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Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces
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Using generalized stacking-fault (gsf) energies obtained from first-principles density-functional calcu-
lations, a zero-temperature model for dislocations in silicon is constructed within the framework of a
Peierls-Nabarro (PN) model. Core widths, core energies, PN pinning energies, and stresses are calculat-
ed for various possible perfect and imperfect dislocations. Both shufBe and glide sets are considered. 90
partials are shown to have a lower Peierls stress than the 30' partials in accord with experiment.

I. INTRODUCTION

There are several reasons why the study of dislocations
in silicon is important. In Si, an elemental covalent semi-
conductor crystallizing in the diamond structure, the
dislocations have a high-energy and high-frictional resis-
tance. This makes it rather easy to grow crystals with a
low dislocation density. Since plastic glide occurs by
dislocation motion, Si and, as a matter of fact, the other
elements in the same column of the Periodic Table having
the diamond structure, are ideal systems for the study of
plastic deformation. On the other hand, over the last few

years a new generation of optoelectronic devices has been
developed from heterostructures made from lattice
mismatched Si-Ge alloys. ' The performance of these de-
vices can be severely impaired by the presence of disloca-
tions. Understanding the properties of these defects is
therefore crucial in the design of the new devices.

Quite a few reviews discuss dislocations in Si (see Refs.
2 —7), which have been studied for many years. Although
the experimental studies are extensive, a comprehensive
picture of dislocation generation and mobility is not yet
available. The overall geometry and topology of the core
structures are understood, but little has been done quanti-
tatively on the microscopic properties. In particular, no
estimate so far has been published for the Peierls stress of
the dislocations. Modeling dislocations is intrinsically
difficult because of the large unit cells required. First-
principles pseudopotential calculations are prohibitive.
Several classical empirical potentials have recently been

proposed for Si and have been used to model many prop-
erties. These potentials have, however, so far failed to
produce a realistic picture of the dislocation structures. '

The recent first-principles calculations of the generalized
stacking fault (gsf) energies' " have provided reliable
values for the restoring forces occurring close to the core
of a dislocation. We have used these results to compute
the low-temperature dislocation profiles, core energies,
and Peierls stresses for the full and partial dislocations of
Si within the framework of the Peierls-Nabarro (PN)
model. Vitek and co-workers' ' have compared the
results of this model with those of atomistic calculations

and have shown that for planar dislocations it gives
reasonable results.

The outline of the paper is as follows. In the next sec-
tion we review and summarize the known properties of
dislocations in Si. In Sec. III, the dislocation model used,
the Peierls-Nabarro (PN) model, ' ' is presented and
discussed. Section IV presents our solutions of disloca-
tion profiles, and Sec. V the results on misfit energies, PN
energies and stresses. A discussion and conclusion ends
the paper.

II. DISLOCATIONS IN SILICON

The diamond cubic structure into which Si crystallizes
is formed of two interpenetrant face-centered-cubic (fcc)
lattices. The dislocations are, therefore, expected to be
similar in these two crystal structures. In the fcc lattice
the main slip plane is the (111I plane and the major slip
direction is (110). The smallest Burgers vector is

—,'(110). At high temperatures slip has also been ob-

served in the t110] and I100I planes along the same
(110) directions. There is a low-energy stacking fault in

the [ 111I plane for displacement of —,'(21 1). This per-

mits the dissociation of the perfect dislocations into two
imperfect dislocations with partial Burgers vectors. For
instance,

—,'(101)~—,'(211)+—,'(112) .

Such decomposition reduces dilation and compression on
both sides of the slip plane. The imperfect dislocations
obtained are glissile on the (111)plane and are known as
Shockley partials. These partials are separated by a
stacking fault, whose size is determined by the balance of
the 1/r repulsion between the partials with the attractive
force resulting from the stacking fault.

