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Assuming a saturated ferromagnet, the anomalous crystal structures of the magnetic 3d transition
elements Fe, Co, and Ni are explained from simple band-61ling arguments. The full-potential linear
muffin-tin orbital (FP-LMTO) method is used to calculate the elastic constants (Cii, Ciq, and

C44) for the magnetic and cubic 3d transition metals Cr, Fe, and Ni. For Co calculations of the
elastic constants have been performed in the fcc crystal structure (P-Co). Good agreement with
the experimental data is found even for Fe and Co which have anomalous elastic constants. The
behavior of the elastic shear constant C' can be understood from the 6lling of the spin-down 3d band
for the ferromagnetic elements. It is shown that C correlates with the relative crystal stabilities of
the bcc and fcc structures for these elements as has earlier been found for the paramagnetic 4d and
5d metals and alloys.

I. INTRODUCTION

The crystal structures for most metallic elements have
been known for a long time and it was early recognized
that they show a pattern which could be related to the
chemical periodicity of the elements. The 4d, 5d, and
the nonmagnetic 3d transition elements all follow the
same structural sequence (or for the nonmagnetic 3d
elements, part of the sequence) hcp m bcc ~ hcp m
fcc through the series as a function of atomic number.
Also the crystal structures of the lanthanide elements
show a regular behavior through the series and a gener-
alized phase diagram can be constructed containing all
the trivalent rare-earth elements. The understanding of
these remarkable regularities can be related to the occu-
pation of the d states. This holds for the structures ob-
served at equilibrium conditions, but can be generalized
and used as an explanation for pressure-induced crystal
structure changes. Consequently, the crystal structure
behavior in the transition metal series is associated with
the gradual filling of the d band and the fact that the
characteristic shapes of the bcc, fcc, and hcp density
of states ' (DOS) are essentially element independent.
For the trivalent lanthanides the number of d electrons
does not change very much when moving across the series
and therefore they show very similar crystal structures
(hexagonally close-packed type with various stacking of
hcp planes) throughout the series. As mentioned, the
situation is different for the transition metals where the
d she11 is gradually filled as the series is traversed and
accordingly the number of d electrons increases by about
1 when proceeding from one element to the next. Cor-

respondingly the crystal structures show more dramatic
changes through a d series than through the lanthanide
series.

The crystal structure behavior for the magnetic 3d
transition elements has not, up to now, been shown to
be caused by simple band-filling arguments, in the same

way as one can explain the structures of the nonmag-
netic d metals or the lanthanides. However, the mag-
netic and structural behavior of these metals have been
studied extensively by many authors. Fe has received
much attention ' due to the small energy difFerence
between the paramagnetic fcc phase and the ferromag-
netic bcc phase. This has made studies of mechanical
deformations of particular interest. Furthermore,
the fact that the local spin density (LSD) approximation
predicts a wrong ground state for Fe have lead to several

attempts to resolve this issue. No doubt the fact
that Fe attains the bcc structure will be a sensitive test
for improvements of density functional approximations.

In this investigation we will first show, by assuming
saturated magnetism, that the crystal structures of the
3d magnetic elements can be explained by the same type
of arguments as have been used to understand the non-

magnetic d metals. ' The work of Duthie and Pettifor
showed that the crystal structures of the rare earths could
be explained by the one-electron band energy term (Fs)
which in turn is calculated as the first moment of the
occupied part of the state density function (DOS) of the
canonical bands. Differences in these one-electron ener-

gies between different crystal structures give the correct
structure sequence for the lanthanides and give also the
above mentioned structure sequence through a nonmag-
netic d series. Later, more accurate, self-consistent cal-
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culations were performed by Skriver and he correctly re-

produced the ground-state crystal structures for all non-

magnetic d transition metals (except Au). For these ele-

ments, which all have close-packed (fcc and hcp) or rather
close-packed (bcc) crystal structures, he concluded that

Eg was the most prominent term for the determination
of the structure. Furthermore, he simplified the picture,
in the same way as Duthie and Pettifor did, by using
the concept of so-called canonical bands, which depend

only on the crystal structure. In the present paper we

will for the magnetic 3d elements take advantage of this

physically simple concept and generalize the canonical
band picture accordingly, in order to better understand
the crystal structures of the ferromagnetic 3d elements.

