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The instability of the shape of two-dimensional new-phase nuclei is studied using an order-parameter
field equation. The criteria of instability of angular perturbations are obtained for systems in which the
order-parameter nonconservation processes are negligible. These coincide with criteria obtained within
the framework of the phenomenological Zeldovich-Volmer theory and the continual diffusion-limited
aggregation model in the diffusive limit. The influence of small angular perturbations on the fractal

dimensionality of the nuclei is discussed.

I. INTRODUCTION

Azimuthal-symmetrical nuclei! 3 as well as structures
with complex symmetry>* are observed during experi-
mental studies of the processes of nucleation and subse-
quent growth of a new phase on surfaces. The value of
the index N in the relationship between the number of
particles in a cluster and the cluster radius (N ~RY) is a
simple quantitative criterion of deviation of the cluster
shape from axial symmetry. The parameter N is called
the “fractal dimensionality.”>~!! Asymmetry of the clus-
ter leads to deviation of the N value from the Euclidean
dimensionality. In the case of fractal growth, values of N
are found to be universal to some extent for a number of
systems, (for example, for fractal structures on surfaces
N=1.5-1.9).>"!! In the vast majority of experiments,
the clusters grow mainly in the surface plane. For exam-
ple, such clusters appear during deposition of atoms from
the vapor phase onto a surface,'? electrodeposition from
solutions or melts of metals,!>* and crystallization of
amorphous films on substrates.!>!® Therefore in this
work we shall consider only clusters growing in the sur-
face plane.

There are various theoretical approaches to the prob-
lem of determination of the conditions of instability of
nuclei with axisymmetric shape and the appearance of
nuclei with more complex shapes and different sym-
metries. These conditions have been studied both
theoretically within the framework of the Zeldovich-
Volmer theory of first-order phase transitions!’!° and
numerically using various approaches to the cluster
growth dynamics.®~!' In phase-transition theory,' ~* the
main attention was paid to the explicitly anisotropic con-
ditions of nucleus growth connected with surface tension,
substrate lattice symmetry, anisotropy of the external
fields, etc.>»2~2 However, it was found that the
phenomenon of nucleus symmetry breaking took place in
symmetrical (isotropic) systems as well.?672% It was
shown?® that the nuclei whose growth was controlled by
diffusive flow of adatoms possess axial shape instability.
The growth rates of the m-fold angular perturbations of
the nucleus boundary
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where D is the diffusion coefficient, s is the area of one
adatom in a new phase, R.=p,C,/(C—C,) is the new-
phase critical size, C is the concentration of the particles
far from the nucleus, Cj is the equilibrium concentration
at the linear nucleus boundary, po=vs/T, v is the sur-
face tension coefficient, T is the temperature, L*=Da™ !,
a~ ! is the desorption time, and K,(x) is the Macdonald
function. The criterion of instability A,, >0 [where
A, =(d/d7T)n(R,, /R,y) is the instability increment]
determines the conditions

Ro, m(m?=1)

- —2)

R, m Ky(Ry/L) . ()

If (2) is valid, the m-fold perturbations do not fade. In-
stability is possible for angular perturbations with m >3
when the sizes of the growing nuclei are large enough.

In papers on the application of cluster growth dynam-
ics to different physical systems, several models are used.
The diffusion-limited aggregation (DLA) model is histori-
cally the earliest and the most frequently used mod-
el.>~ 1127731 There are different modifications of the DLA
model: lattice DLA where particles are supposed to
jump only between nearest-neighbor positions in the lat-
tice, and nonlattice DLA where particles are free to move
in any direction between any two points on the surface
plane. In this model, cluster growth is determined by
particle adhesion (with some probability) to the cluster
boundary on contact. Nonlattice models allow one to
eliminate the possible influence of lattice anisotropy on
the cluster properties. In the cluster-cluster aggregation
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(CCA) model,’ 8 light clusters can move and adhere as
well as single particles. Besides the models with diffusive
trajectories of particles, models were formulated like the
ballistic model of Eden®? where the particle trajectories
were straight.