The above characteristics are also found in the dia-
mond lattice. The stacking-fault energy is, however, ex-

pected to be even lower than in the fcc lattice. In the
diamond-lattice atomic layers come in pairs. So instead
of having distortions in the second-nearest-neighbor
planes the distortions in the bonds occur in the fourth-
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nearest-neighbor planes. And since, in a covalently bond
structure such as the diamond lattice, atoms interact
mainly with their nearest neighbors, these interactions
will be weak. For Si one typically quoted value for the
intrinsic stacking fault energy is 69 mJ/m or 55
meV/unit cell area. '

In both the fcc and diamond cubic lattices there are
two perfect dislocations with Burgers vectors and disloca-
tion lines along (110) directions, a pure screw and a 60'
dislocation, the latter term arising from the 60' angle be-
tween the direction of the dislocation line and the
Burgers vector. The difference is that in the diamond cu-
bic lattice there are in principle two distinct (111I glide
planes (see Fig. 1), one called the glide plane, situated in
between two close-packed planes of different index, and
the other the shuffie plane, separating two planes of the
same index cutting through bonds oriented perpendicu-
larly to the I 111) plane. These two planes lead to two
sets of dislocations. The glide set, with properties very
similar to those observed in the fcc lattice, can dissociate
into two partials separated by a low-energy stacking
fault; for the screw two 30' partials and for the 60', a 30',
and a 90' partial. They derive their name from the fact
that they are believed to undergo glide in the sense of
continuum dislocations. This is not the case for the
shuffie set, which breaks up two planes of the same index
and has no low-energy stacking fault. The dissociation
into partials in this case is more complex, and their
motion has been argued to be akin to a shuffiing motion
involving movement of interstitials. '

The core structures have been discussed in detail in
several review articles (in particular in Ref. [4]), but the
accepted models are not fully consistent with images in
high-resolution electron microscopy. Measurements of
dislocation mobilities and of electrical activities do not
clarify the situation but bring added confusion. We will
not discuss these points here but refer to two recent re-
views. ' We will only mention some points relevant to
our calculation. Because of covalent bonding, which re-

quires high energy to break or to distort the bond angle,
dislocations are expected to be narrow in the diamond
structure. Dangling bonds in the core are reconstructed
as on surfaces. The width of the stacking fault separating
the two partials in a dissociated dislocation is about 40 A
for the screw dislocation and 65 A for the 60' disloca-
tion. ' So we would expect the partials to be nearly
decoupled. Experiments by a group in Koln' ' and later
by another in Poitiers ' put them rather in an inter-
mediate regime between "bound" and "tom away" (using
terminology of Ref. 17). Under applied stress the width
of a 60' glide dislocation is observed to be increased if the
90' partial leads and to be narrowed if the 30' partial
does. The screw formed of two 30' partials seems to
remain fairly narrow. ' The dissociation widths de-
pend on the orientation of the stress. One clear con-
clusion can be drawn, the 90' partial is more mobile than
the 30' partial.

In the study that follows we will look at the full dislo-
cations in both the glide and shuffie planes and the two
partials in the glide plane. These are the dislocations
whose glide are expected to be controlled by the Peierls-
Nabarro mechanism. The shuffie partials involve
motions difficult to incorporate in a Peierls-Nabarro
model.

III. THE PEIERLS-NABARRO MODEL

To facilitate the presentation we will adopt the follow-
ing conventions in all that follows (see Fig. 2). In a
Cartesian set of coordinates xyz, the xOz plane is the glide
plane I 111I. The z axis is the direction of the dislocation
line (a (110) line), the x axis the direction perpendicular
to it within the glide plane (the glide direction or ( 112) )
and finally the y axis is the normal to the glide plane.
The Burgers vector lies in the glide plane making an an-
gle 8 with the z axis. The dominant direction of displace-
ment of the atoms around the dislocation line is along the
Burgers vector. For a pure edge dislocation the Burgers
vector would lie along the x axis (or 8=90'), while for a
pure screw dislocation along the z axis (or 8=0'). A
dislocation with any other angle would be mixed, partly
edge and partly screw. Its Burgers vector can be decom-
posed into two components, one along the x axis, the
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FIG. 1. A diamond-cubic lattice projected normal to a [110]
plane.