It has been known for a long time that the bulk
modulus (B) of the ferromagnetic 3d transition met-

als is anomalously small, which may be caused by the
ferromagnetism. Figure 1 shows that in the earlier part
of the 3d transition series (Sc, Ti, and V) the bulk mod-

ulus follows the same trend as exhibited by the 5d tran-
sition metals. However, for the elements Cr-Ni, B is very
low and there is no pronounced peak as is found for Os in

the 5d transition series. In the same way the Ineasured
elastic constants for the magnetic 3d transition metals
show an anomalous behavior. In Fig. 2 we show the ex-

perimental behavior of the tetragonal shear constant (C')
for the cubic elements in the 3d and the 5d transition se-

ries. For comparison also theoretical ' data for the 5d
series are included. The elements with hexagonal crystal
structure (La, Hf, Re, and Os) have been calculated in
the fcc crystal structure in Fig. 2. This figure clearly
shows that also C' has a much smaller value for the mag-
netic 3d transition metals than it has for the metals in
the 5d transition series. Again this is a demonstration
of the anomalous elastic properties of the magnetic 3d
metals.
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FIG. 1. Experimental (Ref. 40) data for the bulk modulus
in units of kbar for the 3d (open circles) and 5d (solid circles)
transition metals.
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FIG. 2. Experimental (Refs. 22 and 36) data of C' for the
3d (open circles) and Sd (solid circles) transition metals. The
theoretical and experimental data that are given for La corre-

sponds to the high temperature fcc phase of La. For compari-

son, theoretical results (Refs. 20 and 21) for the Sd transition
series (solid squares) are also shown. In order to display the
expected behavior throughout the series, hypothetical results
for fcc Hf, Re, and Os are also given.

The first ab initio calculations, based on spherical po-
tentials, of elastic constants for nonmagnetic transition
metals were published more than a decade ago. It was

argued there that nonspherical terms in the electrostatic
interactions (Madelung energy and higher order multi-

pole terms) were needed in order to obtain a good de-

scription. This was also shown by Christensen24 who
demonstrated that calculations of the elastic shear con-
stant cannot be performed with sufBcient accuracy with-
out accounting for the nonsphericity of the charge distri-
bution. Thus several parameter Bee studies of the elastic
constants for nonmagnetic transition metals have been
carried out the last decade. o'2~'2s 2 As an example we

mention our own previous study of the elastic constants
of the 4d and 5d transition elements and alloys which
were studied theoretically &om ab initio calculations.
It was found that the full-potential (FP) implementa-
tion of the linear muffin-tin orbital (LMTO; see Sec. II)
method gave theoretical values of the elastic constants
for cubic material within about 10% of the experimen-
tally observed data. In the present paper we will apply
the same accurate approach to calculate the elastic con-
stants B, O', Cqq, Cq2, and C44 for the above mentioned
magnetic systems.

In our previous work on nonmagnetic cubic transition
metals it was shown that the filling of the spin degener-
ate d band in the 4d and 5d transition elements and their
alloys determined the behavior of the elastic constants.
In particular, a clear correlation between the energy dif-
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ference between the fcc and bcc crystal structures, AE,
and the elastic shear constant C' was found. C' is an
elastic constant that is related to a small tetragonal dis-
tortion of the lattice. Therefore it is useful to study the
so-called Bain path, which is a tetragonal transforma-
tion path that brings a bcc crystal structure into an fcc
crystal structure and vice versa. Both these cubic struc-
tures can be viewed as special cases of the bct structure,
and the Bain transformation implies that the c/a ratio
is continuously distorted from c/a = 1 (bcc) to e/a =
i/2 (fcc). If a small tetragonal distortion is energetically
very costly, i.e., C' is very large, a large tetragonal distor-
tion is also generally very unfavorable and this is likely
to be reflected in a large difference between the fcc and
bcc crystal structure energies. A remarkable correlation
between these two properties was demonstrated in our
earlier work on nonmagnetic materials 20, 2

In the present work we consider the ferromagnetic el-

ements Fe, Co, and Ni and study whether a similar rela-
tion can be established for these materials or not. There-
fore calculations of the elastic constants are performed
for the cubic phases of antiferromagnetic Cr (bcc) and
ferromagnetic Fe (bcc), Co (fcc), and Ni (fcc). Co has
been calculated in the P phase (fcc), which is normally
stable at 700 K but can be retained at room tempera-
ture with special treatment. Experimental data of the
elastic constants of Co are also available for this phase.
As mentioned above, in this study we want to extend
the arguments used for nonmagnetic crystals to explain
the crystal structures as well as the behavior of the elas-
tic constants for the ferromagnetic transition metals. For
completeness we will also study antiferromagnetic Cr and
thus, together with earlier results, our calculations
will now cover all the cubic transition metals. For a
ferromagnet we have to be aware of the different filling
of the majority (spin-up) and the minority (spin-down)
d bands. In Fe, the magnetic moment is about 2.2@~
and originates mainly from the d electrons. Since the to-
tal d occupation is about 6.6, the spin-polarized d band
contains 4.4 (up) and 2.2 (down) electrons, respectively.
For Co and Ni the spin-up band filling is even somewhat

larger, namely, about 4.6. We will show that this almost
filled spin-up band can, to a good approximation, be ne-

glected in the explanation of the crystal structures and
the behavior of the elastic constants. Thereby we have

actually identified the origin to the mentioned anomalies,
shown in Figs. 1 and 2.

