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Crystallization kinetics
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Avrami s treatment of nucleation and growth kinetics considers that active nucleation sites are ran-

domly distributed throughout the volume and that grains may impinge upon grains grown from other
sites, causing growth to cease on the common interface. This treatment resulted in the well-known Av-

rami equation. As a result of the reassessment of these basic assumptions, an integral equation is pro-

posed for the time-dependence evaluation of the transformed phase volume fraction in crystallization

processes, instead of the Avrami equation. The proposed model fits very well the whole range of experi-

mental data for NiZr2 and Te»Pb8 amorphous to crystalline transformation.

In classical kinetic theory of first-order transforma-
tions, ' nucleation of the product phase starts with the
formation, at a certain temperature, of small unstable em-

bryo clusters. Some embryos shrink, while others eventu-
ally grow to reach a critical size, beyond which they have
a higher probability to grow than to dissolve, and be-
comes then (stable) nuclei Afte.r a nucleus has reached
its critical size at a certain site within the volume, the size
of which depends on both temperature T and time t, the
transformation proceeds by growth of the product phase
and production of grains. The number of grains in the
transformed volume is equal to the number of active nu-

cleation sites. The physical entities involve in the trans-
formation kinetics are the nucleation rate per unit
volume, I(T, t), and the growth rate G (T, t) of the prod-
uct phase. I(T, t) is a function of the activation energy
for the molecular migration involved in the transforma-
tion and the critical free-energy barrier, which itself is a
function of the latent heat of transforxnation and the
parent-product surface energy. G(T, t), the velocity of
the parent-product interface, depends mainly on the
amount of undercooling at the parent-product interface.

The evolution of the transformed phase with time and
temperature is described by the well-known and widely
used kinetic "Avrami equation. " Among the physical
and mathematical assumptions in Avrami's treatment,
two are of special importance: (a) As time proceeds dur-

ing growth, some grains grown from sites active at vari-
ous times in the past, may impinge upon grains grown
from other sites. In this case, growth ceases on the corn-
mon interface, though it continues normally elsewhere.
(b) Active nucleation sites are randomly distributed
throughout the volume.

Impingement of grains one upon another creates a
geometrical problem, which Avrami solves by introduc-
ing an "extended" volume, defined as the total volume of
the grains, had their growth not been impeded by im-
pingement. This issue of impingement has to be dealt
with for the prediction of the new phase evolution, as it
a8ects the transformed volume fraction.

Assumption (b) needs clarification: What is the volume
where nucleation sites are randomly distributed
throughout? It is either the entire volume undergoing
transformation V„„~ or the untransformed volume V'

vt'(T, t)=
3

G'(T, z)(t —z)' .

Within the untransformed volume V = 1 —V~ the num-

ber of new nuclei formed in the time interval z and z +dz
isI(T, t)V (T, t)dz

In either solid-state or liquid-to-solid transformations,
mutual interference of grains growing from dNerent nu-

clei causes growth to cease in regions with common inter-
faces, when the condition V (& V' is not satisfied
anymore. As stated in Ref. 1, the problem is primarily
geometrical, and has been treated by Avrami by intro-
ducing the concept of "extended uolume" of the
transformed material, V~„„given by

V~„,( T, t) = J v, ( T, t)N ( T,z)dz . (&)

Following the suggestion presented before, the concentra-
tion of actual grains at any time t is

N ( T, t) =f I ( T z}(V„„,—V~}dz .

V~„,( T, t) is the total transformed volume if impingement

only. In the first case, chosen by Avrami, the total num-
ber of nuclei formed during the time interval dz is the
sum of the actual new nuclei IV dz and the additional
"phantom nuclei" IV~dz, nucleated in the already
transformed volume V~. In this case, the actual number
of nucleation sites, and therefore the actual transformed
fraction are overestimated.

The present paper suggests adopting the second case,
where randomness is assumed to prevail in the un-

transformed, time-dependent volume only. This choice
excludes the nonexistent, "phantom" nuclei. The
reassessment of the impingement and randomness issues
leads to an alternative relationship to Avrami's equation
for the transformed phase evolution with time and tem-
perature.