FIG. 2. A Cartesian set of coordinates showing the directions
relevant for dislocations in silicon. With the above choice of
axes, 8=60' gives b along [101]and 8=30' along [211].
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edge component b sin8, and the other along the z axis,
the screw component b cos8.

A continuum theory has been developed, which can be
fully solved (see, for instance, Ref. 17). For future pur-
poses, let us just note that for an isotropic crystal an edge
dislocation produces in its glide plane, whose normal is
along the y axis, a stress field cr along its Burgers vec-
tor; here the x direction (and hence the two suffixes xy):

(2)

where p is the shear modulus and v= —,'1, /(A, +p), the
Poisson ratio expressed in terms of the conventional
Lame constants A, and p.

Similarly, for a screw dislocation, whose Burgers vec-
tor is along the z direction, the stress along z in the glide
plane is

pb 1
0 2' x

For a mixed dislocation with a Burgers vector b making
an angle 0 with the z axis, the component of its stress
field along the Burgers vector is given by

E depends on the type of dislocation and the crystalline
direction of the Burgers vector. For an isotropic crystal,
K follows from Eq. (4):

sin 0E =p +cos 0
(1—v)

In the original PN model the restoring stress was taken
to be sinusoidal with an amplitude determined by impos-
ing the proper elastic slope. The problem has for this
case an analytical solution worth mentioning because it is
a reference and a starting point for the general case. The
forms used in the original model for an edge dislocation
and the general sinusoidal restoring stress are given
below

pb . 2m. (x} . 2~ (x)
o (x,0)= sin =r sinxy 2 d b max

where d is the interplanar spacing in the direction per-
pendicular to the interface, and ~,„ is the maximum
stress that can be generated at the interface. This gives
the following PN equation:

+~ 1 df (t) 2nrmax '. 2mf(x)dt= sin—~x —t dt E b

pb sin 8 2 1
crb =o„sin8+o,y

cos8= +cos 8
2m. 1 —v X

(4)

Its solution is

b )x bf (x)=—tan —+—
2

(10)

K y+~ 1 df(x')d / p {f( )}
2& —oo X X dX

with the normalization condition

(5)

J p(x')dx'= J, dx'=b .+-, , +- df(x')
oo —oo dx

In the continuum model a dislocation can be displaced
without any application of force because the effects of the
lattice periodicity are not included. In the Peierls-
Nabarro (PN) model they are included, for their essential

part, in the following way. When a dislocation is present
there is a natural interface defined by the glide plane in

which the dislocation line lies. The PN model balances at
this interface the stress fields predicted by continuum
theory with the crystal restoring forces across the inter-
face. The implicit assumption is that the core, the region
of inelastic displacements, is spread along the glide plane.
This is known to be a good approximation for fcc-type
lattices. Specifically, at each point at a distance x from
the dislocation line, the stress generated by the displace-
ment f of the upper half of the crystal (y) 0) with

respect to the lower half (y (0) is viewed as being due to
a continuous distribution of infinitesimal dislocations at
every point x' of Burgers vectors p(x')dx'=[df/
dx]„,dx'. The component of this resultant stress ob (x)
along b is balanced by the corresponding component of
the periodic restoring force stress Fb(f) acting between
atoms on either side of the interface. This equilibrium
condition leads to the integrodifferential equation known
as the PN equation

or

df x bg
~(g'+x')

where (=Kb!(4m' a„)=d/[2(1 —v)] can be viewed as
the half width of the dislocation, the region wherein the
disregistry is greater than one-half its maximum value at
x =0. This is similar to the solution for the Frenkel and
Kontorowa or Frank and van der Merwe model of
dislocations (see also Ref. 25). It gives a solitonlike
profile with f ( —~ )=0, f (0)=b/2, and f (~ )=b (simi-
lar shapes are found in our solutions, see Fig. 5}. With
the above choice of solution, the lower half plane has an
additional plane of atoms. With a negative sign on the
tan ' term, the upper half plane is compressed.

It is to be noted that for every dislocation with
sinusoidal restoring forces a solution identical to the one
above will be obtained. What changes is only the direc-
tion of the displacement field, which is along the Burgers
vector and, hence, the elastic constants, which govern the
response of the lattice and the interface.