The energetics of these metals (as well as of the non-

magnetic ones) can be understood by considering two
diferent contributions to the total energy. First we have
the important one-electron term Eg. Due to the ex-
change energy it might be energetically favorable to have
more spin-up than spin-down electrons, i.e., a ferromag-
netic state. The other contribution is the Madelung term
which tends to stabilize close-packed structures with high
symmetry over more open and complex structures. Con-
sequently there are only close-packed structures in the d

series (apart from Mn). When comparing total energies
for the fcc, hcp, and bcc structures of transition metals
the Madelung contribution can, to a first approximation,
be neglected, since this contribution is very similar for the

close-packed (fcc and hcp) and the almost close-packed
(bcc) structure. Thus, in this work, when we present
simplified arguments in order to understand the results
of our extensive calculations, we will mostly concentrate
on the one-electron {or first-moment) term Es.

The rest of the present paper is organized as follows.
Some details of the calculations are given in Sec. II and
in Sec. III we discuss the crystal structures for magnetic
versus nonmagnetic transition elements. The elastic con-
stants, obtained &om our theory, are presented in Sec. IV
together with measured data, and here we also try to ex-
plain the theoretical results in terms of a simple model.
Section V contains the results of the calculated magnetic
moments and in Sec. VI we present our conclusions.

II. COMPUTATIONAL DETAILS

Our calculations were performed at three levels of ap-
proximation. The simplest model calculation involved
the so-called canonical bands. ' These bands are a re-
flection solely of the crystal structure and are not depen-
dent on the potential or the volume of a certain element.
Furthermore, the canonical bands are pure l bands, and
there is no hybridization between different l states. The
concept of canonical bands has been used as a pedagogi-
cal tool in the explanation of the crystal structures of Fe,
Co, and Ni (see below).

The next level of approximation is to do a complete
self-consistent electronic structure calculation using lin-

ear muon-tin orbital (LMTO) basis functions within the
atomic sphere approximation (ASA).2s s This calcula-
tional method relies upon the local spin density (LSD)
approximation and also on the approximation that the
charge density and the electron potential are spherical.
For the present elements the spin-orbit interaction is
of no importance for the quantities studied and there-
fore this interaction was neglected. This LMTO-ASA
approach was applied together with Andersen's force
theorem in the calculation of the spin decomposed Bain
path. If spin-orbit coupling is neglected, the two spins
are no longer coupled to each other and the spin-up and
spin-down eigenvalues of the one-electron equation can be
obtained separately. Hence, the difference in the eigen-
value sum for the different crystal structures and spins
can be obtained. To first order in the charge density,

by using the force theorem, the spin-decomposed en-

ergy difference between different crystal structures can
be calculated.

In the calculation of the elastic constants, total ener-

gies were calculated as a function of a small distortion
of the lattice (typically of the order of 1% or less) and
therefore a highly accurate computational tool has to be
used. The strains that are applied to evaluate C' and

C44 results in shifts of the total energy of the order of
pRy. In a perspective where the total energy itself (in-
cluding all core states) is of the order of 10 Ry for the
3d metals, the accuracy of the computational technique
is essential. In fact it has been shown by Christensen
that the ASA is not sufEciently accurate and that the
nonsphericity of the charge distribution and its variation
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with shear must be taken into account in the calculation
of elastic constants. We have thus used the full-potential
implementation of the LMTO method (FP-LMTO).
Within this approach, no geometric constraints on the
charge density or potential are applied. Ruthermore,
the method is fully relativistic and all electrons are con-
sidered in the calculation of the total energy. Most of
the details of the FP-LMTO calculations performed in
this work were similar to previous calculations. However,
there are some aspects of these types of calculations that
are not "standard. " One of the most problematic issues
is the convergence of the k-space sampling. We have used
the special k-point method in the present work, to speed
up k-space convergence. In addition to this we have as-
sociated each eigenvalue used in the calculations with a
Gaussian broadening of width 15 mRy. We have tested
this approach for selected systems and found that it ac-
celerates the convergence, with negligible changes in the
calculated elastic properties. For the present calculations
we sampled the 1/16th (C') and the 1/8th (C44) part of
the Brillouin zone (BZ), with a k-point density that cor-
responds to a total of 8000 k points in the full zone. Both
the tetragonal distortion (1/16th of the BZ) for the cal-
'culation of C' and the trigonal distortion (1/8th of the
BZ) for the calculation of C44 were done in a volume-
conserving manner, i.e., the volume was kept fixed at the
experimental equilibrium volume for Cr (12.00 As), Fe
(11.71 As), Co (11.18 A.s), and Ni (10.93 As) during the
deformation of the lattice.