During the nucleation stage, any nucleus grown from
embryos has reached after a time z (the nucleation time)
its "critical" volume (volume of a sphere with a critical
radius). At any time t )z and temperature T, the volume
v (T, t) of an individual product phase grain has grown
isotropically to become
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of growing grains is neglected.
By introducing the value of v as defined by Eq. (1) and

of N ( T, t) as defined by Eq. (3) in Eq. (2), one gets {for
spherical grains)
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V~„,(T, t)= I G (T z)(t z)—I(T z)(v«, g —V~)dz.
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What is the relation between Vg, {T,t) and V~(T, t)'?

Avrami answers this question as follows [Ref. 3(b)]: Any
increase during the time interval dt of the transformed
volume d V~ is accompanied by an increase of the
extended volume d V~„,. However, only a fraction
(1—V~/V«„i) of this last increase, d V~„„lies in the pre-
viously untransformed volume, and contributes to VP.

Therefore,

d Vt' V'=1- =1—g.
dv, „,

(5)

Using Eqs. (4}and (5},we finally get

6 T,zI T,z t —z 1 — T,z z.
0

g(T, t)=

g(T, t)= G IJ (t —z) [1—g(T, z)]zdz . (7)

The crystallization kinetics are described by an integral
equation. This equation should be used instead of the
well known Avrami equation:

O' T,z I T,z t-z ' z .
0

If G(T, t) and I(T, t) are constant, the Avrami equation
reduces to

(6)

If G(T, t) and I(T, t) are constant, as may be assumed in
some cases, ' one gets
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FIG. 1. Fraction crystallized vs time, NiZr~, at 642 K.

these systematic deviations are due to the overestimation
of the number of operative nucleation sites, by omitting
the factor (V„„,—V~) in Eq. (4). This leads to an in-
creased, wrong, transformed phase evolution rate when
the Avrami equation is used. The numerical values of
G I resulting from the best fits with Eq. (7) do refiect the
swiftness of the transformations: rapid crystallization in
the case of Te9zPbs and slower crystallization in the case
of NiZr2.

Deviations from the fit for volume fractions above
x=0.50 have been reported in numerous papers over the
years, generally attributed to experimental artifacts.
Reference 8, as an example, mentions a "larger than ex-
pected temperature gradient across the sample width. " If
the proposed integral equation is used for the data in Ref.
8, a single value for G I=SX10 ' sec fits the whole
range of data up to /=1. Fitting the data to the (in-
correct) Avrami's exponential equation with G I values
either smaller and greater than 5X10 ' sec does not
afford any better fit.

We believe that Eq. (6) is applicable in kinetic analyses
for solidification, crystal growth, polymorphic solid-state
changes, discontinuous precipitation, eutectoid reactions,

~G'It4
g( T, t ) = 1 —exp

3
(9)
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To our knowledge, Eq. (6) has no analytical solution.
g( T, t) may, however, be evaluated numerically, using the
finite-difference method.

Equation (7) has been used to fit reported experimental
results for amorphous to crystalline isothermal transfor-
mations in the NiZrz (Ref. 8) and Te9zPbs (Ref. 9) alloys.
The numerical values for the product G I have been de-
duced from the best Bt. The best-fit results are shown in
Figs. 1 and 2, where g(T, t) is also shown when the Av-
rami equation, Eq. (9) is used, with the same G I values,
shown on the graphs.

As seen in the figures, there is practically no deviation
of the fit to the experimental data when Eq. (7) is used. If
the Avrarni equation (9}is used, deviations occur for both
alloys above =40% volume fraction. The reason for
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FIG. 2. Fraction crystallized vs time, Te»Pb8, at 319 K.
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interface-controlled growth and diffusion-controlled
growth in addition to crystallization from the amorphous
state, in both isothermal and nonisothermal conditions.

This paper demonstrates that the Avrami's equation is
a "simpli6cation" of the real physical solution, resulting
from the omission of the fact that the active nucleation
takes place in the as yet untransformed part of the ma-
terial, instead of the total volume system. This leads to
an overestimation of the transformed volume, resulting in

an incorrect evaluation of the temperature-dependent
rate parameter, the nucleation rate and product-phase
growth velocity, and of the power-law argument for the
time, all of which serve to identify the physical nature of
the transformation. It is still unclear how the kinetic pa-
rameters (activation energy and rate parameter) may be
deduced from the general integral Eq. (6). This issue is
currently being investigated.
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