In an actual crystal the restoring forces may be quite
different from sinusoidal. Foreman, Jaswon, and Wood
first considered the effect on dislocation properties of
modifying the functional form of the restoring force. The
major breakthrough was to derive the restoring force
from the gsf energies as had been suggested by Christian
and Vitek and applied to bcc crystals by Lejcek and
Kroupa and Lejcek. The gsf of interest to us is ob-
tained by cutting the crystal along the [111] plane
displacing one half with respect to the other by a vector f
and then rejoining them. The energies of the gsf generate
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what is known as a y surface y( f ) (energy per unit area).
The restoring stress is simply

(12)

The gsf energies we are using have been obtained from a
local-density approximation (LDA) to the density-
functional theory (DFT), a first-principles calculation (for
details see Refs. 10 and 11). Such calculations are com-
putationally demanding. For this reason fully relaxed
atomic configurations were considered for only two
points, the lowest-energy barriers in the glide and shufHe

planes, known as the unstable stacking-fault energies
(y ). In the glide plane this occurs at a displacement of
—,', ( 121) in units of the repeat distance along this crystal-
lographic direction. The metastable stacking fault or in-
trinsic stacking fault is at —,

' (121). For the shuffie plane
the preferred slip paths are along (110) directions and
the unstable stacking fault occurs for a displacement of
—,'(110). The relevant energies and forces are given in

Table I. To construct the variation of the gsf over the
two directions of interest, we have scaled the unrelaxed
gsf energies by the decrease of the unstable stacking-fault
energy for each surface. It is an approximation whose
consequence would be hard to assess quantitatively. But
we expect the relaxation to be the largest at the unstable
stacking fault. Consequently our scaling procedure
would tend to underestimate y for small displacements.
The important thing for our purposes is that the con-
clusions of the paper are unchanged whether unrelaxed
or "relaxed" y surfaces are used in the calculations, only
the absolute values of the quantities are di6'erent as we
have checked. Figure 3 gives our scaled gsf energies for
the shufBe and glide planes along the directions of in-
terest, while Fig. 4 shows the corresponding restoring
stresses. The energy variations are seen to be mainly
sinusoidal with comparable magnitudes for the segments
relevant to the shuffie dislocations and glide partials [Fig.
3(b)], while the gsf energy variation relevant to the glide
dislocations is an order of magnitude larger. The corre-
sponding restoring stresses show slight departures from
sinusoidal behavior, and their magnitudes are in direct
correlation with the corresponding y surface energy vari-
ations (see Fig. 4).
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FIG. 3. y surface sections (a) along a I 110) direction in the

glide plane and (b) dashed line along the same direction in the
shufHe plane. Both cover a total displacement of a full Burgers
vector b =3.84 A. The full line in (b) along a I 112) direction of
the glide plane is shown; at b~ =2.22 A, the Burgers vector for a
glide partial, the stacking-fault energy is the energy of the in-
trinsic stacking fault 0.006 eV/A .

IV. DISLOCATION PROFILES

The solution to the PN equation, Eq. (5), requires
knowledge of the E parameters and the restoring forces
The K parameters measure the elastic response of the lat-
tice to displacements along the Burgers vector direction.

TABLE I. Key parameters characterizing dislocation properties. E measures the stifFness of the Si
lattice for a given direction of distortion [see Eq. (7)]. y,„ is the maximum of the y surface in the
relevant interface along the direction of the Burgers vector (110) for full dislocations and (112) for
partials. r,„ is the corresponding maximum restoring stress and 2g is the calculated dislocation width
but obtained using the criterion given in the text (1 eV/A = 1.6X 10' dyn/cm ).