Computer simulations based on these models show
universality in the fractal cluster growth phenomenon.
This is supposed to be connected with some common
features of the growth process, and these features have
been manifested in the primarily symmetrical models like
nonlattice DLA. Nevertheless, the influence of aniso-
tropic properties of the system (substrate symmetry, an-
isotropy of the particle itself, cluster boundary conditions
modeling the elastic tension, etc.”’~ %) is apparent, and at
some stages of the growth may result in variations of the
fractal dimensionality N. Some analytical studies of
DLA have been carried out in Refs. 27 and 28. The
growth criterion for angular perturbations of the cluster
boundary within the framework of the DLA model?’ for-
mally coincides with criterion (2) in the diffusive limit
R << L (after replacement of the necessary variables).

Thus, the investigations prove that anisotropic proper-
ties are not strictly necessary for formation of nonround
nuclei and the axial shape instability of the nuclei is con-
nected apparently with the diffusive nature of the growth
process. Unfortunately, the models applied to studies of
the instability conditions of the nucleus boundary
shape' ~*3? use many external phenomenological parame-
ters and assumptions. The Zeldovich-Volmer theory, for
example, needs the surface tension coefficient, the molec-
ular volume of the new phase, the equilibrium concentra-
tion of the saturated solution, and conditions at the nu-
cleus boundary. The conditions and assumptions used in
this theory are also used in DLA. The latter approach is
based on a model of stationary diffusion with fixed
boundary conditions which define the rate of movement
of the nucleus boundary. It is not clear to what extent
the description of the complex structure evolution is
determined by phenomenological conditions and parame-
ters. A nondiffusion mechanism of cluster growth on a
surface is possible too. It suggests direct sticking of the
gas-phase atoms to the cluster perimeter.** The depen-
dence of the shape instability on the cluster growth
mechanism is not yet clear. Theoretical consideration of
the phenomenon within the framework of a more general
approach would help to answer these questions.

Besides Zeldovich-Volmer theory and computer simu-
lations, the expansion of the free-energy functional of the
system in a power series of the order parameter™ is used
to describe the phase transition and cluster growth.
Analysis of the relaxation can be performed using an
order-parameter equation (OPE) like the Ginzburg-
Landau equation.’> 37 Such an approach to the phase-
transition kinetics needs neither additional parameters
nor additional assumptions. This method has allowed one
to describe domain growth both in bulk and on surfaces,
and a number of nontrivial features of second-order
phase transition kinetics have been investigated (see, for
example, Refs. 38-43). Consideration of three-
dimensional (3D) nucleation®®3” showed that all the pa-
rameters, assumptions, and principal results of
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Zeldovich-Volmer theory can be obtained as a result of
the OPE solution. In 2D systems, an approach based on
the OPE allows one to obtain various limits of the
Zeldovich-Volmer theory for the growth kinetics of ax-
isymmetrical nuclei.** Thus we suppose that this method
will enable us to investigate the nuclear shape instability
caused by the general properties of the growth process
without using any additional assumptions and parame-
ters. The purpose of this paper is to analyze the
phenomenon of shape instability of 2D nuclei with the
help of an OPE-based method.

II. ORDER-PARAMETER EQUATION

The equation which describes the relaxation of the

order-parameter field £(r,?) to the preferred energy state
£ 35—37
is

E(r,t)=—Pn8F[£&(r,1)]/5E . 3)

Here F[&(r,t)] is the free-energy functional correspond-
ing to the &(r,?) field, r is the coordinate, ¢ is the time, fi
is the kinetic operator given by fi=—u V>+p, in the
long-wave approximation, p, is the kinetic coefficient in
the case of conserved field &(r,t), u, is the kinetic
coefficient in case of nonconserved field &(r,t), and V? is
the Laplace operator. In application to phase transitions
on surfaces, which are under consideration here, the field
£ is the deviation of the adsorbed atom concentration
g(r,t) in the new phase from the average concentration
C on the surface: &(r,t)=C(r,t)—C.

In principle, definition of the kinetic coefficients u, and
K, and the free energy F near the phase-transition point
completely determines Eq. (3). So neither additional pa-
rameters nor additional assumptions are necessary to ex-
plain the kinetics of phase transitions.*®> 37 Near the
phase-transition point, the expression for the free energy
following from the Landau theory*>® can be written as

F= [dr[A&*/2+QUVE? /2—BE /3+TE /4] . @)

Here A, Q, B, and T generally depend on external param-
eters and as temperature and adatom concentration.

In case of B0, the free energy (4) describes first-order
phase transitions. It is easy to prove that a phase transi-
tion take place when A <2B2/3T'=A.. This transition
proceeds from the state with zero order parameter £=0
to another state with §,=2B /3T.