III. CRYSTAL STRUCTURES

Isoelectronic elements in the d transition series display
very similar behavior as regards fundamental properties
such as the crystal structure and atomic equilibrium vol-
umes, etc. This fact is of course one of the very bases
for the construction of the periodic table of the elements.
However, for the metals Mn-Ni, the similarity with the 4d
and Gd metals is less obvious. The most remarkable dif-
ference is perhaps the behavior of the crystal structures.
For instance, Mn has a very complex structure which is
not found for the isoelectronic 4d and 5d metals (Tc and
Re are both hcp crystals). Moreover, Fe, Co, and Ni show
the structure sequence bcc ~ hcp ~ fcc, whereas the
isoelectronic 4d and 5d elements (Ru —Rh —Pd in the 4d
series and Os —Ir—Pt in the 5d series) display the crystal
structure sequence hcp ~ fcc ~ fcc. This inconsistency
is usually vaguely explained as due to the appearance of
magnetism in the late 3d transition metals. However, to
our knowledge a more detailed analysis of the reasons
why the late 3d metals deviate &om the trend exhibited
by the 4d and Gd metals has not been performed. Here
we will take the opportunity to present a simple picture,
based on the canonical band concept, which explains the
appearance of this crystal structure sequence anomaly for
the ferromagnetic metals. Unfortunately, Mn has still to
be left out of the discussion, because its crystal structure
is too complex to allow for a simple analysis.

For Fe, Co, and Ni the majority (spin-up) d band is al-
most completely filled (containing nearly five electrons).

TABLE I. Occupation numbers of the spin-up and
spin-down d band for Fe(bcc), Co(fcc), and Ni(fcc).

Pe
Co
Ni

Spin up
4.4
4.6
4.6

Spin down
2.2
2.9
4.0

Total
6.6
7.5
8.6

This is illustrated in Table I where we give the spin-
decomposed d occupation (obtained f'rom LMTO-ASA
calculations) for the ferromagnetic 3d metals. It is clear
that the energy difference between the bcc, fcc, and hcp
phases for an almost 6lled d band is very small so that
in our simplified model, which we will describe below, we
shall neglect this contribution &om the spin-up electrons
to the structural energy differences. (This is also justi-
fied quantitatively in Sec. IV.) Hence, by studying only
the one-electron energy contribution from the minority
(spin-down) d band for Fe, Co, and Ni we are then in a
position to compare the energies for the different struc-
tures. Using the canonical band theory to explain the
crystal structures of paramagnetic metals it was shown
that the fractional filling of the d band is the important
parameter. 34 In order to compare, for the nearly satu-
rated ferromagnetic metals, the fractional filling of the
spin-down d band (which contains a maximum of five
electrons) with a fractional filling of a spin-degenerate
paramagnetic d band (which contains a maximum of ten
electrons) we multiply the spin-down band occupation
number by 2. Thus in Fig. 3 we show the contribution
&om the spin-down band to the standard canonical struc-
tural energy difference as a function of the spin-down
occupation multiplied by 2. The spin-down occupation
numbers, times 2, for Fe, Co, and Ni are also shown in
Fig. 3. Notice that the spin-down d occupation is about
2.2 in Fe, which corresponds to a filling of about 4.4 for
a paramagnetic band. This occupation for Fe is shown
by an arrow in Fig. 3 together with the corresponding
spin-down occupations for Co and Ni. Thus, as can be
seen in Fig. 3, by approximating the spin-up band to be
totally filled and therefore neglecting its contribution to
the structural energy differences and instead only consid-
ering the spin-down d band contribution we can from Fig.
3 now easily explain the sequence bcc ~ hcp ~ fcc for Fe,
Co, and Ni. We thus argue that as regards the fractional
filling, the spin-down d occupation of spin-polarized Fe
corresponds closely to the d occupation of paramagnetic
Mo (4.5) and W (4.3) (both are bcc metals), while ferro-
magnetic Co corresponds to paramagnetic Ru (6.5) and
Os (6.2) (which both are hcp metals). Finally ferromag-
netic Ni, for which 2n& ——8.0 (compare Table I), corre-
sponds to somewhere between paramagnetic Rh (7.6) and
Pd (8.7) as well as somewhere between paramagnetic Ir
(7.2) and Pt (8.4) (which all are fcc metals). This new
relation between the saturated ferromagnetic 3d elements
and the 4d and Gd elements is shown schematically for a
selected part of the periodic table in Fig. 4. In this figure
we see that the observed crystal structure sequence bcc
—+ hcp ~ fcc for Fe, Co, and Ni is repeated in the 4d
and Gd transition series. Since for these latter elements
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----- bcc-fcc
hcp-fcc

!
Ni

Co

it is the paramagnetic (spin-degenerate) d band which is
being filled, the fractional filling of two d electrons (i.e.,

two elements in the series) corresponds to the fractional
filling of one spin-down d electron for the ferromagnets of
the 3d series, explaining the trends of the crystal struc-
tures. This explanation of the crystal structures of the 3d
transition ferromagnets presumes that all the structures
show saturated magnetism, i.e. , an equal magnetization,
so that the exchange energies for the difFerent structures
are the same. Therefore this requires a more accurate
analysis and it so happens that for Fe the saturated fcc
structure is (at best) a metamagnetic state. Thus a more
extended analysis is needed in reality. However, the given
simplified picture provides an easy way to rationalize the
real behavior and has pedagogical merits.
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FIG. 4. Schematical picture of a selected part of the peri-
odic table of elements. The connection, as regards the frac-
tional d band filling and crystal structures, between on the
one hand Fe, Co, and Ni and on the other hand the 4d and
Sd transition elements is shown as dashed lines.
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FIG. 3. Canonical d band energies (arbitrary units) as a
function of 2 times the spin-down d band fillings. The fillings
corresponding to Fe, Co, and Ni (see text) are given by arrows
and the lowest energy structures are correctly found to be bcc,
hcp, and fcc, respectively.