Dislocation
E

(eV/A )
Xmsx

2
(eV/A )

+max

(eV/A')
b

(A)
2g
(A)

Glide

ShufBe

Glide
Partials

60
Screw

60
Screw

30'
90

0.501
0.400
0.501
0.400
0.433
0.536

1.156
1.156
0.105
0.105
0.118
0.118

1.11
1.11
0.08
0.08
0.15
0.15

3.84
3.84
3.84
3.84
2.22
2.22

0.37
0.30
3.95
3.14
0.92
1.16
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1.2—

0.6

where a;, x;, and c,. are variational constants and X is an
integer. ' The normalization condition given in Eq. (6)
leads to the sum rule

(14)

where every a; is a positive number. Substituting the
above trial function into the left-hand side of the PN
equation gives

—1.2 I I

0.5
f(bat b )

FIG. 4. Restoring forces ~ corresponding to the y surface
sections of Fig. 3.

(13)

Silicon is an anisotropic crystal, so procedures outlined
by Hirth and Lothe' for such a situation had to be fol-
lowed. For the Burgers vectors of interest, which all lie
in the [111) plane, the E values obtained can be ex-
pressed in terms of effective elastic constants p and v for
the [ 111) plane. In other words, within the [111)plane
silicon is essentially isotropic. The values derived within
the l 111) plane are )M' =6.375 X 10" dyn/cm and
v'=0. 2561. This is to be compared with quoted averaged
values for Si, @=6.81 X 10"dyn/cm and v=0. 218.'

As mentioned in the preceding section the restoring
forces were obtained from the y surface, the energy vari-
ation of the gsf with displacement. To integrate these
forces into the calculation they were fitted with a sine
series for the (110) dislocations and exponentials for the
(112) dislocations. In this latter direction the interval of
force field of interest is not periodic. One goes from an
equilibrium position to a stable stacking-fault position.
The disregistry f (x) was obtained by searching for a
solution in the form

x —x;f (x)=—g a;arctan +—,
ci 2

X glide 60'

artial 90'

ffle 60'

I I I
j

I I I 10
—1 —0.5 0

x ( a'

I I I
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I I I I
J

0.5 1
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0.0

1.4—

0 1 2

x (a')

0.5

0.7—

0
0.5
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I I

0
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i
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1 2
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FIG. 5. Typical dislocation proxies. Displacements along
the Burgers vectors plotted as a function of the distance from
the dislocation line.

FIG. 6. Some dislocation densities p(x) =df (x)/dx; (a) com-
pares the distribution for three dislocations; (b} and {c)show the
contributions from the three terms in Eq. (13) (dashed lines) for
the 60 shuffie and 90' partials, respectively {full lines are the
sum of the dashed lines).
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N X X)
Fb(x)=Kb g a; 2 z

.'
(x —x;) +c;

(15)

The constants a, , c;, and x; are obtained by minimizing

the expression

B,=~F&(a,;,c;,x, ;x) . F&—(f(a,;,c;,x;))~ . (16)

N =3 was found to be sufhcient to provide a good fit.
Table I shows the input data for the four dislocations

considered and their calculated widths. Some typical
dislocation profiles are shown in Fig. 5. Corresponding
dislocation densities appear in Fig. 6. This 1ast figure also
shows the contribution of each term in Eq. (13) for two of
the dislocations.

Not surprisingly, since the width g is essentially in-

versely proportional to the maximum of the restoring
stress r,„ the shuffle dislocation widths are an order of
magnitude larger than the glide dislocation widths. The
shuffle dislocation profile is nearly that of a PN disloca-
tion with sinusoidal restoring stress. The glide partials
have slightly larger widths than the full glide disloca-
tions. The departures from sinusoidal behavior in the re-

storing stresses are reflected in the dislocation densities

most visibly in the one for the 90' partial in Fig. 6(c).

tity is the Peierls stress 0. , the maximum stress required
to overcome the barrier. Two energy barriers may be
comparable, but if the distances are quite different over
which this energy rise has to be realized, the correspond-
ing Peierls stresses can be quite different. A longer repeat
distance will usually necessitate a smaller Peierls stress.
Our formula has the correct period for W(u) and hence
is expected to give a reasonable value for ~ . cr is
defined as the maximum in the variation of the interface
stress, o, the scaled slope of W(u) for a given position of
the dislocation:

I 8'
a' =maxIo) =max

a du

It is obtained directly from Fig. 8.
An estimate for very narrow dislocations, where the

core is less than one lattice site wide can be easily derived
using the continuum dislocation profile given in Eq. (11}
with an adjustable width g. Since only one term in the
sum in Eq. (17}will contribute significantly:

r

cr =max ~

du

V. MISFIT ENERGIES,
PEIERLS-NABARRO ENERGIES, AND STRESSES

r

d1 df b ~max

df du ™ng K
(19)

Although a periodic restoring force has been incor-
porated into the PN model, it still considers the crystal
above and below the glide plane as an elastic continuum
medium. As in the Frank and van der Merwe model"
the dislocation is free to glide in the crystal. Iff (x) is a
solution to the displacement field, so is f (x —u), where u

is any constant tf(x —u) corresponds to a dislocation
translated by u]. This "continuum-mass" dislocation has
no PN stress. However, a stress can be defined by noting
that the displacement function f (x —u) corresponds to a
real displacement only where an atomic plane is present.
In the absence of a dislocation the spacing of atomic
planes in the direction x is a'. With the x axis along a
(112) direction a'=(&6/4)a =3.33 A, where a is the Si
lattice constant 5.43 A. When the dislocation is intro-
duced, the planes, in the upper half of the crystal at a po-
sition ma' in a direction perpendicular to the dislocation
line, will be displaced with respect to the lower half by
f(ma' —u}. The misfit energy can be considered as the
sum of misfit energies between pairs of atomic planes and
can be written

3

2—

glide 60'

glide screw

I I
I

I I I I
I

0.5

shuffle 60'

shuffle screw

90' partial

50' partial

W(u}= g y(f(ma' —u))a' . (17)

This formula focuses on the variation of the disregistry as
one moves across the dislocation core along the interface
in a direction perpendicular to the dislocation line. It has
the correct period a' (see Fig. 7), and the right limit for
very narrow dislocations for which the amplitude of vari-
ation of W(u), W should be the same as that of y(u)a',
i.e., y,„a'. W, the PN energy, is the energy barrier
for motion of the dislocation. A physically related quan-

0.0 I
I

I I

0.5

FICx. 7. Misfit energies W(u) for (a) full dislocations in the

glide plane and (b) full dislocations in the shufle plane and par-
tials in the glide plane.
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TABLE II. Pro
~ ~ ~ ~

eV/A ).
perties of dislocations in Si obtained from the Peierls-N ba arro mo e p=d 1 ( =0.4

Dislocation

Glide

Shuffie

Glide
Partials

60'
Screw

60
Screw

30'
90'

W
(eV/A)

0.588
0.468
0.588
0.468
0.169
0.210

W(a'/2)
(eV/A)

0.169
0.110
0.538
0.408
0.062
0.093

W~

(eV/A)

3.77
3.74
0.116
0.148
0.343
0.323

18.02
22.67
0.088
0.119
0.374
0.300

Whereas the PN energy depends in this limit only on the
potential barrier to be overcome in the y surface, the
Peierls stress is very sensitive to the width of the disloca-
tion or the relative strength of the lattice with respect to
the energy barrier.

Typical variations of W(u) are shown in Fig. 7. The
minimum W(a'/2) can be viewed as a misfit energy. It is
the total energy stored across the glide surface. It is the
nonelastic part of the dislocation energy and provides an
estimate for the core energy of the dislocation, which
takes into account the discreteness of the lattice. It is
difFerent from the obvious definition of this quantity in

the PN model, which is the integral of the disregistry en-

ergy over the whole interface:

W =f r(f(x))dx . (20)

This last quantity can be shown to be independent of the
restoring force. Integration by parts and use of the PN
equation gives

10'
(o) glide 60'

glide screw

I

0

the dislocations as it is displaced through the lattice. As
mentioned earlier W(a'/2), an estimate of the core ener-

gy, is the minimum and 8', the PN energy, the ampli-
tude of the variation of W(u).