The order-parameter equation (3) for the free energy
given by (4) has the form

Er,0)=(u V?>—u, \AE—QV2E—BE*+TE) . (5)

This equation is a Ginzburg-Landau-type equation which
is often used in phase-transition theory.*>* =37

Before taking into consideration the order-parameter
field relaxation, let us find the connection between the
kinetic coefficients u,. and u, in Eq. (3) and observable
parameters. This will allow us to choose the physical
mechanisms of nuclear growth. In linear approximation
Eq. (5), which defines the relaxation of small perturba-
tions on the surface, has the form
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E(r,t)=—af+DV*%, a=p,A, D=pA, (6)

The phenomenological theory of adsorption uses equa-
tions identical to Eq. (6).%>63* D is the adatom diffusion
coefficient and a ! is the adatom lifetime determined by
either desorption or transition from the surface into the
bulk of the solid. Thus, the physical meaning of the
kinetic coefficients pu, and p. appears to be clear. The
former is connected with adsorption and desorption
(u, = —a/A), and the latter with adatom diffusion on the
surface (u, =D /A).

Equation (5) in dimensionless variables ¢=2£§/£,—1,
p=rt/X,and 7=t /7, may be written as

p, ) =(I2—V)) [V +2¢(1—¢2)+h(d+1)]. (T

Here £§,=2B/3T is the phase order parameter at the
phase-transition point, Y=£&,V8Q/T, 1,=x*/u.Q,
1’=x%u, /u., and h =4(1—A/A,) is the degree of metas-
tability. In the old phase = —1 while in the new phase
¢=¢,=(1+V1+2h)/2($,=1if h <<1).

There are only two dimensionless parameters & and / in
Eq. (7). The degree of metastability 4 determines how
far the system is from the phase-transition point or, in
other words, the difference between the new and old ener-
gy states. Near the phase transition point we can assume
that h is rather small: h << 1. The parameter / determines
the ratio of the contributions of the two distinct mecha-
nisms of nuclear growth: direct sticking and diffusive
growth.** This parameter varies over a wide range in
different physical systems and determines the regimes of
system relaxation.

It should be noted that diffusive growth of the new
phase occurs more often in experiments. Nuclear shape
instability in the diffusive limit has been studied using
Zeldovich-Volmer theory?® and the DLA model.?”?®
This case of the diffusion limit corresponds to / <<1 and
is considered in this paper.

II1. SOLUTIONS OF THE OPE

The order-parameter field which corresponds to the
critical-sized nuclei minimizes the free-energy functional.
Therefore it is a stationary solution of the OPE as may be
seen from (3). With a small degree of metastability A, this
field can be written with high accuracy as*®*

8clp)=tanh(a, ~p), a,=—,
Equation (8) describes a nucleus of the new phase
(¢=1) in the old phase (= —1). The width of the tran-
sition layer between the phases (nuclear boundary) is of
the order of unity in dimensionless variables and of the
order of )y in dimensional variables.
Let us consider now the nonstationary solutions of the
OPE (7). Using the Green function G (p)=K,(pl)/2m of
the equation

h<<1. (8)

(I*=V*)G(p)=58(p), 9)

we can write (7) in another form as
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[ Glo—p)éip',1rdp’
=V2(p,7)+26(1—¢2)+h(s+1) . (10)

Let us find the solution of (7) and (10) which describes the
axisymmetric new-phase nuclei with a size R greater than
the transition-layer width y(a=R/x>>1). We shall
write this solution in the form of the sum of a nucleuslike
term plus some correction function:3%4

dp,7)=¢.p—a(r))twlp,T). (11)

The component ¢.(p—a(7)) is the solution (8) of Eq. (10)
for the critical nuclei. Here the substitution a, —a(7) is
made. To consider the axisymmetric shape instability let
us introduce the following dependence of the nucleus size
a on the azimuthal angle ¢:

alp,m)=ap(t)+ 3 a,(r)cos(me) . (12)
m22
A term with m =1 is not included in (12) since it corre-
sponds to the shift of the nucleus as a whole on the sur-
face. To find the conditions of instability it is enough to
consider small angular perturbations, i.e., a,, /a, <<1.