In our previous work on the nonmagnetic transition
metals we found that the alloy Moo 25Tco 75 had a bcc-
fcc energy difference AE that vanished (i.e. , the energy
of the bcc phase equals the energy of the fcc phase). Fur-
thermore, AE had a maximum for the pure element Mo
and there was a monotonic decrease of AE as a func-
tion of d occupation, or x, in the alloy Moi Tc from
x = 0.0 to x 0.75. According to our discussion above,
Mo and Fe have almost equal fractional d band filling,
where for Fe this only holds for the incompletely filled
spin channel. Thus, the interval of fractional filling of
a magnetic alloy Fei Co, corresponding to x=0—0.75
in a paramagnet, would be for x=0.0 to x=0.375, that
is to say, half the filling of the spin-down d band com-
pared to the spin-degenerate d band of Moi Tc . From
this argument one expects that for the alloy Fe~ Co,
AE should also be monotonically decreasing for x in
the range 0.0 ~ 0.375, and that AE should be zero
for the alloy Feo 625COO 375. This implies that the fcc
phase is favored over the bcc phase for x larger than
0.375 in this alloy. However, experimentally this actu-
ally happens for a larger d band filling, i.e., a larger value
for x. We have preformed theoretical calculations (FP-
I MTO) adopting the virtual crystal approximationss for
the Feq Co alloy and found that the energy of the bcc
phase is lower than for the fcc phase for Co concentra-
tions up to 67%. This result is in good agreement with
the mentioned experiment where it was found that the
alloy Fez Co is stable in the bcc structure for Co con-
centrations up to about 70% (x=0.70). In our simplified
picture above we entirely neglected the small increase of
the number of spin-up d electrons which takes place as
one proceeds from Fe to Co, i.e. , the fact that Co and Ni
are more saturated magnets than Fe. As an illustration
of this we note that the number of spin-up d electrons in
Fe is 4.4, whereas in Co it has increased to 4.6 (Table I).
Therefore the alloying of Co into Fe will first increase the
spin-up and decrease the spin-down d occupations, and
for a higher Co concentration the spin-up band is satu-
rated and the filling of the spin-down band is increasing.
This is a reHection of the fact that the magnetic moment
is initially increasing with Co concentration and after
reaching a maximum it decreases (Slater-Pauling curve).
It follows that a larger amount of Co has to be alloyed
into Fe to get a spin-down filling of the 8 band which is
large enough to stabilize the fcc crystal structure.

IV. ELASTIC CONSTANTS

In order to understand the observed behavior of the
elastic constants of the present magnetic materials, we

started above with a consideration of the crystal struc-
ture stabilities of the elements. Our analysis was inti-
mately connected to that of Skriver who showed that for
the nonmagnetic d transition metals the crystal structure
sequence hcp ~ bcc ~ hcp ~ fcc could be explained by
canonical band theory. In the previous section we gener-
alized his argument to a saturated ferromagnetic case and
could then easily explain the crystal structures of Fe, Co,
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and Ni. We will use the same viewpoint in this section
to understand the anomalous tetragonal shear constant
C' for Fe, Co, and Ni.

An element with a cubic structure has three indepen-
dent elastic constants: Cii, Ci2, and C44. First let
us concentrate on a linear combination of Cii and Cq2,
namely, the tetragonal shear constant C' =

2 (Cii —Ci2).
C' has a physically simple interpretation; it is related to
the energy increase for a small volume-conserving tetrag-
onal distortion of the lattice, which can be described by
the following strain matrix:

12.5

10.0

7.5-

('1+ b 0 0
0 1+8 0

(i+~)' 3

bQ

C 5.0—

In the numerical calculations to be described below we
have typically used a h of the order of 0.005. However, a
larger distortion transforms a bcc (c/a = 1.0) to an fcc