The results for all these quantities are shown in Table
II for the Si dislocations. As this table shows for a par-
ticular dislocation, glide and shuffie sets have the same
average misfit energy because that energy depends only
on the elastic response of the lattice. For the narrow
glide set, this energy has a larger amplitude than for the
wide shuffie set. Consequently glide dislocations have

—oo X

+- ar(f(x))
I3f

=,.f f,.'. ..
fd„

Bx

8
dx dx

Bx

(2l)

(22)
—10— I

0.5
u(a')

I 1

Separating this last integral into two equal parts with an
interchange in the roles of x and x ' yields: 0.15—

K f f Bf df d d P Eb
4~ Bx Bx' 4m

(23) 0.10—

Q
p +co

W(u)du = f g r(fma' —u ))du
m = —oo

=f r(f (u))du = $V (24)

W is, hence, an average misfit energy for all positions of

8' depends only on the elastic properties of the material
and the Burgers vector. The integral rejects the fact ear-
lier noted that the material on each side of the glide plane
is taken as a continuum. The restoring forces determine
the spreading of this energy over a larger or smaller area
but, since the medium is elastic, the total remains un-

changed. W, therefore, does not distinguish between

glide or shufle plane dislocations. It is interesting to note
that W is the average of the function W(u), since

0.05—

0.00

—0.05—
-I

—0.10—

—0.15 I I

0 0.5 1

u(a')
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larger PN energies and Peierls stresses than the shufle
dislocations. Another consequence is that, since more
atomic planes are deformed in the shufHe dislocations, its
total minimum misfit or core energy is larger than that of
the glide dislocations, where only a couple of planes are
afFected. These results follow from the relationship
developed above between 8' and the core energy
8'(a /2). It will be interesting to see if atomistic com-
puter simulations will verify that.

VI. DISCUSSION AND CONCLUSION

Our calculations suggest that, in Si at 0 K, shuRe-set
dislocations should be easier to form and move than
those belonging to the glide set. However, experimental
observations show that total dislocations in Si are dissoci-
ated into partial dislocations separated by an intrinsic
stacking fault. Since this fault can exist only on glide
planes, the general wisdom is that mobile dislocations be-
long to the glide set (although it has been argued that this
inference is not without question ). These statements are
not necessarily incompatible. It has been shown that, in
principle, a shufHe dislocation can decompose into a dis-
sociated glide set dislocation plus a row of point defects.
The representation of such a complex lies beyond the PN
model, but it is likely that motion, which will occur ei-
ther on the glide plane by dragging or dropping the point
defect row, or on the shuNe plane by recombination prior
to glide, will be no easier than the motion of a glide set
dislocation. It is also possible that finite temperature
effects may alter the conclusions of the calculations.
Kaxiras and Duesbery" have shown that if the entropy is
taken account, then above a critical temperature and in
the presence of a tensile stress, the free energy of the un-
stable stacking fault y„, can become lower on the glide
planes than on the shufHe set. The resolution of this
problem will be the subject of future work.

The calculated PN stresses can be related to the experi-

mental data available on dislocation mobility. The
motion of simple individual dislocations cannot be stud-
ied. What are followed are dislocation loops formed of
segments of various types of structures either perfect or
dissociated dislocations. There is a belief that both
shuNe and glide types are involved in the loops. As dis-
cussed in Sec. II, there is conclusive evidence that the 90
partials are more mobile than 30 partials, and this agrees
with our findings even when the stacking-fault creation
force 0.01p is taken into account. This stacking fault
creation force is small.

The PN model has limitations. Most noticeably, when
the dislocations are very narrow, treating the response of
the lattice above and below the glide plane as elastic may
underestimate the forces and energies near the core. In
spite of this the PN model gives us an appreciation of the
interplay of the forces determining the properties of the
various dislocations. In particular, it gives simple rela-
tionships between the width of a dislocation, the corre-
sponding relevant elastic constants of the solid and the
strength of the restoring force as provided by the general-
ized stacking fault (gsf) surface. In as much as the key
physical assumptions of the model referring to the form
of the core as planar are correct, this model is expected to
give the correct relationship between gsf surface charac-
teristics and the properties of dislocations at low temper-
ature.
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