The correction function w (p,7), as will be seen further,
determines the diffusive flows to the nucleus. In the
diffusive limit (/ <<1) and in the case of weak metastabil-
ity h <<1, w is a small-valued function and slowly chang-
ing in space:

lw(p,7) <1, |[Vw|<<|wl| . (13)

The process of nucleus size change is the slowest one
near the phase-transition point,3“’36"‘7 i.e., one may as-
sume that the characteristic time 7,, of w(p,7) variation
is smaller than the characteristic time of nucleus size
variation 7,:

Ty KT, . (14)

Note that the quasistationarity condition (for 2D sys-
tems) can be disturbed if /—0 and in this case special
consideration is demanded.*®

At large distances from the nucleus only the old phase
exists at any finite time [¢(p— o ,7)=—1], so the condi-
tion for w is

w(p—,7)=0. (15)

Substituting the solution (11) into Eq. (10) and using con-
ditions (13) and (14) we obtain

—P(p,7)=[1/a—1/a.—a" /a*—6w(p,T)]
X cosh™*(a —p)+4w(p,7) . (16)
Here
P(p,‘r)=fG(p~p')cosh_2(a —p')dp',
a=a(ep,7), and a"Eaza(<p,'r)/a<p2 .

It is important for further consideration that, in the
case of the diffusive limit / <<1, the function P(p,7) is
smooth and changes on the scale ~1//, which is greater
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than the nucleus transition-layer width (at least in the ini-
tial stages of angular perturbation growth). To be con-
vinced of these properties of P(p,7) let us write this func-
tion as

Pp,7)= 3

m2=0,m#*1

a, (TP, (p), (17)

where (if a,, /a, <<1)
Pm(p)=fG(p—-p')cos(mqa’)cosh*z(ao—p')dp' .

The smoothness of Py(p) can be shown, for instance. The
expression under the integral in Py(p) [Eq. (17)] (I <<1)
is a product of two functions. One of them,
cosh™%(a —p’) is a sharp function differing from zero
only near the nucleus boundary p’'=a, and the other,
G (p,p')p’, is smooth near the boundary [here G (p,p’') is
the integral of G (p—p’) (29) over the angular variable of
the vector p']. These allow one to expand the function
G(p,p')p’ over the variable p’ near the maximum
Pmlpm=a) of the function cosh™%(a —p’). The zeroth
item of the expansion G (p,p')p' ~G(p,p,, Jp,, is sufficient
for Py(p) (17), so

210([)1 )Ko(aol ), P <p0y

Py(p)= |2K0(pl Mo(aglay, p>ag . (13)

Here I, is the modified Bessel function. Hence the quan-
tity 1/1 is a characteristic scale of Py(p) variation. Thus,
in the diffusive limit when ! <<1, the function P(p) is

smooth on the scale of the nucleus interface width.
|

fdeZw(p,T)’: ﬁdl’cosy _dw

ow
op a7 +0 dp

Jw

dp

_ow

27
= dpale,T)
fo al@,7)+0 o

a((p,T)AO]

a(¢),r)—0J
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Equation (16) can be simplified outside the boundary
transition layer of the nucleus [where cosh™%(a —p') is
exponentially small] to

—P(p,7)=4w(p,7) . (19)

According to the smoothness of functions w(p,7) and
P(p,) [relations (13) and (18)], Eq. (19) should be true
everywhere in space, including the nucleus boundary
p=a. As a result, it can be obtained from Eq. (16) that
near the boundary

1 1 1 1 a"(@,7)
= == —_ == .
w(P a(wy’r)) 6 a((p,T) ac 6 a2(¢,’r) ( O)

To find the rate of angular perturbation growth let us
act on (19) with the operator (I2—V?). This leads to

a(@,7)cosh™*[p—a(@,7)]=4V>—1*)w(p,7) . 21

Outside the boundary of the nucleus this is just the
diffusive equation which defines the atom flow to the
growing nucleus. Let us integrate (21) over the transition
layer where the function cosh ~*[a (¢, 7)—p’] differs from
zero. It should be taken into account that in the initial
stages of angular perturbation growth the ratio
a, /ay<<1 and the angles between the normals to the
perturbed boundary and the unperturbed axisymmetric
boundary at the same point are small: y <<1. This al-
lows one to write

(22)

So the nucleus-boundary growth rate a(¢,7) is determined by the atom flow dw /dp to the nucleus boundary (/ <<1).
Note that, if the value / is not zero, desorption and adsorption processes take place not only outside the nucleus but also
inside it. This leads to the appearance of two flows of adatoms to the nucleus boundary: over the virgin substrate sur-
face and over the nucleus surface.