(c/a = ~2) crystal structure. This corresponds to a h of
about —0.11 in the strain matrix above. By studying this
so-called Bain transformation path s [Eq. (1)] we can re-
late the tetragonal shear constant C' to the stability of
the bcc or fcc structure, and particularly to the energy
difFerence between the bcc and fcc phases. In analogy
with the discussion in the last section, we will now show
that to a good approximation one can neglect the spin-
up (majority) band and concentrate on the energetics of
the spin-down band. In Fig. 5 the energy along the Bain
path for Fe is shown, decomposed into the spin-up and
spin-down band contributions. These results were ob-
tained &om spin-polarized LMTO-ASA calculations us-

ing Andersen's force theorem. Here it is obvious that for
Fe, the spin-up band contributes only marginally to the
energy variation along the Bain path. Together with the
spin-projected LMTO-ASA energies and their sum we
also show accurate FP-LMTO results (Fig. 5). It is clear
that by studying the structural energy of the spin-down
band alone, we arrive at a rather accurate description of
Fe in this context. This is also true for Co and Ni (not
shown) although for these two metals there is a larger
relative contribution &om the spin-up band. The details
of our calculated magnetic moments of Cr, Fe, Co, and
Ni will be presented in Sec. V.

We have shown earlier that for the 4d and the 5d
transition elements the energy difI'erence AE is strongly
correlated to the elastic shear constant C'. In Sec. III
we argued by considering the fractional d occupation for
a fully spin-polarized system, assuming an equal magne-
tization for the bcc and fcc phases, that Fe should be
compared to Mo and W. Our calculated QE for Fe is

14 mRy (see Table II) and this is in good agreement
with previous studies. ' AE for Fe should be com-
pared to AE 28 mRy for Mo and DE 35 mRy for W.
The smaller bandwidth of a 3d transition metal in com-
parison to a 4d and a Gd transition metal partly explains
that AE for Fe is lower than for Mo or W. However, the
main reason for that AE for Fe is approximately half of
AE for Mo and W is due to the fact that in Fe there
is only one spin channel which contributes to AE. This
involvement of essentially only spin-down electrons ex-

2.5—

0.0—

I I I I

1.00 1.10 1.20 1.30
c/a ratio

1.40 1.50

FIG. 5. The calculated Bain path for Fe, i.e., the variation
of the total energy as a function of the c/a ratio for the bct
crystal structure. Shown are also, as a function of c/a, the
spin-up (open circle, dashed line) and spin-down (solid circle,
solid line) contributions to the energy as well as the total en-

ergy (open squares), obtained from LMTO-ASA calculations.
As a reference, accurate FP-LMTO total energies are shown
as stars. All energies are shifted to zero for the bcc structure
(c/a=1.0) and the unit is mRy.

plains why Fe, Co, and Ni have anomalous (small) elas-
tic constants. The correlation between the calculated C'
and 6'E for Fe, Mo, and W together with some other
transition metal elements is shown in Fig. 6. These two
properties are approximately proportional to each other
for these three elements, a fact that was already pointed
out for the metals in the 4d and Gd transition series. The
scaling principle between AE and C' found for the 4d
and Gd metals is obviously also fulfilled for the magnetic
elements Fe and Co (Fig. 6). If the scaling between AE
and C' is truly linear, the latter quantity should of course
go to zero as AE goes to zero (compare the line in Fig.
6). However, in reality this will not happen when AE
decreases to zero. In this limit there will generally still
be an energy barrier between the bcc and fcc structures
due to the Madelung contribution to the energy, which
stabilizes both the bcc and fcc phases against a tetrago-
nal distortion. For Pt and Pd the value for AE is small
(Fig. 6) due to the almost filled d band which in these
metals gives a very small energy difFerence between the
bcc and fcc crystal structures.

Another point which arises in connection with this dis-
cussion is that if AE and C' are approximately propor-
tional, one can understand the trend in C' exhibited by
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TABLE II. Theoretical (present) and experimental
(Refs. 22 and 36) elastic constants in kbar for Cr(bcc),
Fe(bcc), Co(fcc), and Ni(fcc). AE is the absolute value of
the energy difFerence E(fcc) —E(bcc) in mRy.

2500—

bcc, Cr, Fe, Mo, W
Ofcc, Co, Ru, Os
+ fcc, Ni, Pd, Pt

Cr
Fe
Co
Ni

Theory
2220
1600
1955
1735

B
Experiment

1901
1731
1873
1875

Theory
1550
470
290
465

CI

Experiment
1507
525
410
552

AE
30
14
8

4.5

2000

0
Os

fcc Co& Ni alloys. Namely, inspection of Fig. 3 shows
that for the fcc Co& Ni alloys we would expect C' to
initially increase with x, then reach a maximum, and fi-

nally show a monotonically decreasing behavior. This
behavior have been observed experimentally in mag-
netic fcc alloys of Coq Ni .

