nism still gives a substantial contribution, the isotope ef-
fect measurements are presumably also compatible with
a three-ring mechanism but not with ring mechanisms
involving more atoms (as those discussed by Doan and
Adda ).

We may state that on the qualitative level of reason-
ing of the preceding paragraphs the pressure dependence
of the self-diffusion of Na is in better agreement with a
nondefect low-temperature mechanism than with a mech-
anism involving defects. How can ab initio calculations
help to strengthen or refute this conclusion? It is clearly
desirable to carry out dynamic calculations that avoid
the question of the applicablity of the transition state
theory and, at the same time, give reliable values for the
isotope effect parameter E ~~. Realistic ab initio com-
putations of this kind are not inconceivable but presum-
ably beyond the potential of present-day computations.
As an intermediate step it appears rewarding to study
possible saddle-point configurations of direct-exchange or
three-ring mechanisms by static methods. The compari-
son with experiment could be based, e.g. , on the criteria
that for the self-diffusion mechanism realized in nature,
the saddle-point energy should be close to but slightly
louier than the experimentally determined HisD and that
the calculated volume expansion in the saddle-point con-
figuration must be larger than the self-diffusion volume
by at least the factor (1+p).¹teadded in proof. In the meantime, we have calcu-
lated the electric field gradients for atoms near a vacancy
in Na by reconstructing the real valence wave functions
from the pseudovalence wave functions (details are given
elsewhere), and by the FLAPW method. The results of
the two methods agree very well, but show that (in con-
trast to the behavior of Li) the pseudopotential values
given in Table V are too small by typically an order of
magnitude.
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