To determine these flows explicitly it is necessary to find the solution of Eq. (21) outside the boundary

(V2—1®)w(p,7)=0, |p—ale,7)|>1 (23)
in the form of an expansion over angular harmonics:
we Ky(pDh) s wih K, (pl)
Kolap) &, K, (ay)
I1,(pD) 1, (pl)
o L (2)_mP7
Yor @D T 2 Ym T (aul)

m2=2

cosme, p>ale,T),

w(p,7)=

( cosme, p>al(p,7).

Here K,, and I,, are mth-order modified Bessel functions.
The asymptotic condition (15) [w(p— «,7)=0] is taken
into account in writing the solution (24).

To study the instability of small perturbations a,,(7)
the boundary condition for the function w(p,r) (20)
should be written in linear approximation over
a, /ay<<1: m>2 6aj
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w(1,2)

Joining solution (24) with (25) gives the coefficients wg,w,,
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of various harmonics in (24). Therefore the flows dw /dp

can be found when p=a (¢, 7)10. Finally, in the diffusive limit / << 1, the equations for azimuthal-perturbation growth

and average radius are

l Kl(aol) Il(aol) 2
1= — = +1°;, (26)
do=—4wo [2 Kolagh | Io(agl)
dina,, 1 (m*=1) |1 |Kn+ilag) I 44(agl) e
dr 3 ai 2 | K,(apl) I, (ayl)
a2 K (apy]) K, +1(agD)  I(ap)) I, (agl) _(m+1) K (agl) I(ayl) o7
Yol I Kolagh Ky lagl)  Iolag) I, (agh al | Kolagh  Iolagh ||’
f
where wo=1(1/a,—1/a,) . R c D1 _1 lK,(R/L) I,(R/L)
TSPt T | T R
Relationship (26) was studied earlier during analysis of L|R. R Ko(R/L) ~ Io(R/L)
the growth of azimuthal-symmetrical nuclei with the help al,L
of the OPE.* It describes growth of a round nucleus (if D (28)

ay>a,=2/3h) due to particle flow to the boundary from
inside and outside the nucleus (the first and the second
components, respectively) and due to direct particle stick-
ing to the nucleus boundary. This equation is also well
known from phenomenological theory,** where it has
been written in dimensional variables as

Here I, is the width of the layer where direct sticking to
the nucleus perimeter takes place.

Equation (27) describes relaxation of the m-fold angu-
lar perturbations. Let us write the increments of instabil-
ity to analyze the conditions of perturbation instability:

yo=d Om__1(m’=1) |1 K +1(aoh) I 4 4(agl) e
™ odr ag 3 a} 2 | K,(apyl) 1,,(ayl)
52 K (ay]) K,,,H(aol)_ll(aol) I, +1(ap)) _(m+1) K (ag) I(ay]) 1
Yol Kolag) K tagh)  Iglagh 1, (agl) agl | Kolagh) ' Iolagh | ag |
29)
[
Expressions (27) and (29) are obtained for an arbitrary re-  of parameters.

lation between a, and /~!. The only conditions are
ay>>1 and ! <<1. Let us consider the case when the
diffusion length L is larger than the nucleus radius
R:ayl <<1. Using the asymptotic relations for X, (x)
and I, (x) (x =a,l),* Egs. (27) and (29) can be written
in the form

dina,, 2m—1) 1|1 1 1
dr a4l 6 |a, ay | Kolayl)
_m(m+1)
6a, ’
A 211 1 |m=2) m(m?*=-1)
m a% 6 ac ao Ko(aol) 600 ’

(30)

In dimensional variables these equations correspond to
Egs. (1) and (2) of the phenomenological theory which
has been obtained in Ref. 26. Note the fact that in this
limit (aol <<1) the growth of the shape perturbations
(condition A,, >0) can be observed only for perturbations
with m =3 while for m =2 this is impossible for any set