In Table II we also present the calculated results (FP-
LMTO) for the elastic constants C' and B together with
measured data 2 ss and we include also results from anti-
ferromagnetic Cr calculations. We present our calculated
energy difference AE in this table. Using the relations
C' = (Cqq —Cq2)/2 and B = (Cqq + 2Cq2)/3 we are able
to calculate Cqq and Cq2. These two elastic constants are
given in Table III together with experimental results. 2

For Co we have performed the calculations for the cubic
fcc phase and bcc phases (not shown). Our calculations
for Co in the bcc crystal structure showed that Co was
unstable for a tetragonal deformation [Eq. (I)]. Recently
I iu and Singh published theoretical results for ferro-
magnetic Co in the bcc, fcc, and hcp crystal structures.
They found that Co was unstable in the bcc crystal struc-
ture and that the energy difference between the bcc and
the fcc phase was 9 mRy which is in good agreement
with our results (see Table II). Liu and Singhs cal-
culated the tetragonal shear constant C' to be negative

(
—365 kbar) which shows that the bcc phase is unstable

against a tetragonal deformation. To investigate the con-
sistency of our calculations we also calculated C' for the
bcc phase and obtained —290 kbar which is in fairly good
agreement with Liu and Singh. These latter authors
also showed that Co (bcc) is stable for a trigonal dis-
tortion since they calculated a positive C44 (1520 kbar).
Our calculation of C44 in Co gave a positive C44 (1311
kbar) as well. Notice that for fcc Co our calculated C44 in
Table III is in a somewhat worse agreement with exper-
iment than O'. A similar observation was already made
for the 3d metal V in an earlier calculation, where the

1000

500

20 40 60

theoretically determined equilibrium volume was found
to be in a worse agreement with experiment than for the
corresponding 4d and 5d metals. The equilibrium atomic
volumes obtained &om our FP-LMTO calculations (not
shown) for the magnetic elements Fe, Co, and Ni are
of the order of 10% smaller than the experimental val-

ues, and calculations at the theoretical atomic volumes
show that C44 is rather sensitive to changes in the vol-
ume. Nevertheless, the calculated values of the elastic
constants are in acceptable agreement with experiment
and the accuracy is the same as for our previous results
for the nonmagnetic 4d and 5d metals 20,ai From Tables
II and III we can observe some trends in the calculated as
well as the measured data. For the bulk modulus, there is

I E(bcc) —E(fcc) I

FIG. 6. The calculated tetragonal shear constant C' as a
function of the calculated absolute value of the fcc —bcc
energy difference AE is plotted for Cr, Fe, Co, and Ni. For
comparison the nonmagnetic elements Mo, W, Pd, Pt, Ru,
and Os are also included. AE is in units of mRy and C' in
units of kbar. The straight line serves as a guide for the eye
to display the approximate scaling between AE and C'.

TABLE III. Theoretical (present) and experimental (Refs. 22 and 36) elastic constants in kbar
for Cr(bcc), Fe(bcc), Co{fcc), and Ni{fcc).

Cr
Fe
Co
Ni

Theory
4287
2227
2342
2355

Experiment
3910
2431
2420
2612

Theory
1187
1287
1762
1425

CI~
Experiment

896
1381
1600
1508

Theory
906
1313
1114
1095

C44
Experiment

1032
1219
1280
1317
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1800

~ experiment~ theory

a dip at Fe, and it is lower than for Cr, Co, and Ni. This
is found both in the experi1nents as well as in our calcu-
lations. For C' the calculated values show a monotonic
decrease &om Cr to Co and then a rise for Ni. This be-

Cr
Fe
Co
Ni

ps
0.004
-0.012
-0.014
-0.004

Pp
0.000
-0.055
-0.055
-0.022

Pd
0.444
2.257
1.670
0.647

P
0.448
2.190
1.601
0.621

TABLE IV. Calculated partial magnetic moments for
Cr(bcc), Fe(bcc), Co(fcc), and Ni(fcc). p is the total mag-
netic moment and all moments are in bohr magnetons.

3000
experiment

theory
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Sc Ti V CrMnpe Co Ni Cu
Y Zr NbMo Tc Ru Rh Pd Ag
La Hf Ta W Re Os Ir Pt Au

FIG. 7. Theoretical and experimental (Refs. 22 and 36)
C' in units of kbar. In the upper panel results for the 3d
transition series are shown. No experimental (solid circles)
or theoretical (open circles) data are shown for Mn. In the
middle panel results for the 4d transition series are shown.
Experimental data are denoted by solid squares and theoret-
ical results with open squares. For comparison results for
hypothetical fcc Y, Zr, Tc, and Ru are also shown. In the
lowest panel results for the 5d transition series are shown.
Experimental data are denoted by solid triangles and theo-
retical results with open triangles. For comparison results for
hypothetical fcc Hf, Re, and Os are also shown. Theoretical
end experimental values for the high temperature phase (fcc)
of La are given.