Figure 1 shows the conditions of instability for various
relations between a, and / at a, =100. The solid lines are
obtained for A, (ay,/)=0 in the general case (29). They
envelope the respective instability areas (i.e., A,, >0) of
the perturbations with m =3,4,.... It can be seen that
instability is possible only when [/ is small enough
(1<5.6X1079), i.e., the diffusive length L is much larger
than the transition-layer width y. It is necessary for the
nucleus radius to be large enough, a, > ad ~10% Thus at
the initial stage of growth when a;<a$ the nuclei have
an axially symmetrical shape. When the values a,=a§
and A,, =0 are reached, an unstable perturbation starts to
grow. In the range / <3X 1077 the first perturbation to
grow [as a(7) increases] is that with m =3. However,
there is an area of parameters 3X107°</<5.6X1073
where the first unstable perturbation is that with m =4
or 5, while the perturbations with m =3 or 3,4 corre-
spondingly are suppressed. Development of the instabili-
ties starting with perturbations m > 6 is impossible at any
parameter /. Hence, by selection of the physical condi-
tions one may obtain various values of / and therefore
satisfy the conditions when the perturbations with sym-
metries m =3, 4, or 5 grow and at the same time the oth-
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FIG. 1. Solution of Eq. (29) with A, (ay,/)=0 (solid lines)
corresponding to the conditions for the appearance of instability
of the angular perturbations for harmonics with m=3,...,6
(numbers given near curves) and the critical size a,=100.
Short-dashed curves are solutions of (30) for the corresponding
harmonics (in the ay/ <<1 case). The long-dashed curve is the
condition of breaking of diffusive-growth quasistationarity (31).

er perturbations fade.

After the appearance of instability of one of the m-fold
perturbations, the criteria for the others can change.
Thus, if we consider the growth of an initially stable nu-
cleus, Fig. 1 shows the boundary of the instability area
and the indexes of those unstable perturbations which
arise first. If it is possible to create such conditions that
axially symmetric nuclei fall into the instability area from
the very beginning, Fig. 1 shows the perturbation indexes
m of the angular harmonics which grow for these nuclei
in the initial stage.

Figure 1 also represents the case of ayl/ <<1 (30)
(short-dashed lines). Thus, the phenomenological growth
equations (1) and (2) are fulfilled when a4/ <<1 and
I<3X107° (in terms of the variables a, and ). The
discrepancy between our results and those obtained in
Ref. 26 is connected with the growing contribution of the
adatom flow over the nucleus surface to its boundary in
the region / >3X 1073, This flow sequentially stabilizes
the instabilities with m =3, 4, and 5, and then all the oth-
ers.

The fact that the quasistationarity condition (14) for
the function w(p, ) is satisfied (see above) allows one to
neglect the term w(p, ) in Eq. (16). Substituting w (p,)
(24) into (14) and using the nucleus growth rate (26), one
can determine the criterion of quasistationarity breaking
for the correction function w (p,7):

adly(agKy(agl)>~1 . 31)

This criterion is shown in Fig. 1, too (long-dashed line in

the left part of the figure). It is seen that if /—0 the
curves A, =0 meet the area (located to the left of the
long-dashed line) where the condition of quasistationarity
is broken.

As the value of a, decreases, the diagram of instability
obtained moves as a whole towards smaller sizes a and
larger values of /. Thus for a, =1 instability appears al-
ready at sizes of the nucleus about 102. Further formal
decrease of g, in (29) moves the instability area down to
the sizes a ~ 1, i.e., enables one to realize shape instability
at the initial stages of cluster growth. However, the criti-
cal sizes a. ~ 1 are too small to be used in analytical stud-
ies of the OPE performed in this paper. This is because
the degree of metastability is becoming high, h ~ 1.

There are several physical causes for decreasing a_, for
example, variations of boundary conditions, change in
the linear surface tension, and adhesion coefficients.
These alterations (occurring at the same cluster size) can
lead to development of structures of different shapes
(different sets of unstable harmonics at the initial stages
of growth). This in turn leads to variation of the fractal
dimensionality.

IV. COMPARISON OF THE OPE
AND THE CONTINUOUS DLA
MODEL IN THE DIFFUSIVE LIMIT

Let us make comparison of the OPE-based approach
and the DLA model. Analytical equations and boundary
conditions of the latter model are usually written in the

form5—11,27‘28
Viu(p)=0, (32a)
ul,=1—«(p,), (32b)
u(pcluster):l’ u(P—’°°)=0 5 (32¢)
— __ (n,Vu)
Uy 47 . . (32d)

Here the index b means that the value is considered at the
cluster boundary, k(p) is interpreted as the cluster bound-
ary curvature, and U, is the normal growth rate of the
boundary. It is easy to see that the function u(p) in the
DLA model is an analog of the field w (11). Indeed, the
equation for the function u (32a) and the condition at
large distances (32c¢) correspond to Eq. (23) (in the
diffusive limit /—0) and condition (15) for the field w.
The growth rate given by (32d) coincides with the growth
rate d given by (21) and (22) (see also the discussion after
these relations) to the accuracy of the numerical
coefficient when / —0 and a,, /a, <<1. To determine the
relation between boundary conditions (32b) and (20), let
us rewrite (20) in terms of the curvature. If perturbations
of the axisymmetric shape of the nucleus are small, the
curvature k can be represented in the form

2 "2 _ " Y]
=4 +22(a ) _ ;z/c; _4a 2a (33)
[a”+(a")"] a
Using this relation, the condition (25) for the field w at
the interface can be written as

k(@7



30 INSTABILITY OF THE AXISYMMETRIC SHAPE OF TWO- . ..

1

P [1—k(p,7)a,] . (34)

w(p,7)=—

It is seen that the conditions (32b) and (34) are identical,
and the relations between OPE and DLA values are

w=—u/6a, k=«/a, v,=v,4m7/3a,,
(35)
v, =d cosy ~a .

Hence, in the case of a, ~ 1, the parameters of the OPE
are similar to those in the DLA model.

In this work we study the growth of small azimuthal
perturbations of the cluster boundary by solving the
order-parameter equation. At the same time in the mod-
els of fractal growth® '%2773! the value of the fractal
dimensionality N is used as the basic criterion. Let us
study the influence of angular perturbations of the
boundary upon N. Let a 2D cluster have only one unsta-
ble harmonic m:

a(@)=ayta,cos(me) . (36)

From the definition of fractal dimensionality (see the In-
troduction) it follows that the cluster area is proportional
to RN [where R is the maximum size, which in case (36)
is R =ay+a,, ]. Generally speaking the concept of frac-
tal dimensionality is used to describe structures in the
late stages of instability development, when cluster shape
is not determined by relation (12), or (36) as a particular
form of (12). However, it is useful to reserve this term for
nuclei like (36). Thus the expression for the value N=N,,
corresponding to the cluster (36) is

_In[a,(1+82,/2)'?]
T Infag(1+8,,)]

(37)

It is seen that (37) does not depend on the harmonic num-
ber m, but only on amplitudes a, and a,,. The appear-
ance of a harmonic with m 0 leads to deviation of the N
value from the Euclidean dimensionality n =2. As the
ratio §,, increases, the N value decreases monotonically
(see Fig. 2). An increase in the amount of unstable har-
monics leads to an even stronger decrease in the fractal
dimensionality. It is easy to see that a cluster with two
unstable harmonics (m and p) has the fractal dimensional-
ity N,,, , <{N,,,N, }. For example, in the initial stages of
growth, the following relation is valid:

Ny, =N, +N,—2. (38)

Thus variations of the structure of the unstable mode
leads to variations in fractal dimensionality. At the same
time, these variations of the unstable-mode structure are
possible when the boundary conditions at the cluster in-
terface change. This agrees with the results of computer

5863

[
(@)
w
’u)

1.90 3
£
1.85 3
*.80 §
E
3
TIRL i S— I — P I -
0.00 €20 C.40 5 0.60 0.80 1.00
m

FIG. 2. Fractal dimensionality (37) of the cluster as a func-
tion of the amplitude §,, =a,, /a, of the growing mth harmonic.

simulations of fractal growth, where a link between
boundary conditions and the value of N is explicitly seen.

V. CONCLUSION

In this paper, analysis of the instability of the axial
shape of 2D clusters is performed using a Ginzburg-
Landau-type equation for the order-parameter field. The
criteria for m-fold perturbation instability are obtained.
These criteria are determined by two parameters: a, the
cluster size, and /, the ratio of the contributions of two
mechanisms of cluster growth which correspond to con-
serving and nonconserving order-parameter field process-
es. It is shown that instability develops when the princi-
pal mechanism of cluster growth is of a diffusion type
(diffusion of the adatoms upon the substrate surface). As
the rates of the processes which do not conserve the or-
der parameter increase (adsorption, desorption), the flow
of atoms upon the cluster surface increases and
suppresses the instability. In the limit ay/ <<1 the cri-
terion obtained for the instability agrees with results of
work?® based on Zeldovich-Volmer phenomenological
theory. In the diffusive limit (/—0) and when a,~1,
description of clusters on the basis of the OPE leads to
equations based on the DLA model. It is shown that
growth of the m-fold angular perturbations and increase
in their number leads to decrease of the fractal dimen-
sionality.
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