1000

500-

Sc Ti V Cr Mn Fe Co Ni Cu
Y Zr Nb Mo Tc Ru Rh Pd Ag

La Hf Ta Vf Re Os Ir Pt Au

FIG. 8. Theoretical and experimental (Refs. 22 and 36) C'44

in units of kbar. The experimental results are marked with
sohd symbols and the theoretical results with open symbols.
The upper panel shows results for the 3d transition series, and
the middle panel shows results for the 4d transition series. In
the lowest panel results for the 5d transition series are shown.
Theoretical and experimental values for the high temperature
phase (fcc) of La are given. No data for the noncubic elements
are shown.
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havior is also found experimentally. However, the trend
of AE is slightly difFerent, since no upturn is found for
Ni. Thus, this is an example of that the scaling between
C' and AE is not perfect. For C44 our calculations give
a trend with a maximum for Fe, which is in conflict with
the experimental, monotonically increasing, behavior.

V. MAGNETIC MOMENTS

In the magnetic 3d transition metals the magnetic mo-
ment originates to a large extent from the d states as can
be seen in Table IV where we present our calculated pro-
jected magnetic moments of Cr, Fe, Co, and Ni. These
results are given for completeness only, since they have
been reported before. The results presented in Ta-
bles I and IV justify the assumption of a negligible sp
contribution to the magnetism made earlier in our model
calculation (canonical band model). Moreover, the mag-
netic moment in the magnetic 3d metals consists almost
entirely of a spin magnetic moment. The orbital con-
tribution that arises from the small spin-orbit interac-
tion in these metals is at least one order of magnitude
smaller ' and can consequently be neglected in this con-
text. The spin moment is known to follow the so-called
Slater-Pauling curve which relates the spin moment to
the filling of the d band. The magnetic moment increases
slightly (not shown) going from the d occupation of Fe
to the average d occupation of the alloy Fep 75Cop 25.
Thereafter, in Table IV, there is a monotonic decrease
of the magnetic moment as the spin-down band is being
populated and the filling of the spin-up band is essentially
constant (see Table I). The fact that the population of
the spin-up band is almost constant for Fe, Co, and Ni in
Table I is the basic reason for the success in explaining
the crystal structures for these elements by considering
the spin-down band only (see Sec. III). From Table I
we also notice that the total d population increases ap-
proximately by one electron when proceeding from Fe to
Co and from Co to Ni. We therefore conclude that the
number of sp electrons is almost constant for the 3d ferro-
magnetic metals. This implies that for these metals the
sp electrons are of no direct importance for the crystal
structures or for the behavior of the elastic constants.

VI. CONCLUSION

To conclude, we have used canonical band theory to
explain the crystal structure behavior of the magnetic
metals Fe, Co, and Ni. The band-filling argument has
been applied earlier for the understanding of the crystal
structures of the nonmagnetic d transition elements (and
lanthanides) and we have generalized this to the case
of saturated spin-polarized systems. From this point of
view, i.e., the fractional filling of a d band, we conclude
that Fe should be compared to Mo and W, and Co to

Ru and Os. In the same way Ni should be regarded as
a member of the iridium-platinum group. With this ap-
proach, together with earlier studies, we are now able
to provide a simple unified picture for the structural be-
havior of 30 transition metals and the lanthanide metals,
with the only exception of manganese.

In addition we have for Fe, Co, and Ni as well as for
Cr calculated the elastic constants C', Cqq, Cq2, C44,
and B. The agreement with experiment for the elastic
constants is generally within 10%. Furthermore, we have
shown that the value of the tetragonal shear constant C'
for Fe can be directly related to C' for Mo and W by
considering the (almost) saturated magnetism in Fe. Co
is in the same way comparable to the elements Ru and
Os whereas in Ni the situation is similar to Ir and Pt, or
Rh and Pd.

We summarize all our theoretical eKorts for the cubic
transition metals in Fig. 7 and Fig. 8. In these figures we
show both theoretical as well as experimental data. No-
tice that for the 4d and 5d series we have a}so calculated
C' for the hcp metals, in a hypothetical fcc structure. It
is obvious from these figures that the elastic properties
are anomalous for the magnetic 3d metals. In Figs. 7
and 8 it is also clear that the agreement between the-
ory and experiment is quite good for all studied systems.
However, for V our calculated C44 is considerably smaller
than the experimental value. We previously attributed
this to the fact that local density approximation (I DA)
calculations also give a quite poor equilibrium volume for
this material.

Hence, we have used a physically simple picture
(canonical band theory) to understand the crystal struc-
ture stability of the magnetic 3d elements. From the re-
lationship between the structural energy difference and
C' we have explained the behavior of C' for these al-
most saturated magnetic metals, namely, that it mainly
originates from the unfilled spin band electrons. Thus
mainly one spin channel contributes to C' while for the
corresponding paramagnetic metals (for example para-
magnetic W corresponds to ferromagnetic Fe) there are
two spin channels giving equal contributions. This ex-
plains the very strong reduction of the C' values for the
magnetic metals. Furthermore, we have performed elec-
tronic structure calculations based upon the LSD approx-
imation to support the simple concept of spin-polarized
canonical bands and we have shown that the behavior of
the crystal structures and the elastic constants (C') of
the magnetic elements can be understood in close anal-

ogy with the nonmagnetic transition metals.
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